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Dark matter: are mice the solution to missing heritability?
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Genome-wide association studies (GWAS) in humans have identified hundreds of single
nucleotide polymorphisms associated with complex traits, yet for most traits studied, the
sum total of all these identified variants fail to explain a significant portion of the heritable
variation. Reasons for this “missing heritability” are thought to include the existence of
rare causative variants not captured by current genotyping arrays, structural variants that go
undetected by existing technology, insufficient power to identify multi-gene interactions,
small sample sizes, and the influence of environmental and epigenetic effects. As genotyp-
ing technologies have evolved it has become inexpensive and relatively straightforward to
perform GWAS in mice. Mice offer a powerful tool for elucidating the genetic architecture
of behavioral and physiological traits, and are complementary to human studies. Unlike
F2 crosses of inbred strains, advanced intercross lines, heterogeneous stocks, outbred,
and wild-caught mice have more rapid breakdown of linkage disequilibrium which allow
for increasingly high resolution mapping. Because some of these populations are created
using a small number of founder chromosomes they are not expected to harbor rare alleles.
We discuss the differences between these mouse populations and examine their potential
to overcome some of the pitfalls that have plagued human GWAS studies.

Keywords: GWAS, quantitative trait loci, complex traits, forward genetics, advanced intercross lines, heterogeneous

stock, outbred mice, wild mice

INTRODUCTION
Genome-wide association studies (GWAS) revolutionized the field
of human genetics and helped to implicate hundreds of poly-
morphisms underlying diseases and other traits (Altshuler et al.,
2008; Hindorff et al., 2009). This success can be attributed to four
major factors: (1) the large number of accumulated recombina-
tions present among unrelated human subjects, (2) the catalog
of human variants created by the HapMap project, (3) com-
mercial high-throughput single nucleotide polymorphism (SNP)
arrays that capture a large proportion of common variation in the
genome and, (4) the development of statistical tools and methods
for association studies. Nevertheless, there has also been great frus-
tration in the small effect sizes of the alleles identified (Manolio
et al., 2009). Even where GWAS was able to find many signifi-
cant associations, the fraction of the heritable variance that can be
explained was distressingly low (Yang et al., 2010). The discrep-
ancy between the variation that is known to be heritable and the
fraction that can be explained by GWAS results has been referred
to as the “dark matter”. Several explanations have been offered
for the apparent existence of this “dark matter,” including addi-
tional common as well as rare variants not included in the current
genotyping arrays, structural variants that also go undetected by
existing array technology, insufficient power to identify gene-by-
gene interactions, small sample sizes, and inadequate accounting
for environmental and epigenetic effects (Manolio et al., 2009).
Model organisms have been used extensively to gain insights about
the underlying architecture of complex traits. In this review, we will
explore how mice can be used to explore possible explanations for the
dark matter.

BENEFITS OF MOUSE MODELS
Mice offer a powerful tool for elucidating the genetic architec-
ture of behavioral and physiological traits, and are complementary
to human studies. By using mouse models, researchers can cross
strains with measurable phenotypic differences and quickly and
cheaply generate large litters of offspring from a limited number
of founder genotypes (Lawson and Cheverud, 2010). In addition,
environmental factors can be held constant or systematically var-
ied in order explore interactions between genotype and environ-
ment. The mouse genome has been fully sequenced and annotated
(Waterston et al., 2002); and most mouse genes have a human
homolog, thus allowing rapid translation of results from mice back
to humans. Because mice are an experimental model organism,
researchers can perform potentially invasive or stressful proce-
dures not possible in humans. Finally, multiple tools are available
for altering the mouse genome; permitting the efficient and pre-
cise manipulation of genes and allowing for direct experimental
testing of observed statistical associations.

