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Cenci Bolognetti and Dipartimento di Biologia Cellulare e Dello Sviluppo, Università La Sapienza, Roma, Italy, 3 Istituto Pasteur, Fondazione Cenci Bolognetti and
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Abstract

Heterochromatin Protein 1 (HP1a) is a well-known conserved protein involved in heterochromatin formation and gene
silencing in different species including humans. A general model has been proposed for heterochromatin formation and
epigenetic gene silencing in different species that implies an essential role for HP1a. According to the model, histone
methyltransferase enzymes (HMTases) methylate the histone H3 at lysine 9 (H3K9me), creating selective binding sites for
itself and the chromodomain of HP1a. This complex is thought to form a higher order chromatin state that represses gene
activity. It has also been found that HP1a plays a role in telomere capping. Surprisingly, recent studies have shown that
HP1a is present at many euchromatic sites along polytene chromosomes of Drosophila melanogaster, including the
developmental and heat-shock-induced puffs, and that this protein can be removed from these sites by in vivo RNase
treatment, thus suggesting an association of HP1a with the transcripts of many active genes. To test this suggestion, we
performed an extensive screening by RIP-chip assay (RNA–immunoprecipitation on microarrays), and we found that HP1a is
associated with transcripts of more than one hundred euchromatic genes. An expression analysis in HP1a mutants shows
that HP1a is required for positive regulation of these genes. Cytogenetic and molecular assays show that HP1a also interacts
with the well known proteins DDP1, HRB87F, and PEP, which belong to different classes of heterogeneous nuclear
ribonucleoproteins (hnRNPs) involved in RNA processing. Surprisingly, we found that all these hnRNP proteins also bind
heterochromatin and are dominant suppressors of position effect variegation. Together, our data show novel and
unexpected functions for HP1a and hnRNPs proteins. All these proteins are in fact involved both in RNA transcript
processing and in heterochromatin formation. This suggests that, in general, similar epigenetic mechanisms have a
significant role on both RNA and heterochromatin metabolisms.

Citation: Piacentini L, Fanti L, Negri R, Del Vescovo V, Altieri AFF, et al. (2009) Heterochromatin Protein 1 (HP1a) Positively Regulates Euchromatic Gene
Expression through RNA Transcript Association and Interaction with hnRNPs in Drosophila. PLoS Genet 5(10): e1000670. doi:10.1371/journal.pgen.1000670

Editor: Harmit S. Malik, Fred Hutchinson Cancer Research Center, United States of America

Received January 19, 2009; Accepted September 2, 2009; Published October 2, 2009

Copyright: � 2009 Piacentini et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was partially supported by PRIN prot. 2007A4SN5P from Ministero della Ricerca e dell’Istruzione. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: sergio.pimpinelli@uniroma1.it

Introduction

HP1a isoform is the original chromosomal protein first

discovered in Drosophila melanogaster through its association with

the heterochromatin [1,2]. Molecular studies have shown that

HP1a is a phylogenetically highly conserved protein [3–5] with

two prominent structural motifs, the chromo domain [6] and

chromoshadow domain [7], important for chromatin binding and

protein interactions respectively. In Drosophila, HP1a is encoded by

the Su(var)2–5 locus, a dosage-dependent modifier of position

effect variegation (PEV) [8]. Both the heterochromatic location of

HP1a and its effect on PEV demonstrate its essential role in

heterochromatin formation. Different sets of data have established

the ability of HP1a to associate with several different proteins

[9–11]. A general model has been proposed for heterochromatin

formation and epigenetic gene silencing in different species.

According to the model, histone methyltransferase enzymes

(HMTases) methylate the histone H3 at lysine 9 (H3K9me),

creating selective binding sites for themselves and for the

chromodomain of HP1a [12]. This complex is thought to form

a higher order chromatin state that represses gene activity.

In addition to being required for heterochromatin formation,

HP1a also plays a critical role in telomere capping and the

telomere transcriptional repression in Drosophila [13–15]. HP1a is a

structural component of all Drosophila telomeres, and its absence

results in extensive telomeric fusions and hypertranscription of

telomeric sequences.

A detailed cytological analysis of the distribution of HP1a in

polytene chromosomes of Drosophila melanogaster using an anti-

HP1a antibody has demonstrated the presence of the protein at

about 190 euchromatic sites, including the developmental and

heat-shock induced puffs [16]. Intriguingly, when the heat-shock

induced expression of the HSP70-encoding gene was examined in

larvae either lacking or with a superabundance of HP1a, HP1a

was shown to be positively involved in Hsp70 gene activity [17].

Other recent experiments also support a positive role of HP1a in
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gene expression. Many euchromatic genes in Drosophila are down-

regulated in HP1a deficient larvae. Although it is still unknown

how many of these genes are direct targets of HP1a, the same

study showed that HP1a is associated with some of them [18].

Similar results were seen when HP1a was depleted in cultured cells

[19]. High-resolution mapping experiments have also shown that

HP1a is associated with transcriptionally active chromatin in

Drosophila [20]. Also relevant is the prior observation that, in

Drosophila, the in vivo RNase treatment of polytene chromosomes of

wild type larvae removes almost all the euchromatic HP1a

immunosignals. This implies that HP1a directly associates with the

transcripts of many active genes [17].

Together, these data lead to the hypothesis that HP1a is

involved in the positive regulation of gene expression by binding

RNA transcripts. We describe here our experiments to test this

hypothesis. Our results show that HP1a can directly bind RNA in

vivo and that it interacts with the active RNA-polymerase II (Pol

II). Most importantly, a ‘‘RIP-Chip’’ (RNA-immunoprecipitation

on microarrays) analysis shows that HP1a associates with the RNA

transcripts of more than one hundred genes. We found that HP1a

positively regulates the expression of these genes by also

interacting with DDP1, HRB87F and PEP, which belong to

different classes of heterogeneous nuclear ribonucleoproteins

(hnRNPs) involved in RNA processing. Surprisingly, we found

that all these hnRNP proteins also bind heterochromatin and are

dominant suppressors of position effect variegation.

Results

HP1a interacts with active Pol II and directly binds RNA
transcripts

The binding of HP1a to heat-shock induced puffs and to the

majority of euchromatic loci seems to be mediated by the presence

of nascent RNA, since RNase treatment removes euchromatic

HP1a immunosignals [17]. To test if the multiple euchromatic

HP1a binding sites correspond to active genes, we immunostained

the polytene chromosomes of salivary glands with a specific

antibody directed against HP1a, and an antibody against the

active form of Pol II Phospho Ser2. As shown in Figure 1A and

Figure S2A, HP1a and Pol II have an extensive co-localization.

These results are confirmed by immunoprecipitation experiments

using the anti-HP1a antibody. A western blot of the immunopre-

cipitated proteins reveals the presence of Pol II (Figure 1B).

We then verified a direct interaction of HP1a with RNA

transcripts through in vitro and in vivo experiments. Recombinant

HP1a was incubated with Hsp70 RNA which had been previously

transcribed and marked radioactively. The protein HP1a was then

cross-linked to the RNA by UV and resolved by SDS-PAGE.

Radioactive signals at the positions corresponding to the molecular

weight of the HP1a monomer and dimer show that the protein is

able to bind Hsp70 RNA in vitro (Figure 1C). The ability of HP1a

to interact with the Hsp70 RNA in vivo was analyzed by primer

extension on the population of RNA immunoprecipitated from

Schneider’s (S2) cultured cells with the monoclonal C1A9 (anti-

HP1a) antibody. As shown in Figure 1D, Hsp70 RNA is present

only in the immunoprecipitated RNA from heat-shocked cells,

confirming the ability of HP1a to bind Hsp70 RNA in vivo. Both

these results indicate the association of HP1a with transcriptionally

active genomic regions. To determine which part of the protein is

responsible for its RNA binding, we performed a gel shift assay on

the series of HP1a fragments indicated in Figure 1E [15,21,22]. As

Figure 1E shows, we found that only the HP1a fragments

containing the chromodomain are capable of producing a gel shift

of RNA. These results strongly suggest that the chromodomain

region is required for the direct binding of HP1a to RNA

transcripts.

Identification of the target transcripts of HP1a by ‘‘RIP-
Chip’’ (RNA-immunoprecipitation on microarrays)
analysis

We used an optimized ‘‘RIP-Chip’’ (RNA-immunoprecipitation

on microarrays) protocol to screen for the target RNA transcripts

of HP1a. After the advent of RIP-chip technologies, several related

methods were developed using physical or chemical RNA-protein

cross-linking to identify the multiple RNA targets of RNA binding

protein [23]. We decided not to use cross-linking in our S2 cell

extracts to avoid any artifacts produced by cross-linking reagents,

such as the reduction of cell lysis, the introduction of sequence

bias, an increase in background and a less-than-complete

reversibility. Instead, we optimized the RIP-Chip conditions to

find in vivo the RNA substrates of HP1a protein while minimizing

possible artifacts. Control experiments were done to ensure the

absolute requirements for productive amplification and labeling in

the RT reaction and to test for the presence of HP1a in the

immunoprecipitated RNA (not shown). After background sub-

traction, the net intensity for each spot and the ratio between the

IP and input were calculated. Four independent experiments were

performed, and after data filtering to exclude artifacts and low-

signal spots, the subsequent analysis was carried out on the 5780

cDNA clones which gave reliable signals in at least 3 out of 4

experiments. For each experiment, data were ordered by ranking,

and the median rank was calculated for each cDNA clone (Table

S1). Table S2 shows the median percentile rank (MPR) between IP

and input for the cDNA clones within the 90th percentile. The

same table reports the results of two independent experiments

done with the identical procedure but without the antibody against

HP1a. It is evident that most of the putative HP1a targets show a

much lower percentile rank in these control experiments,

confirming the specificity of the immunoprecipitation.

