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The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome-—
coronavirus 2 (SARS-CoV-2) has resulted in an unprecedented public health crisis. There are currently no
SARS-CoV-2-specific treatments or vaccines available due to the novelty of the virus. Hence, rapid
development of effective vaccines against SARS-CoV-2 are urgently needed. Here we developed a pilot-
scale production of a purified inactivated SARS-CoV-2 virus vaccine candidate (PiCoVacc), which induced
SARS-CoV-2-specific neutralizing antibodies in mice, rats and non-human primates. These antibodies
neutralized 10 representative SARS-CoV-2 strains, suggesting a possible broader neutralizing ability
against SARS-CoV-2 strains. Three immunizations using two different doses (3 pg or 6 ug per dose)
provided partial or complete protection in macaques against SARS-CoV-2 challenge, respectively, without
observable antibody-dependent enhancement of infection. These data support clinical development of

SARS-CoV-2 vaccines for humans.

The World Health Organization declared the outbreak of
coronavirus disease in 2019 (COVID-19) to be a Public Health
Emergency of International Concern on 30 January 2020,
and a pandemic on 11 March 2020. It is reported that ~80%
of COVID-19 patients have mild-to-moderate symptoms,
while ~20% develop serious manifestations such as severe
pneumonia, acute respiratory distress syndrome (ARDS), sep-
sis and even death (7). The number of COVID-19 cases has
increased at a staggering rate globally. Severe acute respira-
tory syndrome-coronavirus 2 (SARS-CoV-2), the causative vi-
rus of the ongoing pandemic, belongs to the genus
Betacoronavirus (3-CoV) of the family Coronavirdae (2).
SARS-CoV-2 along with the severe acute respiratory syn-
drome coronavirus (SARS-CoV) and the Middle Eastern res-
piratory  syndrome-related coronavirus (MERS-CoV),
constitute the three most life-threatening species among all
human coronaviruses. SARS-CoV-2 harbors a linear single-
stranded positive sense RNA genome, encoding 4 structural
proteins [spike (S), envelope (E), membrane (M), and nucle-
ocapsid (N)] of which S is a major protective antigen that
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elicits highly potent neutralizing antibodies (NAbs), 16 non-
structural proteins (nspl-nspl6) and several accessory pro-
teins (3). No specific antiviral drugs or vaccines against the
newly emerged SARS-CoV-2 are currently available. There-
fore, urgency in the development of vaccines is of vital im-
portance to curb the pandemic and prevent new viral
outbreaks.

Multiple SARS-CoV-2 vaccine types, such as DNA-, RNA-
based formulations, recombinant-subunits containing viral
epitopes, adenovirus-based vectors and purified inactivated
virus are under development (4-6). Purified inactivated vi-
ruses have been traditionally used for vaccine development
and such vaccines have been found to be safe and effective
for the prevention of diseases caused by viruses like influenza
virus and poliovirus (7, 8). To develop preclinical in vitro neu-
tralization and challenge models for a candidate SARS-CoV-
2 vaccine, we isolated SARS-CoV-2 strains from the bron-
choalveolar lavage fluid (BALF) samples of 11 hospitalized pa-
tients (including 5 patients in intensive care), among which 5
are from China, 3 from Italy, 1 from Switzerland, 1 from UK
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and 1 from Spain (table S1). These patients were infected with
SARS-CoV-2 during the most recent outbreak. The 11 samples
contained SARS-CoV-2 strains that are widely scattered on
the phylogenic tree constructed from all available sequences,
representing, to some extent, circulating SARS-CoV-2 popu-
lations (Fig. 1A and fig. S1). We chose strain CN2 for purified
inactivated SARS-CoV-2 virus vaccine development (PiCo-
Vacc) and another 10 strains (termed as CN1, CN3-CN5 and
0OS1-0S6) as preclinical challenge strains. Of note, the CN1
and OS1 strains are closely related to 2019-nCoV-BetaCoV
/Wuhan/WIV04/2019 and EPI_ISL_412973, respectively,
which have been reported to cause severe clinical symptoms,
including respiratory failure, requiring mechanical ventila-
tion (9, 10).