THE PAST
Forward genetic strategies seek to identify the relationship between
genetic polymorphisms and traits. Traditional approaches to the
analysis of quantitative traits in mice evolved in an environment
where genotyping was the most difficult and expensive step. As
a result, populations with low levels of recombination [such as
backcrosses (BC), F2 intercrosses (F2), recombinant inbred (RI),
congenic, and consomic strains] were chosen in order to minimize
the number of markers needed to provide adequate coverage of the
entire genome. The confidence intervals for the QTLs identified in
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these populations were generally quite large, often encompassing
20–40 cM and contained hundreds of genes (Flint et al., 2005).
While such regions can be refined using congenic and consomic
mice, many generations of genotyping and phenotyping were
required in order to achieve a resolution of ∼1 cM. Furthermore,
efforts at subsequent dissection were frequently derailed by the
discovery that an apparently single QTL of large effect identified
in an F2 study was in fact caused by multiple loci of small effect
positioned in the same chromosomal region (Legare et al., 2000;
Mott et al., 2000; Cheng et al., 2010; Shao et al., 2010). Thus, pre-
vious QTL studies in mice, with several notable exceptions (Fehr
et al., 2002; Phelan et al., 2002); have generally failed to identify
specific genes.

THE FUTURE
These challenges have led some to claim that mice are poorly suited
for forward genetics studies. In our view, the problem is not that
mice are unsuitable models for forward genetic studies, but rather
that we and others have been using the wrong sorts of mice. Tra-
ditionally, the biggest advantage of QTL mapping with F2, BC,
RI, congenic, and consomic strains is that they were specifically
designed to minimize the number of recombinations and there-
fore limited the amount of genotyping that was required. However,
human GWAS studies have been successful precisely because they
take advantage of the large number of accumulated recombina-
tions observed among unrelated human subjects. Recombination
degrades the non-random associations between adjacent poly-
morphisms; these associations between nearby markers are known
as linkage disequilibrium (LD). Populations that have been inter-
crossed for multiple generations accumulate many recombina-
tions, which causes a rapid breakdown of LD between adjacent
markers. Thus, only markers that are very close and thus in LD
with a functional polymorphism will show a significant associa-
tion with the trait of interest. Populations with more degraded LD
allow for more accurate mapping of QTLs, provided that enough
markers are genotyped.

Now, as technologies for genotyping have evolved rapidly
over the last decade, it is no longer expensive or difficult to
perform GWAS in mice. The same improvements in genotyp-
ing technology that have been widely used in human genetics
also possess enormous but largely unrealized potential to revo-
lutionize mouse genetics. The advent of the Affymetrix mouse

diversity array (MDA), which is capable of genotyping hundreds
of thousands of SNPs, provides the technical ability to perform
GWAS in mice (Yang et al., 2009). Next-generation (NextGen)
sequencing technology will also be extremely useful for provid-
ing genotypes and should reduce the biases surrounding SNP
ascertainment. NextGen sequencing will also allow for identi-
fication of novel SNPs and structural variants such as inser-
tions, deletions, duplications, and translocations (Edenberg and
Liu, 2009; Perez-Enciso and Ferretti, 2010; Ozsolak and Milos,
2011). These technologies would not be useful for standard F2

crosses, but are helpful when populations with more degraded LD
are used.

BUILDING A BETTER MOUSE: ADVANCED INTERCROSS
LINES, HETEROGENEOUS STOCKS, OUTBRED, AND WILD
MICE
ADVANCED INTERCROSS LINES
Darvasi and Soller (1995) first introduced advanced intercross
lines (AILs) as a tool for fine mapping small chromosomal regions,
rather than as a tool for genome-wide scans. AILs are created by
successive generations of pseudo-random mating after the F2 gen-
eration to produce additional recombinations. Each additional
generation leads to the accumulation of new recombinations,
which further degrades LD between adjacent markers and thus
allows for more precise mapping (Table 1). Thus, the mapping
utility of AILs improves with the number of generations that have
accrued since the F2 cross. Because AILs are created by crossing
two inbred strains; all polymorphic markers are perfectly infor-
mative in terms of identifying which inbred strain the region is
inherited from. In addition, because only two inbred strains are
crossed, the starting allele frequency is 0.5 for all alleles in AILs,
and will be 0.5 on average in each subsequent generation because
the two inbred strains have made equal contributions to the pop-
ulations (drift and selection for fitness and fecundity will distort
this in any multigenerational population; the first can be mit-
igated by maintaining a large effective population size). When
using AILs, it is essential to incorporate information about relat-
edness among pedigree members into QTL mapping methods in
order to prevent false-positive findings and maximize the phe-
notype and genotype information (Abney et al., 2000; Cheng
et al., 2010). Accounting for relatedness poses some statistical
and computational challenges, but they can be overcome (e.g.,

Table 1 | Comparison chart scoring advanced intercross lines (AIL), heterogeneous stock (HS), outbred (OB), and wild-caught (WC) mice on

seven variables researchers may consider before choosing a population to study.