We identified 105 genuine transcript targets, reported in Table

S3. These transcripts correspond to genes that, constitutively,

support a very active rate of transcription. To test whether these

genes correspond to the most abundant transcripts or are

Author Summary

Heterochromatin Protein 1 (HP1a) is a very well known
prototype protein of a general model for heterochromatin
formation and epigenetic gene silencing in different
species including humans. Here, we report our experi-
ments showing that HP1a is also required for the positive
regulation of more than one hundred euchromatic genes
by its association with the corresponding RNA transcripts
and by its interaction with heterogeneous nuclear
ribonucleoproteins (hnRNPs) belonging to different class-
es. Importantly, we also found that all the tested hnRNP
proteins bind to the heterochromatin and are dominant
suppressors of position effect variegation, thus suggesting
they also have a role in heterochromatin organization.
Taken together, our data show novel and important
functions, not only for HP1a, but also for hnRNPs, which
were previously believed to participate only in RNA
processing. These results shed new light on the epigenetic
mechanisms of gene silencing and gene expression. They
also establish a link between RNA transcript metabolism
and heterochromatin formation and change several
aspects of the canonical views about these apparently
different processes.

Positive Regulation of Gene Expression by HP1a
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Figure 1. HP1a can directly bind RNA in vitro and in vivo and interacts with Pol II. (A) Immunolocalization of HP1a and active Pol II on
polytene chromosomes of D. melanogaster. Signals produced by the two antibodies show an extensive colocalization. (B) Coimmunoprecipitation of
HP1a and Pol II by an anti-HP1a antibody. To test the specificity of HP1a with Pol II interaction, we also probed with an antibody against a-actin. (C)
UV crosslinking after incubation of four different concentrations of HP1a with Hsp70 RNA in vitro. Note that radioactive HP1a bands with molecular
weights corresponding to an HP1a dimer and monomer are present in the third and fourth lanes. (D) Primer extension of RNA immunoprecipitated
from S2 cells with CIA9 antibody. Two signals are present only in HP1a immunoprecipitates of heat-shocked cells (HS). (E) Electromobility shift assay.
Left, a diagram of the HP1a fragments used in the gel shift assay. Right, the results of EMSA of radiolabelled HSP70 RNA using the different HP1a
fragments (50 ng). The absence of shift (lane d) using the HP1a fragment lacking the chromo-domain strongly suggests that this part of the protein is
responsible for the binding of HP1a to the RNA transcripts.
doi:10.1371/journal.pgen.1000670.g001

Positive Regulation of Gene Expression by HP1a
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specifically associated with HP1a, we identified the 200 most

abundant transcripts in the input RNA and analysed their median

percentile rank in HP1a IP. Only 6/200 transcripts are included in

the list of the best HP1a binders (IP rank$0.9) (Table S4).

Moreover, the median IP rank of the 200 most abundant

transcripts is 0.45, while their median rank in the mock

experiments is 0.61. Thus, if there is a bias in the HP1a

experiments, it is toward less abundant, rather than more

abundant transcripts. The signal intensity median rank for the

best HP1a binders (IP rank$0.9) is 0.56, indicating that the RNAs

bound by HP1a tend to be only slightly more abundant than

average.

De Wit et al. (2007) did a high resolution analysis of HP1a

binding on Drosophila chromosomes 2 and 4 using the DNA

adenine methyltransferase identification (DamID) technique [20].

This technique is used to make genome-wide maps of DNA-

interacting proteins. DamID consists in making a fusion protein

composed of the protein of interest and DNA adenine methyl-

transferase (Dam). Expression of this protein permits the

methylation of adenines around the sites of the protein-DNA

binding. The methylated sequences are amplified and identified by

hybridization to microarrays. The authors identified 357 genes,

with an average HP1a-Dam methylase vs Dam methylase log2-

ratio along the entire gene .1, out of 3992 genes represented on

the microarray (8.9%). A total of 189 genes (4.7%) showed an

average log2 ratio .2, considered a more stringent cut-off by the

authors. The pattern of increased methylation typically spanned

the entire gene coding regions. We looked at the average HP1a-

Dam/Dam log2 ratio of 21 genes present on chromosome 2 which

showed .0.9 MP Rank in our RNA binding experiments. No

gene showed an average Log2 ratio .1 (Table S5); the highest

average ratio was 0.59. Moreover, only 6/21 genes (29%) showed

significant localized clusters of HP1a-Dam/Dam log2 values .0.5

(Figure S1). These data suggest that when HP1a-Dam methylase

fusion protein is bound via RNA, it retains a limited capacity to

extensively methylate the DNA gene coding region. This

limitation could be qualitative and/or quantitative and could be

due to several factors: the methylating domain could be masked by

interactions with RNA; the methylating domain could be masked

by protein partners which are exclusively present when HP1a is

bound to RNA; methylation could be less efficient due to a

peculiar chromatin structure selectively present on HP1a RNA

targets. We think that these observations should be taken in

account when trying to reconstruct the complex pattern of

interaction of this pleiotropic protein.

When we compare the HP1a euchromatic binding sites and the

location of the genes corresponding to the RNA target sites in

polytene chromosomes we find that about half of the selected

targets (52/105) map in the same cytological band or in bands

immediately adjacent to where HP1a has been located [16]

(Figure 2A) (see also Table S3). This correlation appears excellent

taking into account that the target transcripts were identified in

cultured cells while the cytological immunosignals came from

polytene chromosomes of larval salivary glands.

HP1a positively regulates gene expression by binding
RNA transcripts

To see if HP1a upregulates gene expression by binding to RNA,

we did a real time RT-PCR analysis of the expression of 17 genes

corresponding to the HP1a target transcripts, in S2 cells treated

with dsRNA for HP1a and in Su(var)2–502/Su(var)2–505 larvae,

which express an HP1a with a functionally inactive chromodo-

main. We chose 12 genes that comap with HP1a immunosignals

on polytene chromosomes and five others located in regions

apparently devoid of HP1a immunosignals (Figure 2A). As a

negative control, we tested five genes that do not comap with

HP1a in salivary glands and whose transcripts were not HP1a

targets in S2 cells. As shown in Figure 2B and 2C, we found a

significant reduction in all target transcripts of HP1a while we did

not observe any effects on the amount of non-target transcripts

(Figure 2D). In HP1a mutant larvae, we found a significant

reduction in transcripts of the 12 genes that comap with HP1a

(Figure 2E). Three of the genes that do not overlap with any HP1a

signals did not show any significant variation between mutant and

wild type larvae (Figure 2F). Therefore, these genes do not seem to

be regulated by HP1a in larval cells. For the other two genes which

do not comap with HP1a on polytene chromosomes, we observed

a reduction in transcripts as in S2 cells, probably due to a down-

regulation of their expression in other larval tissues; it is possible, in

fact, that HP1a binds these transcripts in other larval tissues rather

than in salivary glands. As observed in S2 cells, the results of RT-

PCR analysis in HP1a mutant larvae clearly show no effect on the

amount of the non HP1a target transcripts (Figure 2G). This also

implies that the lack of HP1a induces a specific effect in gene

expression and not a general effect in gene expression due to a

larval lethality induced by the mutation. Previous observations

have shown a spreading of H3K9 methylation in salivary glands of

HP1a null mutant larvae [22], suggesting a general effect on gene

transcription following the complete loss of HP1a. To test this

possibility, we analyzed the H3K9 methylation along the polytene

chromosomes in Su(var)2–502/Su(var)2–505 (02/05) mutants com-

pared to the wild type and to the null Su(var)2–504/Su(var)2–505

(04/05) mutants. While in the null mutants a H3K9me2

euchromatic redistribution is evident (Figure 3C), in the

Su(var)2–502 mutants (Figure 3B) the pattern is similar to that of

wild type (Figure 3A), with no spreading of H3K9 methylation.

This strongly supports the view that the Su(var)2–502 mutation

affects the amount of transcripts of specific genes.

HP1a interacts with hnRNP proteins
The direct association of HP1a with RNA transcripts suggests

that HP1a could be part of one or more ribonucleic complexes.

