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Finding an optimal subset of nodes in a network that is able to
efficiently disrupt the functioning of a corrupt or criminal organi-
zation or contain an epidemic or the spread of misinformation
is a highly relevant problem of network science. In this paper,
we address the generalized network-dismantling problem, which
aims at finding a set of nodes whose removal from the net-
work results in the fragmentation of the network into subcritical
network components at minimal overall cost. Compared with pre-
vious formulations, we allow the costs of node removals to take
arbitrary nonnegative real values, which may depend on topo-
logical properties such as node centrality or on nontopological
features such as the price or protection level of a node. Interest-
ingly, we show that nonunit costs imply a significantly different
dismantling strategy. To solve this optimization problem, we pro-
pose a method which is based on the spectral properties of a
node-weighted Laplacian operator and combine it with a fine-
tuning mechanism related to the weighted vertex cover problem.
The proposed method is applicable to large-scale networks with
millions of nodes. It outperforms current state-of-the-art methods
and opens more directions for understanding the vulnerability
and robustness of complex systems.

complex systems | robustness | network fragmentation |
spectral partitioning | network immunization

Networking the world creates many opportunities, but some-
times also produces undesired side effects. For instance,

in a hyperconnected world, systemic instability can seriously
undermine the functionality of a network based on cascading
effects (1). The quick global spread of rumors and fake news
may be seen as recent examples (2, 3), while the spread of epi-
demics (4, 5) or failure propagation (6, 7) is a problem that
has been around much longer. Furthermore, it is known that
the network structure, for example the exponent characterizing
scale-free networks, is of particular importance for the control-
lability of cascading effects (8). For certain scaling exponents
of scale-free networks, the variance or mean value of relevant
quantities may not be well defined, which means that unpre-
dictable or uncontrollable behavior may result. It may then be
impossible to contain epidemic-spreading processes. Similar cir-
cumstances may make it impossible to contain the spread of
computer viruses or misinformation—a problem that not only
is relevant for the quick increase of cyberthreats, but also may
undermine the functionality of markets or societal or political
institutions.

However, the removal or deactivation of even a small set of
nodes may dismantle the network into isolated subcomponents
and thereby stop the malfunctioning of a system. The effective-
ness of node removal depends on the network structure and
the removal strategy. For example, scale-free networks (9, 10)
are known to be more robust to random removals than Erdős–
Rényi networks (11, 12), but at the same time more vulnerable
to targeted attacks (13–16).

Finding the most efficient removal strategy which dismantles
a network (17, 18) into isolated subcomponents of a speci-
fied maximum size at minimum overall cost belongs to a class
of hard computational problems, called nondeterministic poly-
nomial hard (NP-hard) problems. Essentially, this implies that
there is currently no algorithm that can find the best dismantling
solution for large-scale networks. It is, therefore, a challenge to

find good approximations of the optimal dismantling strategy.
For example, novel approximations (17–23) have been proposed
based on spin-glass and optimal percolation theory. However,
all these methods make the implicit assumption that the cost
of removing nodes is the same. Only recently have people been
interested in the effect of removal costs that depends on the
node degree (24, 25). However, these studies were restricted to
random network structures (24) or edge-based strategies (25),
but they did not tackle the generalized network-dismantling
optimization problem.

This paper addresses the question of how to select the set of
nodes in a network that, when removed or (de)activated, can stop
the spread of (dis)information, mitigate an epidemic, or disrupt
a malicious system by fragmenting it into small components at
minimum overall cost. In the generalized network-dismantling
problem, the cost of removing a node can be an arbitrary nonneg-
ative real value, which can, for example, be specified as a function
of a node’s centrality properties (26) or also nontopological vari-
ables. Understanding the key relationships between dismantling
solutions and their overall costs enables one to increase the level
of robustness of real-world systems.

The main contributions of this paper are as follows:(i) We
argue that some problems such as containing crime, corruption,
epidemics, or fake news cannot be adequately addressed with
the well-known network-dismantling problem assuming identical
node removal costs and that for nonunit removal costs another,
more efficient solution strategy is needed. (ii) We study the gen-
eralized network-dismantling problem, which seeks to find a set
of nodes that, when removed from a network, results in a network
fragmentation into components of at most size C at minimal
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overall cost. Compared with the prevailing approach in network
science (17–23), we allow for removal costs that have arbitrary
nonnegative real values. (iii) We formulate a node-weighted
graph-cutting objective function, which determines the upper
bound for the node-weighted bisection. We study its analytical
solution and approximation and present analytical bounds and
convergence proofs. (iv) To dismantle large-scale networks, we
propose an efficient iterative node-weighted spectral bisection
method, which has complexity O(n · log2+ε(n)). We combine
the spectral approach with a fine-tuning mechanism by map-
ping the problem to the weighted vertex cover problem (28).
(v) We show that our approach outperforms current state-of-
the-art methods (17–22) for nonunit costs. In the unit cost
scenario, our approach performs better than or comparable to
the state-of-the-art methods.