AIL HS OB WC

Breakdown of linkage disequilibrium + ++ +++ +++
Derived from inbred progenitors + + − −
Presence of rare alleles within the population − + ++ +++
Requirement of large breeding colony + + − −
Prevalence of genetic polymorphisms + ++ ++ +++
Controlled environment + + + −
Need to account for relatedness ++ ++ + +

Scores lie on a four-point scale ranging from lowest (−) to highest (+ + +).
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Cheng et al., 2010). Several software packages are available that
can be used for these analyses (e.g., Kang et al., 2008; Peirce et al.,
2008)1.

HETEROGENEOUS STOCKS
Heterogeneous stocks (HS) mice are created by interbreeding more
than two (often eight) inbred strains followed by many generations
of pseudo-random mating (McClearn and Meredith, 1970; Hitze-
mann et al., 1994). The number of generations of pseudo-random
mating determines the degree to which LD from the original
founder chromosomes is degraded (Mott and Flint, 2002). To the
extent that the polymorphisms in the founder strains are known,
haplotype mapping can be performed even at markers that are
not directly genotyped (Flint et al., 2005). However, the frequen-
cies of minor alleles may be less favorable in an HS compared to
an AIL, and there will tend to be a larger number of QTLs for
any given trait, making them individually more difficult to iden-
tify. Additionally, random fluctuations in allele frequencies and
unrecognized selective pressures during creation and subsequent
breeding of HS mice may reduce heterozygosity and lower map-
ping resolution (Valdar et al., 2006a). Furthermore, an HS, like an
AIL, requires maintaining a large breeding colony and accounting
for relatedness is also essential when performing GWAS.

LABORATORY OUTBRED MICE
While many laboratory mice have been deliberately inbred, a
number of populations have also been maintained using outbred
breeding schemes that maintain large numbers of individuals in
each generation and that avoid crosses between closely related
individuals (Aldinger et al., 2009; Yalcin et al., 2010). Outbred mice
(OB) mice exhibit hybrid vigor with longer life spans, high disease
resistance, early fertility, large and frequent litters, low neonatal
mortality, rapid growth, and large size (Silver, 1995). The primary
advantage for using outbred lines for genetic studies is the abil-
ity to achieve mapping resolution at the single gene level (Yalcin
et al., 2004, 2010; Aldinger et al., 2009) due to much greater break-
down of LD (Chia et al., 2005; Flint et al., 2005). Most outbred
stocks are derived from small and relatively homogeneous pop-
ulations, suggesting a low proportion of rare alleles. In addition,
outbred stocks can be purchased from commercial vendors, which
avoids the expense associated with maintaining a AIL or HS colony.
Most extant outbred stocks are descendants of the same domes-
ticated/laboratory mice that gave rise to inbred laboratory strains
and are therefore easy to handle and are likely to segregate many
of the same alleles. Thus, SNPs already identified using inbred
populations will likely be informative in outbred stocks as well
(Yalcin et al., 2010). However, it is possible that many relatively
rare variants will exist in these populations as a result of uneven
sampling for the foundation population, genetic drift, and new
mutations; thus some of the problems familiar to human genetics
will also exist when performing GWAS using outbred stocks. It is
also important to note that the somewhat limited genetic diversity
of outbred colonies means that they (like the AIL and HS mice)
cannot be used to analyze the effects of all variants that potentially

1http://cran.r-project.org/web/packages/QTLRel/index.html

exist across Mus musculus (Yalcin et al., 2010). Because some parts
of the genome may possess little functional variation it might be
necessary to study multiple populations to capture the full spec-
trum of genetic variation (Roberts et al., 2007). Yalcin et al. (2010)
reported the finest mapping resolution achieved in an OB colony
was approximately twice that obtainable in human populations;
the decay of LD ranges from 0.53 to 4.06 Mb.