To obtain a viral stock adapted for efficient growth in
Vero cells for PiCoVacc production, the CN2 strain was first
plaque purified and passaged once in Vero cells to generate
the P1 stock. After this another four passages were performed
to generate the P2-P5 stocks. Growth Kinetics analysis of the
P5 stock in Vero cells showed that this stock replicated effi-
ciently and reached a peak titer of 6-7 log;, TCIDs,/ml by 3 or
4 days post infection (dpi) at multiplicities of infection (MOI)
of 0.0001-0.01 at temperatures between 33°C-37°C (Fig. 1B).
To evaluate the genetic stability of PiCoVacc, 5 more passages
were performed to obtain the P10 stock, whole genome of
which, together with those of the P1, P3 and P5 stocks were
sequenced. Compared to P1, only two amino acid substitu-
tions, Ala — Asp at E residue 32 (E-A32D) and Thr - Ile at
nspl0 residue 49 (nsp10-T491), occurred in P5 and P10 stocks
(table S2), suggesting that PiCoVacc CN2 strain possesses ex-
cellent genetic stability without the S mutations that might
potentially alter the NAb epitopes. To produce pilot scale
PiCoVacc for animal studies, the virus was propagated in a
50-liter culture of Vero cells using the Cell Factory system and
inactivated by using p-propiolactone (Fig. 1C). The virus was
purified using depth filtration and two optimized steps of
chromatography, yielding a highly pure preparation of PiCo-
Vacc (Fig. 1D). Additionally, cryo-electron microscopy (cryo-
EM) analysis showed intact oval-shaped particles with diam-
eters of 90-150 nm, which are embellished with crown-like
spikes, representing a prefusion state of the virus (Fig. 1E).

To assess the immunogenicity of PiCoVacc, groups of
BALB/c mice (n=10) were injected at day O and day 7 with
various doses of PiCoVacc mixed with alum adjuvant (0, 1.5
or 3 or 6 ug per dose, 0 ug in physiological saline as the sham
group). No inflammation or other adverse effects were ob-
served. Spike-, receptor binding domain (RBD)-, and N-spe-
cific antibody responses were evaluated by enzyme-linked
immunosorbent assays (ELISAs) at weeks 1-6 after initial im-
munization (fig. S2). SARS-CoV-2 S- and RBD-specific immu-
noglobulin G (Ig G) developed quickly in the serum of
vaccinated mice and peaked at the titer of 819,200 (>200
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ug/ml) and 409,600 (>100 ug/ml), respectively, at week 6
(Fig. 2A). RBD-specific IgG accounts for half of the S-induced
antibody responses, suggesting RBD is the dominant immu-
nogen, which closely matches the serological profile of the
blood of recovered COVID-19 patients (Fig. 2, A and B) (11).
Surprisingly, the amount of N-specific IgG induced is ~30-
fold lower than the antibodies targeting S or RBD in immun-
ized mice (Fig. 2A). Interestingly, previous studies have
shown that the N-specific IgG is largely abundant in the se-
rum of COVID-19 patients and serves as one of the clinical
diagnostic markers (1I). It’s worthy to note that PiCoVacc
could elicit ~10-fold higher S-specific antibody titers in mice
than those of the serum from the recovered COVID-19 pa-
tients (Fig. 2, A and B). Although this observation is currently
not indicative of PiCoVacc’s ability to produce similar results
in humans, it highlights the potential of PiCoVacc to induce
a strong and potent immune response. Taken together, our
findings - coupled with the fact that the antibodies targeting
N of SARS-CoV-2 do not provide protective immunity against
the infection (72) - suggest that PiCoVacc might be capable of
eliciting more effective antibody responses (Fig. 2, A and B).

Next, we measured SARS-CoV-2-specific neutralizing an-
tibodies over a period of time using microneutralization as-
says (MN50). Similar to S-specific IgG responses, the
neutralizing antibody titer against the CN1 strain emerged at
week 1 (12 for high dose immunization), surged after the week
2 booster and reached up to around 1,500 for low and me-
dium doses, and 3,000 for the high dose at week 7, respec-
tively (Fig. 2A). In contrast, the sham group did not develop
detectable SARS-CoV-2-specific antibody responses (Fig. 2, A
and B). In addition, immunogenic evaluations of PiCoVacc in
Wistar rats with the same immunization strategy yielded sim-
ilar results - the maximum neutralizing titers reached 2,048-
4,096 at week 7 (Fig. 2C). To investigate the spectrum of neu-
tralizing activities elicited by PiCoVacc, we conducted neu-
tralization assays against the other 9 isolated SARS-CoV-2
strains using mouse and rat serums collected 3 weeks post
vaccination. Neutralizing titers against these strains demon-
strate that PiCoVacc is capable of eliciting antibodies that
possibly exhibit potent neutralization activities against SARS-
Cov-2 strains circulating worldwide (Fig. 2, D and E).