Previous data have shown an interaction between HP1a and

DDP1, a multi-KH-domain vigilin that binds single-stranded

nucleic acids with high affinity in vitro [24,25]. The KH-domain is

a motif identified for the first time in the human heterogeneous

nuclear ribonucleoprotein K (hnRNP K) [26]. In Drosophila, HP1a

coimmunoprecipitates (Figure 4D) and extensively colocalizes with

DDP1 protein on sub-regions of the heterochromatin and in many

sites along the euchromatic arms of polytene chromosomes [24]

(see also Figure 4A and Figure S2B). In fact, the binding of HP1a

to heterochromatin seems to depend on DDP1 [25]. Treatment

with RNase abolishes the DDP1 euchromatic immunopatterns but

does not significantly affect the heterochromatin localization (data

not shown). It may be that DDP1 binds single-stranded DNA in

the chromocenter and RNA transcripts along the euchromatic

arms. We asked whether HP1a might also interact with the

hnRNP proteins HRB87F and PEP. Both these proteins associate

with Hrb57A, another hnRNP protein that, like DDP1, is closely

related to the human hnRNP K [27]. Both these proteins, like

HP1a, colocalize with the active form of Pol II along polytene

chromosomes [28]. HRB87F is the closest Drosophila homolog to

mammalian A/B type hnRNP [29], which can bind both RNA

and single-stranded DNA [30]. Like HP1a [17], HRB87F

undergoes a dramatic chromosomal redistribution after heat-

shock [31]. PEP (Peptide on Ecdysone Puffs) is a unique zinc finger

protein that, like HP1a, is found preferentially associated on

ecdysone-induced puffs as well as other regions of polytene

Positive Regulation of Gene Expression by HP1a
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Figure 2. The genes corresponding to transcript targets of HP1a in S2 cells show a good overlap with HP1a binding sites on
polytene chromosomes and appear down-regulated in both S2 cells lacking HP1a and HP1a mutant larvae. (A) Localization of HP1a
binding sites and the genes corresponding to the HP1a target transcripts along polytene chromosomes of Drosophila wild type larvae. Blue bars
represent sites where the HP1a target genes overlap with HP1a immunosignals; orange bars indicate the localization of HP1a target genes that do
not overlap with HP1a immunosignals. (B) Quantitative RT–PCR analysis of the expression, in S2 cells treated with dsRNA of HP1a, of a sub-set of
target genes that overlap with HP1a on polytene chromosomes whose position is indicated in (A) by blue bars marked with asterisks and (C) a sub-set
of HP1a target genes that do not overlap with HP1a on polytene chromosomes whose position is indicated in (A) by orange bars marked with
asterisks. (D) Quantitative RT-PCR analysis of the expression, in S2 cells treated with dsRNA of HP1a, of a sub-set of genes that were not found among
the HP1a target genes in S2 cells and do not co-map with any of the HP1a immunosignals along the polytene chromosomes. (E) Quantitative RT-PCR
analysis of the expression, in wild type and HP1a mutant larvae, of the same sub-set of target genes reported in Figure 2B. (F) Quantitative RT-PCR
analysis of the expression, in wild type and HP1a mutant larvae, of the same sub-set of target genes reported in Figure 2C. (G) Quantitative RT-PCR
analysis of the expression, in wild type and HP1a mutant larvae, of the same sub-set of non target genes reported in Figure 2D.
doi:10.1371/journal.pgen.1000670.g002

Positive Regulation of Gene Expression by HP1a
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chromosomes [32]. It has been shown that PEP can bind DNA

and, with higher affinity, RNA [33].

A comparison of the HP1a immunopattern on polytene

chromosomes with those produced by specific antibodies against

PEP (Figure 4B and Figure S2C) and HRB87F (Figure 4C and

Figure S2D) demonstrates that HP1a colocalizes with both these

proteins along the euchromatic arms and partially on the

heterochromatic chromocenter. We made an approximate

estimation of the extent of colocalization by counting the number

of overlapping sites; about 70% of HP1a signals overlap with those

of both proteins. There are also few sites where HP1a overlaps

only with one or the other protein. In immunoprecipitation

experiments using the anti-HP1a C1A9 antibody, HP1a copreci-

pitates with both HRB87F and PEP proteins and DDP1

(Figure 4E).

To analyze possible interdependencies in chromosomal locali-

zation among all these proteins we immunolocated each protein

on the polytene chromosomes of larvae mutant for genes encoding

each of the other proteins. From the results reported in Figure 5

and in Figure S3, it appears that the correct localization of each

protein on the euchromatin depends on the presence of the others

according to a hierarchical order with DDP1 on the top:

DDP1.HRB87F.HP1a.PEP. We conclude that all these

proteins interact for their localization in an ordered manner.

Intriguingly, we have also observed that DDP1 is required for the

localization of HRB87F and PEP proteins on the chromocenter

while DDP1 and Hrb87F mutations partially affect the HP1a

heterochromatic immunopattern. We further tested the functional

interaction of HP1a with DDP1 and PEP by analyzing the

expression of a subset of genes, corresponding to the HP1a target

transcripts, in DDP1 and PEP mutant larvae. As reported in

Figure 6, we found similar effects to those observed on the

expression of same genes in HP1a mutant larvae.

To test whether HP1a forms a nuclear complex with the

interacting hnRNPs, Drosophila S2 cells were transfected with a

plasmid coding for FLAG-tagged HP1a under the control of

actin5C promoter. As a control, cells were transfected with the

same plasmid coding for FLAG-tagged GFP protein. The

efficiency of transfection was monitored by comparing microscop-

ically the amount of fluorescence in control vs experimental cells,

and we found it was generally 65%–70%.

To concentrate solely on nuclear HP1a, transfected cells were

lysed by hypotonic buffer and the nuclei were processed for

immunopurification. Immunopurification was done on either

soluble nuclear extract, corresponding to the nucleoplasmic

fraction, or total nuclear lysate, corresponding to a soluble

chromatin fraction. Both fractions, obtained from HP1a and

GFP transfected cells, were immunopurified using anti-FLAG

monoclonal antibodies and protein G-coated magnetic beads.

Immunoadsorbed fractions were specifically eluted with a 3X-

FLAG peptide, resolved by electrophoresis and analysed by

western blot. Figure 7A reports the western blot analysis of nuclear

extracts and lysates obtained from HP1a and GFP transfected cells

using anti-FLAG antibody. A band corresponding to FLAG-

tagged protein is clearly evident in both immunopurified fractions,

confirming the efficiency of transfection and immunopurification.

Figure 7B reports the western blot analysis of nuclear extracts and

lysates obtained from HP1a and GFP transfected cells using anti-

PEP, anti-DDP1 and anti-HRB87F antibodies. It should be noted

that the nuclear fractions after immunopurification (Ip lane)

represent 10X the number of cells as those of the nuclear fractions

before immunopurification (Input lane). Analysis of the nuclear

lysates shows that all three analyzed proteins coimmunopurify with

HP1a (IPHP1a lanes) but are absent in the control immunopur-

ification (IPGFP lanes), confirming their interaction with HP1a.

Since the same proteins are absent in the immunopurified fraction

obtained from nuclear extracts (the soluble nucleoplasmic fraction)

we hypothesize that these HP1a-containing complexes are mainly

associated with chromatin.

To confirm the association of DDP1, PEP and HRB87F in

HP1a-containing complexes, immunopurified fractions were

resolved by native-PAGE followed by western blot analysis.

Figure 7C shows that HP1a is involved in nuclear complexes

with different mobility which include all three protein tested

(DDP1, PEP and HRB87F). Two low-mobility complexes are

evident: the first one of HP1a, PEP and HRB87FT (marked

with **) and the second one of all the proteins tested (marked

with *). A fast mobility form of HP1a is also evident which does not

comigrate with any of the other proteins (marked with u).
Treatment with RNAse modifies the electrophoretic behaviour

of HP1a and DDP1, confirming RNA-binding capability of HP1a

and suggesting that interaction of DDP1 with HP1a is RNA-

dependent. The apparent decrease of mobility observed after

RNAse treatment of HP1-containing complexes could be the

result of ribonucleic acid effect on electrophoretic mobility. RNA-

containing proteic complexes migrate faster than the same

complexes where RNA has been digested since RNA has a much

higher charge/mass ratio than a protein.

Figure 3. A mutated chromodomain of HP1a does not modify
the immunopattern of Histone H3 di-methylated at lysine 9
(H3K9me2). (A) Immunopattern of H3K9me2 on polytene chromo-
somes of wild type larvae (Ore-R). The immunosignals are mainly
present on the chromocenter. (B) H3K9me2 immunopattern on
polytene chromosomes of Su(var)2–502/Su(var)2–505 (02/05) larvae. The
immunopattern is very similar to that of wild type. (C) H3K9me2
immunopattern on polytene chromosomes of Su(var)2–504/Su(var)2–505

(04/05) null mutant larvae. In this case, the H3K9me2 immunosignals
have been redistributed, even on euchromatic regions.
doi:10.1371/journal.pgen.1000670.g003

Positive Regulation of Gene Expression by HP1a
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HP1a is mainly involved in RNA packaging and stability
Different classes of hnRNP proteins are involved in different

aspects of RNA metabolism, such as transcript elongation,

packaging and stability of mRNAs, RNA splicing, RNA surveillance

and RNA export. In which of these functions is HP1a implicated?