WILD-CAUGHT AND WILD-DERIVED MICE
An alternative to using laboratory mice is to capture wild mice.
These mice might be directly phenotyped and genotyped, or else
they might be bred for a few generations in captivity, in an effort
to normalize the uncontrolled environmental variance associated
with wild-caught (WC) animals. One advantage to using WC or
recent progeny of WC mice (hereafter referred to as“wild-derived”
or WD mice) for GWAS is that their genetic makeup has evolved
in response to natural conditions (Harper, 2008). Furthermore,
WC mice show LD at rates similar to human populations, mak-
ing them favorable for high resolution association studies (Laurie
et al., 2007). In addition, WC and WD mice may have qualita-
tively different genetic diversity than is available in laboratory
mice. Due to their shared ancestry, the genomes of most laboratory
mice (including AIL, HS, and OB) are 92% M. m. domesticus in
origin, and display non-random distributions of diversity across
the chromosomes (Yang et al., 2007). WC and WD mice from
subspecies M. m. musculus, M. m. castaneus, or M. m. domesti-
cus would be expected to have more uniform patterns of genetic
variation (Roberts et al., 2007).

Wild populations of mice are likely to contain large numbers
of rare variants that contribute to phenotypic variation; thus, even
large studies will not have enough power to identify these rare
variants. This is a serious problem that is being addressed in the
field of human genetics, but that mouse geneticists might hope to
avoid by using laboratory strains. Studies utilizing wild mice face
unique problems of their own: (1) trapping and transporting large
numbers of wild mice for the purposes of genetic mapping studies
is likely to be expensive and difficult, (2) accounting for relatedness
in WC populations, (3) environmental variation (nutrition, age,
life experience, infections, etc.), (4) WC mice are likely to harbor
pathogens and therefore cannot be imported into a standard spe-
cific pathogen free mouse vivariums, (5) many standard phenotyp-
ing procedures (including most behavioral assays) are extremely
difficult to perform in WD and WC mice (Wahlsten et al., 2003;
Chesler et al., 2008), and (6) many WC mice do not reproduce well
in captivity, requiring a larger than normal founder population to
preserve genetic heterogeneity in the offspring (Harper, 2008).

PITFALLS OF GWAS IN HUMANS THAT CAN BE ADDRESSED
BY MOUSE MODELS
RARE VARIANTS
The underlying rationale for GWAS is the common disease, com-
mon variant hypothesis, which asserts that common diseases are
most likely attributable to allelic variants present in >∼5% of the
population (Collins et al., 1997; Pritchard, 2001). Most common
diseases and quantitative traits have heritability estimates between
30 and 90% (Visscher, 2008), yet the majority of loci identified
by GWAS account for less than 1% of population variation. This
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has led to researchers to focus on the possible contribution of rare
variants (minor allele frequency, or MAF <0.5%). While these
variants are individually rare, they are collectively common among
human populations (Sebat et al., 2004; Conrad et al., 2010) and
contribute to disease risk (Cohen et al., 2004; Ji et al., 2008; Mef-
ford and Eichler, 2009; Eichler et al., 2010). Unfortunately power is
very low for detecting rare alleles, unless the effect size is very large
(Manolio et al., 2009). The main advantage of mice in this regard
is the ability to select a population where recombination is high,
but the presence of rare alleles is low to non-existent (e.g., AIL,
HS), thus side stepping the problems caused by rare alleles. Some
alleles segregating in these populations might have been common
in the ancestral wild populations, while others might be rare, but
in both cases such alleles will be common in an AIL or HS due to
the bottle neck imposed during the creation of these populations.

EPISTASIS
The interaction between alleles at two or more loci is known as
epistasis. Many have argued that epistasis is likely to be a common
factor in determining phenotypes,yet almost all mouse and human
studies instead focus on the detection of main effects (McCarthy
and Hirschhorn, 2008; Moore and Williams, 2009). One reason
for this is the heavy computational burden imposed by search-
ing for interactions. In order to detect epistatic interactions, a
large number of pair-wise tests for marker–marker interactions
must be performed. More important than the computational bur-
den is the more stringent significance threshold that is required
when so many tests are performed. The power to detect epista-
sis is also dependent on the frequency of the rarest genotype in
the putative epistatic interaction. In humans, the frequency of
the rare double homozygous group may be extremely low due
to rare alleles, in which case the power of the test for epistasis
is extremely poor even with a very large sample size. By select-
ing a mouse population where no alleles are especially rare, the
power to detect epistatic interactions will be improved. As a result,
investigating epistasis should be much more powerful in popu-
lations like AILs. For example, using pedigree information in an
AIL, numerous epistatic interactions have been successfully iden-
tified in 1500 F9/10 LG/J × SM/J mice contributing to variation in
obesity-related traits (Cheverud et al., 2001; Fawcett et al., 2010).
Two-locus interaction models indicated the presence of epistasis,
and further methodological improvements have led to the identifi-
cation of even more epistatic QTLs in the same AIL cross (Yi et al.,
2007). However, it has been suggested that fear-related behavior in
HS mice was mostly influenced by alleles with additive (not epista-
tic) effects (Flint et al., 2004; Valdar et al., 2006a). AILs preserve the
power to examine epigenetic effects due to a higher frequency of
the minor allele (usually ∼50%); thus, they may be more suitable
for exploring epistatic interactions than HS. Differences between
AIL and HS mice may also be due to differences in the analysis used
as well as possible differences in the underlying genetic architec-
ture of the traits examined, effects of selection, population history,
and mutation rates (Eichler et al., 2010).