We next evaluated the immunogenicity and protective ef-
ficacy of PiCoVacc in rhesus macaques (Macaca mulatta), a
non-human primate species that shows a COVID-19-like dis-
ease caused by SARS-CoV-2 infection (13). Macaques were im-
munized three times via the intramuscular route with
medium (3 ug per dose) or high doses (6 ug per dose) of PiCo-
Vacc at day 0, 7 and 14 (n=4). S-specific IgG and NAb were
induced at week 2 and rose to ~12,800 and ~50, respectively
at week 3 (before virus challenge) in both vaccinated groups,
whose titers are similar to those of serum from the recovered
COVID-19 patients (Fig. 3, A and B). Unexpectedly, NAD titer
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(61) in the medium dose immunized group were ~20%
greater than that observed (50) in the high dose vaccinated
group at week 3, possibly due to individual differences in the
ability of one animal in the medium dose group in eliciting
~10-fold higher titer when compared to the other three ani-
mals (Fig. 3B). Excluding this exception, NAb titer in the me-
dium dose group would drop down to 34, ~40% lower than
that in the high dose group. Subsequently, we conducted a
challenge study by a direct inoculation of 10° TCIDs, of SARS-
CoV-2 CN1 into the animal lung through the intratracheal
route at day 22 (one week after the third immunization) in
vaccinated and control macaques to verify the protective ef-
ficacy. Expectedly, all control (sham and placebo) macaques
showed excessive copies (10*-10%/ml) of viral genomic RNA in
the pharynx, crissum and lung by day 3-7 post-inoculation
(dpi) and severe interstitial pneumonia (Fig. 3, C to F). By
contrast, all vaccinated macaques were largely protected
against SARS-CoV-2 infection with very mild and focal histo-
pathological changes in a few lobes of lung, which probably
were caused by a direct inoculation of 10° TCIDs, of virus into
the lung through intratracheal route, that needed longer time
(more than one week) to recover completely (Fig. 3F). Viral
loads decreased significantly in all vaccinated macaques, but
increased slightly in control animals from day 3-7 after infec-
tion (Fig. 3, C to E). All four macaques that received the high
dose, had no detectable viral loads in pharynx, crissum and
lung at day 7 after infection. In the medium dose immunized
group, we indeed partially detected the viral blip from phar-
yngeal (3/4), anal (2/4) and pulmonary (1/4) specimens at day
7 after infection, while viral loads presented a ~95% reduc-
tion when compared to the sham groups (Fig. 3, C to E). In-
terestingly, NAb titer in vaccinated groups decreased by
~30% by 3 days post infection to neutralize viruses, then rap-
idly increased from day 5-7 after infection to maintain neu-
tralization efficacy. In comparison with high dose vaccination
group (titer of ~14:5), higher NAD titers observed in the me-
dium dose vaccinated group at day 7 after infection (~400 for
4 macaques) might have resulted from relatively low levels of
viral replication, suggesting a requirement of longer time for
complete viral clearance. No antibody-dependent enhance-
ment (ADE) of infection was observed for the vaccinated ma-
caques despite the observation that relatively low NAD titer
existed within the medium dose group before infection, offer-
ing partial protection. The possibility of manifestation of
ADE after antibody titers wane could not be ruled out in this
study. Further studies involving observation of challenged
animals at longer periods of time post vaccination are war-
ranted to address this.

Previous reports on the development of SARS and MERS
vaccine candidates raised concerns about pulmonary im-
munopathology, either directly caused by a type 2 helper T-
cell (Th2) response or as a result of ADE (4, 14, 15). Although
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T-cell responses elicited by many vaccines have been demon-
strated to be crucial for acute viral clearance, protection from
subsequent coronavirus infections is largely mediated by hu-
moral immunity (16, 17). The “cytokine storm” induced by ex-
cessive T-cell responses have been actually shown to
accentuate the pathogenesis of COVIDI19 (18, 19). Therefore,
T-cell responses elicited by any SARS-CoV-2 vaccine(s) would
have to be well controlled in order to avoid immunopathol-
ogy. In this context, we systematically evaluated safety of
PiCoVacc in macaques by recording a number of clinical ob-
servations and biological indices. Two groups of macaques
(n=10) were immunized by intramuscular injection with low
(1.5 ug) or high doses (6 ug) and another two groups of ma-
caques (n=10) were immunized with adjuvant (sham) and
physiological saline (placebo) for three times at day 0, 7 and
14 time points. Neither fever nor weight loss was observed in
any macaque after the immunization of PiCoVacc, and the
appetite and mental state of all animals remained normal
(fig. S3). Hematological and biochemical analysis, including
biochemical blood test, lymphocyte subset percent (CD3",
CD4* and CD8*) and key cytokines (TNF-o, IFN-v, IL-2, IL-4,
IL-5 and IL-6) showed no notable changes in vaccinated
groups when compared to the sham and placebo groups (Fig.
4, A and B, and figs. S4 and S5). In addition, histopathological
evaluations of various organs, including lung, heart, spleen,
liver, kidney and brain, from the 4 groups at day 29 demon-
strated that PiCoVacc did not cause any notable pathology in
macaques (Fig. 4C and fig. S6).