The cytological colocalization and the direct interaction of HP1a

with active Pol II seem to be compatible with an involvement of

HP1a in transcript elongation. We tested this hypothesis using the

transcription inhibitor DRB on heat-shock induced puffs on

polytene chromosomes. This treatment is known to precociously

remove the elongation factors [34]. However, as shown in

Figure 8A, HP1a remains at all the puffs even after the block of

transcription. We also observed that the immunopattern of active

Pol II is not affected on HP1a mutant polytene chromosomes (data

not shown) indicating that RNA Pol II elongation is not disrupted in

the absence of HP1a. Another suggested role for some hnRNPs is a

shuttle function for the export of RNA from the nucleus to the

cytoplasm [35,36]. We analyzed the nuclear and cytoplasmic

localization of poly(A)+ RNAs in wild type and HP1a mutants using

a FISH detection of poly(A)+ RNAs in salivary glands from wild type

and HP1a mutant larvae. The localization patterns of poly(A)+

RNAs observed in wild type are not changed in the absence of

HP1a (Figure 8B). However, we cannot exclude specific changes in

localization of HP1a-bound transcripts due to precocious release

prior proper processing by hnRNPs or loading of stabilizing

proteins. It is also unlikely that HP1a has a relevant role in RNA

surveillance mechanisms. It is well known that mutations in nuclear

exosome components increase the amount of transcripts [37]; HP1a

mutations have the opposite effect. However, we further tested this

suggestion by a simultaneous immunofluorescence staining of

polytene chromosomes from wild type larvae, with C1A9 antibody

and a specific antibody against the Rrp6 protein which is a nuclear

component of the exosome [38]. We found little overlap of the two

proteins. HP1a and Rrp6 colocalize at only a few euchromatic sites

and at the telomeres (Figure 8C). Although in mammals the

hnRNPA/B proteins seem to be important in pre-mRNA splicing,

at least two lines of evidence exclude a relevant role for HP1a in this

process. HP1a mutations have the same effects on genes with or

without introns. Piacentini et al. (2003) have shown that HP1a

mutations have a strong quantitative effect on Hsp70 transcripts,

Figure 4. HP1a associates with and colocalizes on polytene chromosomes with DDP1, HRB87F, and PEP hnRNP proteins. (A–C) A part
of the right arm of a wild type polytene second chromosome simulteneously immunostained with the anti-HP1a antibody and an antibody against:
(A) DDP1, (B) PEP, and (C) HRB87F. There is an extensive colocalization of HP1a with each of the other proteins (arrows). We could not perform
simultaneous immunostaining among the DDP1, PEP and HRB87F because the available specific antibodies were made in mouse. However, the
colocalization of each protein with HP1a in same regions indicated that all the proteins colocalize in such regions. (For simultaneous
immunostainings on whole polytene chromosomes, see Figure S3). (D) Coimmunoprecipitation of HP1a with DDP1 by an anti-DDP1 antibody. (E)
Coimmunoprecipitation of HP1a with DDP1, PEP, and HRB87F proteins by the C1A9 anti-HP1a antibody.
doi:10.1371/journal.pgen.1000670.g004
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though the Hsp70 gene lacks introns and its transcripts do not

require pre-mRNA splicing for their maturation. In addition,

alterations in the levels of HRB87F have limited effects in

alternative splicing in Drosophila [39].

We think that the marked effect of HP1a mutations on the

amount of RNA transcripts, together with its association with

different types of hnRNPs which themselves apparently play a

central role in RNA packaging and stability [33,40], suggest that

HP1a is also mainly involved in this function. In support of this

idea, we found that after blocking transcription with actinomycin

D, the HP1a target transcripts are less stable in S2 cells lacking

HP1a compared to control cells (Figure 9).

HRB87F and PEP, along with HP1a and DDP1, are
involved in heterochromatin formation

Though the immunofluorescence patterns of the hnRNP proteins

are somewhat different, they seem to share common sites in the

euchromatin of polytene chromosomes, and they are also present at

the heterochromatic chromocenter. RNase treatment removes or

modifies the euchromatic immunosignals of all these proteins, but it

does not completely remove the heterochromatic immunosignals.

For example, PEP is not completely removed from either the

euchromatic sites or from the chromocenter, but the immunostain-

ing loses its homogeneity and become punctuated (Figure 10). This

change could be explained by the fact that PEP binds both DNA

Figure 5. Hierarchical dependence of HP1a, DDP1, HRB87F, and PEP in their assembly on RNA transcripts. Immunopatterns of each
protein on polytene chromosomes of wild type larvae and larvae mutant for the genes encoding each of the other proteins. (Only the abnormal
patterns are reported here; a complete version of the results is in Figure S3). In DDP1 mutants, the immunopatterns of the other proteins are
abnormal. In Hrb87F mutants, the HP1a and PEP immunopatterns are abnormal while the DDP1 immunopattern is unaltered. In HP1a mutants only
the PEP immunopattern is abnormal, whereas in PEP mutants the immunopatterns of all other proteins are normal (see Figure S3).
doi:10.1371/journal.pgen.1000670.g005
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and RNA and that the RNase treatment removes only the protein

bound to transcripts. On the other hand, the same RNase treatment

seems to almost completely remove the euchromatic immunosignals

and partially remove the heterochromatic immunosignals produced

by the antibody against HRB87F (data not shown). In this case, it

seems that the euchromatic localization of HRB87F depends

exclusively on RNA, while its localization in different part of the

heterochromatin depends on RNA or DNA.

The heterochromatic convergence of these hnRNPs suggests

that they, like HP1a, have a role in heterochromatin formation. A

common test for the involvement of a gene in heterochromatin

formation is to analyze its mutations for their effects on the

heterochromatin-induced gene silencing called position effect

variegation (PEV). The gene for DDP1 has already been shown

to be a suppressor of PEV [25]. We tested Hrb87F and Pep

mutations for their effects on the variegation of the Stubble (Sb)

gene associated with T(2;3)Sbv [41]. In this translocation, the

dominant neomorphic Sb mutation is relocated adjacent to the

pericentromeric heterochromatin of the second chromosome. Flies

carrying the translocation have a mosaic phenotype with Sb and

wild type bristles. The normal bristle phenotype is due to the

transcriptional repression of the dominant mutation. We crossed

T(2;3)Sbv males to either Hrb87FKG02089/TM3, Df(Hrb87F)/TM3,

PepKG00294/TM3, Df(Pep)/TM3 females. We compared the num-

ber of Sb and Sb+ bristles in flies carrying the T(2;3)Sbv alone with

flies who had the translocation and were also heterozygotes for

either Hrb87FKG02089, Df(Hrb87F), PepKG00294, Df(Pep) or TM3

balancer chromosome. The results reported in Table 1 clearly

show that mutations at Hrb87F and Pep are dominant suppressors

of PEV: they significantly increase the frequency of Sb bristles with

respect to the control. We also tested Df(Hrb87F) and Df(Pep) for

their effects on the variegation of the white (w) gene associated with

the In(1)wm4 [42]. In this inversion, the white gene is transferred to

a new position in the heterochromatin. In this location white

undergoes a cis-heterochromatin inactivation that occurs in a

certain proportion of the cells during development giving, for

example in the eyes, a mosaic phenotype of mutant and wild-type

areas. As shown in Figure 11A, the mutations dominantly suppress

this type of PEV as well. We could not test the other Hrb87F and

Pep mutations because they were induce by a P transposon

insertion, which contains the w+ gene. Instead we used

Tp(3;Y)BL2, a Y chromosome rearrangement carrying the

Hsp70-lacZ inducible transgene inserted into its centromeric region

[43]. The heterochromatic location causes a variegation for the

inducible lac-Z in salivary glands of larval males [44]. We

constructed heterozygotes carrying either the Su(var)2–502,

Hrb87FKG02089, Df(Hrb87F), PepKG00294, PepEP(3)3357, PepEP(3)0408,

or Df(Pep) mutations and a balancer carrying an insertion of the

GFP gene (to distinguish heterozygous larvae by the lack of GFP

fluorescence). These females heterozygotes were crossed to

Tp(3;Y)BL2 males. As the examples in Figure 11B show, all the

tested mutations dominantly suppress lac-Z variegation.

Since Hrb87F and PEP proteins appear to be required for

heterochromatin-induced silencing, these proteins, like DDP1 and

HP1a, are probably also involved in heterochromatin formation.

Discussion

HP1a upregulates gene expression by its association with
RNA transcripts

Our data show that, among its multiple functions, HP1a is also

involved in upregulation of many euchromatic genes at the

postranscriptional level by an association of its chromodomain

with the corresponding transcripts.

To identify HP1a targets, we performed a RIP-chip assay in S2

cells and we found that HP1a binds many RNA transcripts. Using

a stringent cutoff (10% top rank), we identified target transcripts

corresponding to about 100 genes. However, we think that the

number of genes whose transcripts are affected by HP1a is

probably much higher.

Although these transcripts were identified in cultured somatic

cells, their genes correspond for the most part with HP1a

immunosignals along the polytene chromosomes of larval salivary

glands. The analysis of the expression of about 15% of these genes

in S2 cells lacking HP1a and in HP1a mutant larvae showed a

significant quantitative reduction in their transcripts, thus

suggesting that HP1a is involved in their upregulation. For the

first time we have been able to systematically identify the direct

targets of HP1a in the euchromatin, and to determine HP1a’s

positive regulatory role on the corresponding genes.