GENE-BY-ENVIRONMENT INTERACTIONS
It is well accepted that the size and even direction of genetic
effects on a phenotype can vary across different environments, a

phenomenon known as gene-by-environment interaction (GEI).
GEIs have been extensively documented for most phenotypes for
which they were examined in mice (Crabbe et al., 1999; Wahlsten
et al., 2006), and have also been shown to be highly important for
complex traits in humans (Caspi et al., 2002, 2003). While context-
dependent genetic effects may be pervasive, a recent simulation
study suggests that astronomically large sample sizes would be
needed to robustly and reliably detect GEIs and the extent to which
they influence complex traits in human populations (Munafo et al.,
2009). Thus, one of the major reasons why GEIs are not discovered
in human GWAS is a lack of statistical power, especially if only a
small portion of subjects experience the adverse exposure (Eichler
et al., 2010). Furthermore, it is often neither possible nor ethical to
manipulate environmental influences in humans, and identifying
what the relevant environments are can be quite difficult.

One of the attractions of mice is the ability to create a uniform
environment such that alleles can be studied in the absence of
environmental perturbations. Alternatively, analysis of gene-by-
environmental interactions can be explicitly performed in mice.
For example, in a population of 2448 HS mice, Valdar et al.
(2006b) estimated the heritability of a multitude of behavioral and
physiological phenotypes, assessed the impact of numerous envi-
ronmental factors, and measured the size of GEIs. More recently,
Lawson et al. (2011) examined the effects of sex and diet on
diabetes-related traits in 1002 F16 LG/J × SM/J AIL mice. They
demonstrated that the effects of genetic variation on diabetes-
related traits were highly context-dependent and that the same
alleles influenced traits differently depending on the sex and/or
dietary environment of the individual. The results of these stud-
ies clearly demonstrate that gene detection studies suffer when
environmental effects are not adequately accounted for in the
experimental design and analysis. While these issues can be studied
in more traditional populations like F2 crosses, RI lines, and panels
of inbred strains, highly recombinant populations such as AIL, HS,
outbred, and WD mice provide sufficient breakdown in LD to effi-
ciently identify the specific genes that interact with environmental
influences.

EPIGENETIC EFFECTS
In addition to epistasis and GEIs, epigenetic effects may also
explain some of the missing inherited variance. Epigenetic effects
are transmitted trans-generationally without changes to the
DNA sequence; mechanisms may include methylation, genomic
imprinting, or histone modifications. These factors cause heritable
changes in gene expression in the absence of any DNA muta-
tion, and may be important for human disease (Petronis et al.,
2000; Bjornsson et al., 2004; Weaver et al., 2004). Since GWAS
studies focus on DNA sequence, epigenetic factors are potentially
confounding. AILs and HS mice are very useful for examining
trans-generational and molecular epigenetic effects by studying
multiple generations of mice with known pedigrees, and by easy
access to relevant tissue in which to analyze DNA methylation.
For example, Morgan et al. (1999) demonstrated in mice that
that changes in DNA methylation could be generated via alter-
ations in diet and then passed on to subsequent offspring even
after the dietary modification had been eliminated. Cheverud
et al. (2011) mapped genome-wide significant genomic imprinting
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effects (which some would argue represent an epigenetic process)
in 1002 LG/J × SM/J F16 AIL mice fed both high and low-fat diets;
and reported that inconsistent imprinting patterns exist across all
genotypes and environments.