The serious pandemic of the current COVID19 and the
precipitously increasing numbers of death worldwide neces-
sitate the urgent development of a SARS-CoV-2 vaccine, re-
quiring a new pandemic paradigm. The safety and efficacy
are essential for vaccine development at both stages of pre-
clinical studies and clinical trials. Although it’s still too early
to define the best animal model for studying SARS-CoV-2 in-
fections, rhesus macaques that mimic COVID-19-like symp-
toms after SARS-CoV-2 infection appear promising animal
models for studying the disease. We provide evidences for the
safety of PiCoVacc in macaques; and did not observe infec-
tion enhancement or immunopathological exacerbation in
our studies. Our data also demonstrate a complete protection
against SARS-CoV-2 challenge with a 6ug per dose of PiCo-
Vacc in macaques. Collectively these results suggest a path
forward for clinical development of SARS-CoV-2 vaccines for
use in humans. Phases I, II and III clinical trials with PiCo-
Vacc, as well as other SARS-CoV-2 vaccine candidates, are ex-
pected to begin later this year.
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Fig. 1. Characterization of the SARS-CoV-2 vaccine candidate, PiCoVacc. (A) The SARS-CoV-2 maximum
likelihood phylogenetic tree. The SARS-CoV-2 isolates used in this study are depicted with black lines and labeled.
Viral strains were isolated in infected patients who traveled from the continents as indicated (B) Growth kinetics of
PiCoVacc (CN2) P5 stock in Vero cells. (C) Flowchart of PiCoVacc preparation. (D) Protein composition and purity
evaluation of PiCoVacc by NUPAGE 4-12% Bis-Tris Gel. (E) Representative electron micrograph of PiCoVacc. White
scale bar =100 nm.
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Fig. 2. PiCoVacc immunization elicits neutralizing antibody response against ten representative SARS-CoV-2
isolates. BALB/c mice and Wistar rats were immunized with various doses of PiCoVacc or control (adjuvant only as
the sham group) (n=10). Serums from recovered COVID19 patients (RECOV) and non-infected (NI) individuals were
used as positive and negative controls, respectively. The antibody responses were analyzed in mice (A), humans (B)
and rats (C). Top: SARS-CoV-2-specific I1gG responses as measured by ELISA; bottom: neutralizing antibody titer
determined by microneutralization assay. The spectrum of neutralizing activities elicited by PiCoVacc was
investigated in mice (D) and rats (E). Neutralization assays against the other nine isolated SARS-CoV-2 strains was
performed using mouse and rat serums collected 3 weeks post-vaccination. Data points represent mean +/— SEM
of individual animals and humans from five to ten independent experiments; error bars reflect SEM;; dotted lines
indicate the limit of detection; horizontal lines indicate the geometric mean titer (GMT) of ECso for each group.
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Fig. 3. Immunogenicity and protective efficacy of PiCoVacc in nonhuman primates. Macaques were immunized
three times through the intramuscular route with various doses of PiCoVacc or adjuvant only (sham) or placebo
(n=4). SARS-CoV-2-specific IgG response (A) and neutralizing antibody titer (B) were measured. Data points
represent mean +/— SEM of individual macaques from four independent experiments; error bars reflect SEM; dotted
lines indicate the limit of detection; horizontal lines indicate the geometric mean titer (GMT) of ECso for each group.
Protective efficacy of PiCoVacc against SARS-CoV-2 challenge at week 3 after immunization was evaluated in
macaques (C-F). Viral loads of throat (C) and anal (D) swab specimens collected from the inoculated macaques at
day 3, 5 and 7 pi were monitored. Viral loads in various lobes of lung tissue from all the inoculated macaques at day
7 post-infection were measured (E). RNA was extracted and viral load was determined by gRT-PCR. All data are
presented as mean + SEM from four independent experiments; error bars reflect SEM. Asterisks represent
significance: *P < 0.05 and **P < 0.01. Histopathological examinations (F) in lungs from all the inoculated macaques
at day 7 post infection. Lung tissue was collected and stained with hematoxylin and eosin.
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Fig. 4. Safety evaluation of PiCoVacc in nonhuman primates. Macaques were immunized three times at day O, 7
and 14 through the intramuscular route with low dose (1.5 pg per dose) or high dose (6 pg per dose) of PiCoVacc or
adjuvant only (sham) or placebo. (A and B) Hematological analysis in all four groups of macaques (n=4).
Lymphocyte subset percents (A), including CD3*, CD4* and CD8* were monitored at day -1 (1 day before
vaccination), 18 (3 days after the second vaccination) and 29 (7 days after the third vaccination). Key cytokines (B),
containing TNF-a, IFN-y and IL-2 were examined at day -1, 1 (the day of the first vaccination), 4, 18 and 29 after
vaccination. Data points show mean + SD from four independent experiments; error bars reflect SD. (C)
Histopathological evaluations in lungs from four groups of macaques at day 29. Lung tissue was collected and
stained with hematoxylin and eosin.
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