HP1a seems to be involved in RNA transcript packaging
and stability by its interaction with hnRNP proteins

We found that HP1a binding sites overlap extensively with those

of the DDP1, HRB87F and PEP proteins, and that it

Figure 6. Genes corresponding to transcript targets of HP1a in
S2 cells appear down-regulated also in DDP1 and PEP mutants
larvae. (A) Quantitative RT–PCR analysis of the expression in wild type
Ore-R and DDP1 mutant larvae showing a significant decrease in the
amount of the transcripts corresponding to all genes. (B) Quantitative
RT–PCR analysis in wild type Ore-R and PEP mutant larvae. In this case a
significant decrease in the amount of the transcripts is evident for four
of the six analyzed genes.
doi:10.1371/journal.pgen.1000670.g006
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coimmunoprecipitates with these proteins. Though these proteins

belong to different classes of hnRNPs, we found that they are part

of a hnRNP sub-complex with an ordered assembly. They bind

RNA transcripts in a hierarchical fashion beginning with DDP1

and ending with PEP.

In which aspect of RNA metabolism is HP1a involved? Our

tests of the different possibilities lead us to conclude that the

predominant role of HP1a may be the packaging and stability of

RNA transcripts. This conclusion seems to be supported by the

functional characteristics of the HP1a-interacting hnRNPs. For

instance, A1 hnRNP is considered one of the best examples of a

non specific RNA chaperone, probably required to prevent and

resolve RNA misfolding, such as the formation of secondary

structures that would be counterproductive to rapid processing of

pre-mRNA [45,46]. In conclusion, overall data indicate an

involvement of HP1 in packaging and stability of RNA by binding

to nascent transcripts at the transcription sites. We do not know

yet if HP1-containing complexes also include processed RNAs.

A novel role of hnRNP proteins in heterochromatin
formation

The HP1a-containing hnRNP sub-complex also plays a role in

heterochromatin formation. We found that the HRB87F and PEP

proteins, like DDP1, are located on the heterochromatin, where

they probably bind both RNA and single-stranded DNA, since

they are partially removed from the chromocenter of polytene

chromosomes after in vivo treatments with RNase. Importantly, we

also found that these proteins, like DDP1, are dominant

suppressors of heterochromatin-induced gene silencing. This

strongly suggests that at least some hnRNP proteins have a novel

Figure 7. HP1a seems to be involved in forming a complex with hnRNP proteins. (A) Western blot analysis with anti-FLAG antibody of
immunopurified fractions obtained from nuclear extracts and nuclear lysates of S2 cells tranfected with FLAG-tagged HP1a (IPHP1) or FLAG-tagged
GFP (IPGFP). Aliquots corresponding to 36106 cells processed for immunopurification are loaded on each lane. Molecular weight markers, expressed in
kDalton, are reported on the left. (B) Western blot analysis with anti-PEP, anti-DDP1 and anti-HRB87F antibodies of immunopurified fractions obtained
from nuclear extracts and nuclear lysates of S2 cells tranfected with FLAG-tagged HP1a (IPHP1) or FLAG-tagged GFP (IPGFP). Aliquots corresponding to
nuclear extracts and lysates obtained from 36105 cells before immunopurification (lanes In) are compared with aliquots corresponding to 36106 cells
processed for immunopurification (lanes IPHP1 and IPGFP). Molecular weight markers, expressed in kDalton, are reported on the left. Bands marked
with asterisks correspond to mouse IgGs present in the sample and revealed by secondary antibodies. (C) Western blot analysis with anti-FLAG, anti-
HRB87F, anti-DDP1 and anti-PEP antibodies of immunopurified fractions obtained from nuclear lysates of S2 cells tranfected with FLAG-tagged HP1a
resolved by native-PAGE before (lanes 2) and after (lanes +) RNAse treatment. Aliquots corresponding to 36106 cells processed for
immunopurification are loaded on each lane. Complexes with low-mobility (** and *) and a fast mobility form of HP1a (u) are indicated.
doi:10.1371/journal.pgen.1000670.g007
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and unexpected role in heterochromatin formation. A comparison

of the heterochromatic immunopatterns of all these proteins

reveals that DDP1, HRB87F and PEP are located in sub-regions

of the chromocenter while HP1a is present on the entire

chromocenter. Localization of each protein on polytene chromo-

somes of mutant larvae for each of the other genes also shows that

DDP1 seems to be necessary for the recruitment of HRB87F and

PEP proteins on the chromocenter. DDP1 and Hrb87F mutations

only partially affect the HP1a heterochromatic pattern. It

reasonable to think that DDP1, HRB87F and PEP bind some

unknown non-coding RNA and/or single-stranded DNA. The

partial modification of the HP1a immunopattern in DDP1 and

HRB87F mutants implies that HP1a also binds a non-coding

RNA in some heterochromatic sub-regions. Supporting this idea is

our observation of a partial removal of the HP1a heterochromatic

immunopattern after RNase treatment (unpublished data). The

new role of HP1a in RNA processing suggests a possible additional

contribution to the classical role of such protein in PEV. It is

possible that genes inserted into or near heterochromatin could be

transcribed more slowly, and enhancement of processing by HP1a

could result in aberrant transcripts leading to post-transcriptional

silencing. Reduced dosage of HP1a could shift the balance toward

more productive transcripts, resulting in suppression of PEV.

It is evident that HP1a is a functionally multifaceted adaptor

involved not only in heterochromatin formation, gene silencing

and telomere capping, but also in the regulation of gene

Figure 8. HP1a does not seem to be involved in transcript elongation, RNA export, or RNA surveillance. (A) Wild type heat-shocked
polytene chromosomes treated with DRB. The treatment does not affect HP1a binding to the induced puffs (see arrows for examples). The absence of
immunosignals in the insert shows that DRB does affects the Pol II Phospho Ser2 binding to heat-shocked puffs (arrowheads). (B) FISH detection of
poly(A)+ RNA by a Cy3-labeled oligo(dT) probe in salivary glands from wild type and Su(var)2–504/Su(var)2–505 HP1a mutant larvae. The tissues of both
types of larvae show similar patterns (arrowheads). (C) Top, in polytene chromosomes of wild type larvae, the immunolocalization of the nuclear
exosome component Rrp6. Note that the protein is present on many euchromatic sites including telomeres (arrows) and region 31, but absent on the
heterochromatic chromocenter (big arrowhead). In the insert, a confocal microscopy image shows similar Rrp6 immunopattern also in not squashed
polytenes. Bottom, the simultaneous immunolocalization of HP1a and Rrp6. Note that the two proteins colocalize mainly on telomeric regions and
region 31 (small arrowheads); along the euchromatin there is little overlap (arrows indicate examples of regions that show positive HP1a and negative
Rrp6 immunosignals).
doi:10.1371/journal.pgen.1000670.g008

Positive Regulation of Gene Expression by HP1a

PLoS Genetics | www.plosgenetics.org 11 October 2009 | Volume 5 | Issue 10 | e1000670



expression. What molecular mechanisms are responsible for the

functional versatility of HP1a? Either HP1a possesses several

modes of action, or HP1a always performs the same activity but

with different partners in different contexts. In either case, we

think that conformational changes due to post-translational

modifications, generating a sort of an epigenetic sub-code, would

permit the different interactions of HP1a in different contexts.

We propose that, regardless of the mechanism(s) of action, the

main function of HP1a is nucleic acid compaction: HP1a’s

interaction with modified histones and specific hnRNP proteins,

and perhaps some non coding RNA, produces a compaction of

Figure 9. The HP1a target transcripts are less stable in cells
lacking HP1a. Quantitative RT–PCR analysis of three HP1a target
transcripts at different times after blockage of transcription by
actinomicyn D treatment. The blue lines and the red lines respectively
indicate the transcripts amount in S2 control cells and S2 cells interfered
with HP1a dsRNA. Target transcripts correspond to genes: (A) CG5389,
(B) CG6779, (C) CG7975. Note that at 120 minutes, the HP1a target
transcripts are not detectable in HP1a depleted cells while in control
cells their amount is only slightly decreased.
doi:10.1371/journal.pgen.1000670.g009

Figure 10. Modifications of PEP immunopattern on polytene
chromosomes after RNase treatment. (A) PEP immunopattern on
wild type polytene chromosomes. (B) PEP immunopattern on wild type
polytene chromosomes after RNase treatment. Several immunosignals
along euchromatin are removed while other immunosignals (arrows),
including those on the chromocenter (arrowheads), become punctu-
ated. Chr = chromocenter.
doi:10.1371/journal.pgen.1000670.g010

Table 1. Dominant effects of Hrb87F and PEP mutations on
Stubble variegation of T(2;3)Sbv.