eQTLs
One of the attractions of performing genetic screens in animals is
the ability to obtain tissue for gene expression analysis. In the con-
text of GWAS studies, this allows for the identification of eQTLs,
which may be molecular intermediates between DNA-level poly-
morphisms and more complex traits. Nicolae et al. (2010) argue
that connecting SNPs with information on gene expression pro-
vides a biologically relevant means to identify those associations
likely to be replicated while also imparting a better understand-
ing of the biological mechanisms driving the associations. Steps
to obtain relevant human tissues for the purpose of eQTL map-
ping are making progress2; unfortunately, such efforts must often
utilize sub-optimal tissues that have become available either post-
mortem or as a byproduct of surgery. Obtaining brain tissue is
especially challenging because people with psychiatric conditions
have typically received psychotropic drugs for decades, which is
very likely to confound the analysis of gene expression. Mouse
models allow the experimenter to obtain tissue samples from mice
that have been raised in homogenous environmental conditions,
while employing potentially dangerous or invasive procedures that
would not be permissible in human subjects (Huang et al., 2009).

SAMPLE SIZE
A notable difference between GWAS in mice and humans is sample
size. In humans, it is now widely recognized that the genetic effect
size attributable to a single genetic variant underlying a complex
trait or disease is likely to be very small. As a result, studies in
human populations now routinely require tens of thousands of
participants. Failure to obtain sufficient sample sizes may result in
low statistical power, which will increase the ratio of false-positives
to true positives (Sterne and Davey Smith, 2001). However, the
sample size needed for GWAS in mice is far lower for several rea-
sons. First, in many cases there is more LD among mice than
in unrelated humans; while this is bad for mapping precision,
it decreases the effective number of tests and thus thresholds for
significance are less stringent. Second, the fraction of the total phe-
notypic variance explained by genetic variation depends on both
allele and genotype frequency. Use of simpler systems (such as AIL,
HS, and OB mice) will permit smaller sample sizes because the
genotypic value of each strain can be measured with higher accu-
racy. AILs require the fewest number of subjects, due to the smaller
number of causal alleles within the population and resulting larger

2http://commonfund.nih.gov/GTEx/index.aspx

effect sizes and the more balanced allele frequencies. Because HS
and OB mice are derived from more than two inbred strains, they
have greater genetic variance contributing to a given trait. As a
result, the effect sizes in these populations are smaller, and studies
using HS or OB mice need greater numbers of subjects in order to
detect them (Flint and Mackay, 2009). In the case of WC and WD
mice, factors familiar to human genetics such as highly degraded
LD, rare alleles, and uncontrolled environmental variance suggest
that sample sizes may need to be similar to those used in human
GWAS.

CONCLUSION
The use of highly recombinant mouse populations offers the abil-
ity to discover the DNA sequence variation that gives rise to
quantitative phenotypic variation. Mouse populations that do
not have rare variants may be useful in understanding the rea-
sons for the “missing heritability” observed in human GWAS.
In addition, environmental variation that might lead to GEI
can be controlled or systematically varied. Populations without
rare alleles may also be useful for investigating the importance
of epistasis. Thus mice may be a useful complement to human
genetic studies.

How exactly will the identification of genes in mice assist in
our understanding of human genetics? First, some of the genes
that influence a trait in mice will surely also influence the anal-
ogous trait in humans. Such genes could then be examined in
existing human GWAS datasets. By approaching these datasets
with strong prior hypotheses it might be possible to accept asso-
ciations that do not obtain genome-wide significance. Along the
same lines, attention is quickly shifting from an effort to iden-
tify associations with common polymorphisms to the search for
rare variants (Asimit and Zeggin, 2010; Bacanu et al., 2011; Neale
et al., 2011). Because rare variants are prevalent as a class, but indi-
vidually rare, it is statistically challenging to establish the role of
rare variants, even once the hurdle of cost-efficient genome-wide
re-sequencing is overcome. Therefore, prior hypotheses about
specific genes, as would be developed in mouse models, would
be very useful for knowing which genes and pathways to test
for rare variants. Finally, genes identified in mice can be used
for drug development and might give rise to novel therapeutic
approaches – this potential benefit is independent from the goal
of facilitating human genetic studies, but may yield the greatest
practical benefits.
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