Mutant
No. of
flies

total
bristlesa

% of Sb
bristles Pb

+ (control) 102 1428 16.8

TM3, Serc 262 3668 16.4

Hrb87FKG02089 67 938 37.5 0,0001,P,0,005

Df(3R)Hrb87F 99 1386 37.0 0,0001,P,0,005

PepKG00294 52 728 27.6 0,0001,P,0,005

Df(3R)Pep81k19 51 714 26.5 0,0001,P,0,005

aThe bristles examined were the seven pairs of major dorsal bristles: posterior
supraalars, anterior postalars, posterior dorsocentrals, anterior and posterior
scutellars, and anterior and posterior sternopleurals (Sinclair et al., 1983).

bP values have been calculated using a x2 contingency test.
cTotal number of bristles counted in flies carrying the T(2;3)Sbv and the TM3
balancer chromosome from all the crosses. Note that the proportion of the Sb
bristles is similar to that of the control.

doi:10.1371/journal.pgen.1000670.t001
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DNA that is the basis for heterochromatin formation and gene

silencing, while HP1a interaction with RNA-packaging hnRNP

proteins induces a compaction of RNA with the consequent

stabilization that reinforces gene expression.

Materials and Methods

Drosophila strains
The Ore-R, In(1)wm4, T(2;3)Sbv and T(3;Y)BL2 stocks used here

have been kept in our laboratory for many years. The Su(var)2–5

mutant strains were obtained from G. Reuter. Su(var)2–505 is a null

mutation and Su(var)2–504 encodes a truncated HP1a protein that

lacks part of the domain required for its nuclear localization; the

protein is absent in mutant nuclei [8,47]. Su(var)2–502 is a point

mutation in the chromodomain [48]. The ddp1 strain was obtained

from F. Azorin. The mutant strain carrying a null Hrb87F

mutation, called Df(3R)Hrb87F, was obtained from S. Haynes.

The other Drosophila stocks mentioned were obtained from

Bloomington and Szeged Stock Centers. Cultures were main-

tained at 24uC on standard cornmeal-sucrose-yeast-agar medium.

Immunofluorescence
Indirect immunofluorescence on polytene chromosomes was

done according to James et al. (1989). Salivary glands were

dissected in Cohen and Gotchell medium G containing 0.5%

Nonidet P-40 and incubated in formaldehyde fixative solution for

25 minutes. For DRB treatments, one gland of the pair was

dissected in medium G, the other was incubated in medium G plus

140 mM DRB (5,6-Dichloro-l-b-D-ribofuranosylbenzimidazole).

For ribonuclease digestion, dissected glands were incubated at

room temperature with 50 mg/ml DNase-free RNaseA in medium

G. The preparations were incubated with primary antibodies: goat

anti-HP1a (1:50) (Santa Cruz) or monoclonal mouse anti-HP1a

C1A9, monoclonal mouse H5 (1:50) to the Ser-2 phosphorilated

CTD of RNA Pol II (Covance), mouse anti-DDP1 (1:50), mouse

anti-PEP (1:2), mouse anti-HRB87F (1:10) alone or in various

pairwise combinations, overnight at 4uC in a humid chamber. The

slides were washed in TBST (10 mM Tris-HCl, pH 7.15,

150 mM NaCl and 0.05% Tween 20) three times for 5 min and

incubated with secondary antibodies (1:100 dilution of FITC-

conjugated donkey anti-mouse and 1:400 dilution Cy3-conjugated

rabbit anti-goat) (Jackson ImmunoResearch Laboratories) for

1 hour at room temperature in a humid chamber. Finally the

slides were washed three times in TBST at 4uC, stained with 4,6-

diamidino-2-phenilindole (DAPI) at 0.01 mg/ml, and mounted in

antifading medium. Chromosome preparations were analyzed

using a computer-controlled Eclipse epifluorescence microscope

(model E1000, Nikon) equipped with a CCD camera (Coolsnap).

The fluorescent signals, recorded separately as greyscale digital

images, were pseudocolored and merged using Adobe Photoshop.

For colocalization of HP1a with each protein, salivary glands from

10 larvae were prepared and about 3 good polytene nuclei of each

larva were examined. The colocalization was performed by

considering the fluorescent signals whose patterns were stably

conserved among the different preparations. To determine the

immunopatterns in the different mutants, same CCD camera

exposure times were used (0.2 sec for FITC or Cy3 and 0.05 sec

for DAPI). When required, the fluorescence of the signals was

measured with the Adobe Photoshop program [49].

Fluorescence in situ hybridization (FISH) with oligodT-Cy3
The FISH with oligodT-Cy3 was performed according to

Herold et al., (2001) [50]. Salivary glands were dissected in

physiological solution (0.7% NaCl) and fixed with 3.7% parafor-

maldehyde in PBS1X for 10 min. After fixation, salivary glands

were washed in PBS1X, permeabilized for 10 min with PBS1X

containing 0.5% Triton X-100 and washed again in PBS1X. To

detect poly(A)+RNA, salivary glands were incubated for 30 min at

37uC in prehybridization buffer (2XSSC, 20% formamide, 0.2%

BSA, 1 mg/mL of total yeast tRNA). For hybridization, the glands

were transferred to a humidified chamber and incubated in 20 ml

of hybridization buffer (prehybridization buffer plus 10% dextran

sulfate) supplemented with 0.5 pmol/ml oligo(dT)50 fluorescently

end-labeled with Cy3 molecules. The glands were hybridized for

3 h at 37uC and washed successively twice for 5 min in 2XSSC/

20% formamide (at 42uC), 2XSSC (at 42uC), 1XSSC, and PBS.

DNA was stained with DAPI and the slides were mounted in

antifading medium.

Histochemical localization of b-galactosidase in PEV
analysis

The induction and localization of b-galactosidase on salivary

glands was performed according to Lu et al., (1996) [44]. Heat-

shock was done by incubating larvae for 45 min at 37uC, followed

by a 1 h recovery at room temperature. Salivary glands were

dissected in PBS, fixed in 5% formaldehyde for 15 min, washed

with PBS, incubated in 0.2% X-gal (5-bromo-4-chloro-3-indolyl-

p-D-galactopyranoside) assay buffer [44]. For each mutation,

twenty pairs of salivary glands were analyzed.

UV cross-linking assay
The assay was performed according to Hamann and Strätling

(1998) [33]. Photoreactive 32P-labeled RNA probe (specific

Figure 11. Hrb87F and Pep are dominant suppressors of
position effect variegation (PEV). (A) In flies carrying the In(1)wm4

rearrangement and deficiencies for either Hrb87F or Pep, the eyes are
significantly more pigmented than in flies carrying only the chromo-
some inversion. Hrb87FKG02089 and PepKG00294 mutations could not be
tested because these mutations are caused by insertions containing a
functionally wild type white gene. (B) Heat-shock lac-Z induction in
salivary glands of Tp(3;Y)BL2 larvae which were also either wild type or
heterozygous for Su(var)2–502, Hrb87FKG02089, Df(Hrb87F), PepKG00294,
PepEP(3)3357, PepEP(3)0408, or Df(Pep). The panel shows examples of
staining patterns observed: in all heterozygous mutant larvae the
glands stained more heavily than those of wild type larvae.
doi:10.1371/journal.pgen.1000670.g011
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radioactivity 300 000 c.p.m./ng) was transcribed in vitro and

purified by denaturing polyacrylamide gel electrophoresis in

elution buffer (0.3 M NaAc pH 5.5, 0.1 mM EDTA, 0.2% SDS)

in presence of phenol and 10 mg of yeast tRNA.

Binding reactions were set up in PCR-reaction tubes in the

following order (total volume 50 ml): 5 ml 10X binding buffer

[50 mM HEPES, pH 7.5, 15 mM MgCl2, 0.2 M KCl, 25% (v/v)

glycerol, 5 mM dithiothreitol], different concentrations of recom-

binant HP1a protein, 3 mg yeast tRNA as non-specific competitor,

and 50 ng radiolabeled RNA. Reactions were incubated at 25uC
for 25 min. Samples were then irradiated in a UV Stratalinker

using a total energy of 800 mJ/cm2 at 254 nm.

UV cross-linked samples were digested with 20 mg RNase A

(Roche) and RNase V1 (Ambion) at 37uC for 20 min. After

addition of 12.5 ml sample buffer [10% (w/v) SDS, 321.5 mM

Tris-HCl, pH 7.5, 50% (v/v) glycerol, 700 mM 2-mercaptoetha-

nol, 0.12% (w/v) bromophenol blue] and incubation at 95uC for

4 min, complexes were resolved on SDS-10% polyacrylamide gel,

and dehydrated gels were exposed to X-ray film.

Primer extension assay
The oligonucleotides Hsp70 R1 59-TGCCCAGATCGATTC-

CAA-39, and b tubulin 60D 59-TAGCTGCTGCTGGATT-

TTCA-39 antisense respectively of the 59 UTR Hsp70Ab and b
tubulin RNAs, were labeled for 30 min at 37uC with 25 mCi of

[c 32P]ATP using 10 units of polynucleotide kinase (Roche) in a

20 ml reaction volume. The samples containing labeled primers

and immunoprecipitated RNAs were denatured at 95uC for

1 min, and then allowed to cool slowly to room temperature for

the primer annealing. The primer extension reaction was

performed at 43uC for one hour by adding 5 ml of the first-strand

reaction mix (First-strand cDNA synthesis kit, Pharmacia), then

terminated by precipitating with 2.5 vol of ethanol and 10%

NaAcetate 3 M pH 5.5. The primer extension products were

analyzed on a 6% DNA sequencing gel.

Purification of HP1a protein constructs and
electrophoretic mobility shift assay (EMSA)

HP1a constructs (1–206; 1–152; 1–95 and 152–206; 95–206)

[21,22] were cloned in EcoRI/XhoI sites of a pET-21a expression

vector (Novagen) [15]. Corresponding recombinant proteins were

produced by the Expressway Plus Epression System (Invitrogen),

purified by the Ni-NTA purification System (Invitrogen) and

eluted with 250 mM imidazol.

The gel mobility shift assay was done with a 400 bp fragment of

in vitro transcribed Hsp70 RNA. For RNA binding ,5 fmol of

probe was incubated for 30 min at 25uC with different amounts of

purified recombinant HP1a fragments in 10 mL reaction buffer

containing 20% glycerol, 0.2 mM EDTA, 20 mM Tris pH 7.5,

1 mM MgCl2, 1 mM DTT, 150 mM NaCl and ribonuclease

inhibitors. The reaction mixture, containing the protein-RNA

complexes, was then loaded on a non-denaturating 8% polyacryl-

amide gel and run in 0.5% TBE at 150 V for 16 h at 4uC. The gel

was dried at 80uC for 1 h and the radioactive bands were

visualized by phosphor imaging in Typhoon scanner.

Preparation of nuclear extracts for RIP-Chip
D. melanogaster Schneider’s cells (S2) were prepared as previously

described by Andrews and Faller (1991) [51]. In a typical

preparation, 86106 cells (grown in serum-free Schneider medium;

GIBCO-BRL) were pelleted and resuspended in 1.5 mL cold

PBS1X; the cell suspension was then transferred to a microfuge

tube. Cells were pelleted for 10 seconds and resuspended in

400 mL cold Buffer A (10 mM HEPES-KOH pH 7.9 at 4uC,

1.5 mM MgCl2, 10 mM KCl, 0.5 mM dithiothreitol, 0.2 mM

PMSF, 0.2 U/ml RNasin). The cells were allowed to swell on ice

for 10 minutes, and then vortexed for 10 seconds. Samples were

centrifuged for 10 seconds, and the supernatant fraction was

discarded. The pellet was resuspended in 100 mL of cold Buffer C

(20 mM HEPES-KOH pH 7.9, 25% glycerol, 420 mM NaCl,

1.5 mM MgCl2, 0.2 mM EDTA, 0.5 mM dithiothreitol, 0.2 mM

PMSF) and incubated on ice for 20 min for high-salt extraction.

Cellular debris were removed by centrifugation for 2 min at 4uC
and the supernatant fraction was stored at 270uC. All buffers were

prepared from double-distilled autoclaved water that had been

treated with 0.1% DEPC (Sigma).

RNA immunoprecipitation and reverse transcription
For RNA immunopreciptation, the nuclear extract was incubat-

ed with 50 mg of monoclonal C1A9 anti-HP1a antibody at 4uC
overnight under continuous gentle movement. One-hundred

microliters of protein G-Sepharose (Sigma) suspension (50% packed

Sepharose in Buffer C) was added and the incubation was continued

overnight as described. The beads were pelleted by 2 min

centrifugation at 240 g at 4uC; the pellet was briefly washed three

times with 1 mL of IP Wash Solution (150 mM NaCl, 50 mM Tris

pH 7.5, 0.5% NP40) and the Sepharose was transferred for elution

into a fresh plastic tube and pelleted again. The supernatant was

then completely removed. To elute the immunocomplexes for

protein analysis, an aliquot of beads was suspended in 50 mL SDS-

PAGE sample buffer and incubated for 10 min at 90uC; following

centrifugation the supernatant was removed and used in Western

blot for testing the presence of HP1a protein.

To elute the immunoprecipitated RNAs, the pelleted beads

were boiled in 200 mL of DEPC water for 5 min, spun, and the

supernatant recovered; 1 mL of Trizol (Invitrogen) was added to

200 mL of supernatant and mixed, followed by the addition of

200 mL of chloroform. This mixture was incubated at 4uC for

5 min and then centrifuged at 12000 g for 15 min; the RNAs in

the aqueous phase were precipitated with half volume of

isopropanol; after precipitation, the RNAs were resuspended in

10 mL of DEPC water. Contaminating DNA was digested with

RNase-free DNase I (Sigma). The RNA purified from the previous

step was used as a template to synthesize cDNA using oligo dT,

random hexamers and SuperScript reverse transcriptase III

(Invitrogen) according to the manufacturer’s protocol.

cDNA amplification and labeling
The cDNA was used as template for a two-step random PCR

amplification [52]; in Round A, Sequenase is used to extend

randomly annealed primers (Primer A) to generate templates for

subsequent PCR; during Round B, the specific primer B is used to

amplify the templates previously generated and finally round C

consists of additional PCR cycles to incorporate the amino allyl

dUTP nucleotide. About 25 ng of each cDNA sample was used for

two 8 min extensions with 2.7 mM Round A primer (59-GTT

TCC CAG TCA CGA TCN NNN NNN NN-39, N being a

mixture of all four nucleotides with 60% A+T and 40% G+C) at

37uC with 267 U/ml Sequenase version 2.0 (usb). DNA was

denatured at 94uC for 2 min and cooled to 10uC , and Sequenase

2.0 was added between extensions. The resulting products were

used as template for 25 cycles of PCR using 1 U/100 ml Taq

polymerase (Platinum Taq Invitrogen) and 10 mM Round B primer

(59-GTT TCC CAG TCA CGA TC-39). Finally this DNA was

used as template for 25 cycles of PCR to incorporate the amino

allyl dUTP nucleotides to which the fluorescent dye may be

attached [53]. To remove Tris buffer which interferes with the
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indirect coupling, the aminoallyl-cDNA samples were desalted by

filtering through a Microcon 230 and then mixed with the

succinimidyl esters of the Cy3 or Cy5 dyes (Amersham

Biosciences) in 0.1 M sodium bicarbonate buffer (pH 9); the

coupling reaction was incubated overnight in the dark at room

temperature. Each dye-labeled sample was purified by AutoSeq

MicroSpin G-50 columns (Amersham Biosciences) following the

manufacturer’s directions.

Microarray hybridization and scanning
For hybridization, washing and scanning of arrays we followed

the Canadian Drosophila Microarray Center protocols (www.

flyarrays.com). In detail, the dried, labeled cDNA pellets were

resuspended in 80 ml of DIG Easy Hyb (Roche) hybridization

buffer containing 0.5 mg/ml yeast tRNA and 0.5 mg/ml salmon

sperm DNA. Finally the DNA probe was denatured by incubation

at 65uC for 10 min and, after a brief centrifugation to spin down

the drops, the mixture was pipetted onto a microarray; a coverslip

was applied and the slide was placed in a microarray hybridization

chamber (BioRad) and incubated overnight at 37uC.

After hybridization, the slide was submerged in 0.01% SDS

1%SSC until the coverslip slid off the surface; the slide was washed

in a solution of 1%SSC and shaken at 50uC for 10 min, then

washed once more by shaking in 0.1%SSC. The slide was dried by

centrifugation for 3 min at 550 rpm and scanned with an

ScanArray Lite Microarray Scanner (Packard Bioscience) with

laser intensities chosen to maximize signals while avoiding pixel

saturation. ScanArray express software was used to quantify

hybridization signals; bad spots were flagged automatically by the

software and subsequently each slide was inspected manually.

Since each gene is represented by two replica spots on the array,

data were treated with GEPAS on-line tool (http://gepas.bioinfo.

cnio.es) which averaged the two spots. The arrays we scanned are

produced by the Canadian Drosophila Microarray Centre located

at the University of Toronto (www.flyarrays.com). The 12k1

platform is a primarily cDNA-based glass microarray. The array

features 11,018 Berkeley Drosophila Genome Project cDNAs, 297

NIH Testis cDNAs and 432 gene sequences that were amplified

from genomic DNA. Approximately 10,500 unique genes are

represented by the above, corresponding to roughly 78% of the

predicted genes in Drosophila melanogaster (FlyBase annotation

release 3.2).

Quantitative Real-Time PCR
The quantitative real time PCR was performed according to

Perrini et al., (2004) [15]. RNA samples from whole larvae or S2

cells were isolated by Trizol reagent (Invitrogen) according to the

manufacturer’s instructions. First strand cDNA was synthesized

from 2 mg of total RNA using Omniscript RT kit (Qiagen). PCR

primers were designed with Primer Express Software (Applied

Biosystems). Reactions were set up in triplicate using the SYBR

Green PCR Master Mix (Qiagen). Real time quantitative PCR

was performed using an Applied Biosystems Prism 5700 Sequence

Detector. The reaction mixtures were kept at 95uC for 15 min,

followed by 40 cycles at 95uC for 15 s and 60uC for 1 min.

Fluorescence output results were captured and analyzed using

Gene Amp SDS Software, version 1.3 (Applied Biosystems), and

the threshold cycle (Ct) was used for assessing relative levels of

target transcripts versus RpL32 (or actin) transcripts.

RNA interference
D. melanogaster S2 cells were cultured at 24uC in Shields and

Sang M3 medium (Sigma) supplemented with 10% heat-

inactivated fetal bovine serum (FBS, Invitrogen).

dsRNA against HP1 was syntetized by in vitro transcription from

PCR products with T7 promoters on both ends of the amplicons,

using the Megascript RNAi kit (Ambion).

16106 cells were plated in 1 ml of serum-free medium in a well

of a six-well culture dish (Sarstedt). Each culture was inoculated

with 15 mg of dsRNA. After a 1 h incubation at 24uC, 2 ml of

medium supplemented with 15% FBS were added to each culture.

Control cultures were prepared in the same way but without

addition of dsRNA. Both RNA-treated and control cells were

grown for 72 h at 25uC, and then processed for total RNA

extraction. The RNAi experiments were repeated two times to

confirm the reproducibility of the observations.

Actinomycin D treatments
For analysis of RNA transcripts turnover, S2 cells were treated

with 10 mg/ml actinomycin D (Sigma) for 0, 60, 90 and 120

minutes. Total RNA was isolated by Trizol (Invitrogen), reverse

transcribed by Omniscript RT kit (Qiagen) and analyzed by real

time quantitative PCR.

Western blot of coimmunoprecipitated hnRNPs
Coimmunoprecipitation was performed according to Risau et al.

(1983) [54] using 50 mg of monoclonal C1A9 antibody for 1 ml of

hnRNP extract. The immunocomplexes, fractionated by 10% SDS-

PAGE, were electroblotted onto Immobilion-P polyvinyldifluoride

membranes (Millipore) in a buffer containing 10 mM 3-cyclohex-

ylamino-1-propanesulfonic acid (Sigma-Aldrich) pH 11 and 20%

methanol, in a semi-dry transfer apparatus (Amersham Biosciences).

The filter was blocked with 0.2% I Block (Tropix) for AP detection

in PBS/0.1% Tween 20 (PBST). After blocking, proteins were

probed with antibody against HP1a (1:500), DDP1 (1:3,000),

HRB87F (1:100), PEP (1:100) and detected with a 1:5,000 dilution

of goat anti–mouse or anti-rabbit conjugated to alkaline phospha-

tase. The AP detection kit was purchased from Roche.

Immunopurification of HP1a complexes
S2 cells were transfected with pAWF plasmid coding either for

HP1a or GFP protein, both FLAG-tagged. Aliquots of 36106 cells

were plated into 75 cm2 flasks and, after overnight incubation in

M3 insect medium (Sigma), were transfected with 9 mg of plasmid

DNA for 5 h using Cellfectin II reagent (Invitrogen) following

manufacture’s procedure. Cells were grown for further 48 h and

then harvested by centrifugation. Nuclei were obtained by cell lysis

in hypotonic buffer (10 mM Hepes pH 7.4, 10 mM KCl, 5 mM

MgCl2, 0.5 mM EGTA, 10% glycerol, 10 mM sodium glycero-

phosphate, 0.4 mM PMSF, 0.2 mM sodium Na3VO4, 30 mM

NaF ). Aliquots of 36107 cells, transfected with either HP1a or

control plasmid, were incubated on ice for 20 minutes in

hypotonic buffer and then centrifuged at 1500 g for 10 minutes.

Nuclei were washed by resuspension in hypotonic buffer and

centrifugation. Nuclear extracts, corresponding to nucleoplasm,

were obtained by incubation of nuclei in lysis buffer (50 mM Tris-

HCl, 150 mM NaCl, 0,5 mM EDTA, 10% glycerol, 0.5% NP40,

0.5 mM DTT, 0.4 mM PMSF, 0.2 mM Na3VO4) for 20 minutes

at 4uC followed by centrifugation at 15000 g for 20 minutes.

Supernatants were further processed for immunopurification with

anti-FLAG monoclonal antibodies. To obtain total nuclear lysate,

nuclei were resuspended in lysis buffer and chromatin sheared by

sonication (six times for a 20 second pulse at 80% power setting

using a Braun Biotec-Sartorius ultrasonicator equipped with a

2 mm tip). Lysates were processed for immunopurification with

anti-FLAG antibodies.

Nuclear extracts and nuclear lysates obtained as above were

immunopurified by adding 36 mg of anti-FLAG antibodies (Sigma)
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and 200 ml of protein-G-Dynabeads (Invitogen) followed by

overnight incubation at 4uC. Immunocomplexes were isolated

onto a magnetic support, washed three times in lysis buffer and

eluted by overnight incubation at 4uC with 200 ml of 3x FLAG

peptide (Sigma) 300 mg/ml in lysis buffer.

Fractions obtained by immunopurification were resolved either

by 10% SDS-PAGE or 6% native-PAGE. Native gel electropho-

resis was performed using the discontinuous Laemmly buffer

system without SDS, running gels at 100 V for 3 hours. Mobility

of nuclear complexes was tested before and after RNAse treatment

by adding 1 mg of RNAseA to each sample before separation

followed by 1 h incubation at room temperature. Gels were

transferred onto PVDF membranes and subjected to western

blotting with anti-FLAG (1:1000), anti-DDP1 (1:3,000), anti-

HRB87F (1:100) and anti-PEP (1:100) antibodies. Membranes

were blocked overnight with 3% non-fat dry milk in TBS

containing 0.1% Tween-20 (TBST) followed by incubation with

primary antibodies. Membranes were probed with a 1:5,000

dilution of anti-mouse or anti-rabbit antibodies conjugated to

alkaline phosphatase and signals were detected using the CPD-

Star chemiluminescent kit (Roche) and X-ray films (Amersham).

Data availability
Microarray data are available in the ArrayExpress database,

http://www.ebi.ac.uk/miamexpress, under accession number E-

MEXP-1556 (ChIP-chip records).

Supporting Information

Figure S1 Plots of Log2 HP1a-Dam/Dam ratio for coding-

region probes of six genes present on chromosome 2 which show

high IP rankings for HP1a RNA binding. Probes are ordered from

59 to 39 and the direction of transcription is shown by the arrow.

Found at: doi:10.1371/journal.pgen.1000670.s001 (5.43 MB TIF)

Figure S2 HP1a associates and colocalizes on polytene chro-

mosomes with Pol II, DDP1, PEP, and HRB87F hnRNP proteins.

Wild-type polytene chromosomes simultaneously immunostained

with an anti-HP1a antibody and an antibody against: (A) Pol II (B)

DDP1; (C) PEP and (D) HRB87F. Note the extensive colocaliza-

tion of HP1a with all the proteins along the euchromatic arms

(small arrows) and on the chromocenter (arrowheads).

Found at: doi:10.1371/journal.pgen.1000670.s002 (3.48 MB TIF)

Figure S3 Hierarchical dependence of HP1a, DDP1, HRB87F,

and PEP in their assembly on RNA transcripts. Immunopatterns

of each protein on polytene chromosomes of wild-type larvae (top

row) and larvae mutant for the genes encoding each of the other

proteins. The pictures inside the red frame indicate the abnormal

immunopattern of a protein in a mutation affecting another

protein. The pictures inside the blue frame indicate the absence of

immunosignals of each protein in the mutant of its own gene,

except for the Su(var)2–502 mutant where weak immunosignals are

visibile on the chromocenter, on telomeres and very few

euchromatic sites. The rest of the pictures are of immunopatterns

not affected by the mutations. Note that in DDP1 mutants,

immunopatterns of all the other proteins are abnormal. In Hrb87F

mutants, the HP1a and PEP immunopatterns are abnormal while

the DDP1 immunopattern is unaltered. In HP1a mutants only the

PEP immunopattern is abnormal, whereas in PEP mutants the

immunopatterns of all other proteins are normal.

Found at: doi:10.1371/journal.pgen.1000670.s003 (3.49 MB TIF)

Table S1 Data from 4 independent RIP-Chip experiments. For

each experiment, data were ordered by rank and the median rank

was calculated for each cDNA clone.

Found at: doi:10.1371/journal.pgen.1000670.s004 (2.04 MB

XLS)

Table S2 Median percentile rank (MPR) between IP and input

for the cDNA clones within the 90th percentile. The table also

reports the results of two independent (mock) experiments done

with the identical procedure but without the antibody against

HP1.

Found at: doi:10.1371/journal.pgen.1000670.s005 (0.03 MB

XLS)

Table S3 Co-localization of HP1 target genes and HP1

immunosignals along polytene chromosomes (green).

Found at: doi:10.1371/journal.pgen.1000670.s006 (0.03 MB

XLS)

Table S4 The 200 most abundant transcripts in the input RNA

and their percentile ranking in HP1 IP. Only 6 transcripts

(indicated by yellow) are included in the list of the best HP1

binders (IP ranking.0.9).

Found at: doi:10.1371/journal.pgen.1000670.s007 (0.04 MB

XLS)

Table S5 Log2 HP1-Dam/Dam ratios for all probes represent-

ing the coding regions of 21 genes of chromosome 2 which show

high MP ranks for HP1 RNA binding. Average values are

indicated.

Found at: doi:10.1371/journal.pgen.1000670.s008 (0.49 MB

XLS)
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