The generalized network-dismantling problem is related to the
weighted partitioning problem in graph theory (29), which was
addressed by means of vertex separators. The main difference
is that the weighted partitioning problem specifies the number
of partitions and the network-dismantling problem specifies only
the target size C . For more differences between separator, par-
titioning, and dismantling problems, see SI Appendix, section
7. Although different versions of weighted separator problems
were studied long ago by graph theory (30, 31), the main focus
was not on realistic node removal costs for real-world networks.
Moreover, according to a recent review of graph partitioning
methods (32), these methods are not well applicable to large-
scale complex networks due to their broad (or even heavy-tailed)
degree distribution compared with traditional graphs. Probably
for this reason, the weighted partitioning problem has not been
applied as much in the network science community (17–22).

Problems with Nonuniform Removal Costs
While criminal and corruption networks are one of humanity’s
biggest problems, it seems that effective ways to dismantle them
are still needed. A typical approach to fight organized crime and
corruption is to try to identify the underlying organization’s net-
work and then to remove the leader of the organization. It turns
out, however, that it often requires an extremely great effort to
remove the higher echelons of such organizations, because of
their special protection measures. Removal costs of criminals or
corrupt persons largely depend on their position in the network.
It has also been found that it is often ineffective to remove the
boss of a corruption or criminal network, as someone else will
quickly take the leadership position of the organization and con-
tinue running the criminal or corruption network (33); besides,
the transition period is often characterized by an increase in the
level of crime, until the power struggle is decided. Therefore,
we generalize the dismantling problem to nonunit node removal
costs. As we will show, this class of problems has different kinds
of solutions. Specifically, the dismantling procedure does not go
for the big nodes first. It is less costly (i.e., more effective) to
dismantle the network by initially removing some medium-sized
nodes. In this paper, we propose an algorithm to solve the gener-
alized network-dismantling problem and apply it to a variety of
problems ranging from crime networks to epidemic spreading to
corruption networks.

Generalized Network-Dismantling Problem
For a network G(V ,E) with a set of nodes, V , and a set of
edges, E , a set of nodes, S , is called a C -dismantling set, if the
largest connected component of the network after removing S
contains at most C nodes (17, 34). In this paper, the ratio of C
and |V | is denoted by c. Finding a minimal C -dismantling set is
an NP-hard problem. Current state-of-the-art methods (17–22)
make the implicit assumption that the cost of node removal is
the same for all of the nodes in a network, regardless of their
importance. Here, thus, we generalize the network-dismantling

problem in such a way that the cost of removing a node i can
be an arbitrary nonnegative value wi ∈R. More formally, for a
given network G(V ,E) with costs (w1, . . . ,w|V |) written to diag-
onal matrix W , we aim to find a set of nodes S(G,W ,C )⊆V ,
the removal of which will create a fragmentation of the network
into components of at most size C at a minimum overall removal
cost. For the optimal set, the overall removal cost is denoted by
Cost(G,W ,C ). In SI Appendix, section 7, we show more details
about the hardness of (generalized) network dismantling. It is
easy to see that the case when the cost matrix W equals the
identity matrix (W = I ), this problem corresponds to the stan-
dard network-dismantling problem and its solution is related to
the solution of the generalized problem by the inequalities

wminCost(G, I ,C )≤Cost(G,W ,C )≤wmaxCost(G, I ,C ),

where wmin,wmax denote the minimal and maximal node removal
costs.

Node-Weighted Partition. Let us assume that we want to partition
the network G = (V ,E) into two parts M ⊆V and its comple-
ment M =V \M . Whether a node i belongs to the set M or not
is represented by the following vector v ∈Rn :

vi :=

{
+1 i ∈M ,

−1 otherwise.
[1]

The classical spectral bisection of a graph aims to minimize the
number of edges that have to be removed between M and M .
In this paper we propose a node-weighted spectral cut objective
function, where the cost of cutting the edge (i , j ) is equal to the
cost of removing nodes i and j . Then the upper bound of the
removal cost is

1

2

∑
i,j

−1

2
(vivj − 1)Ai,j (wi +wj − 1), [2]

where A is the adjacency matrix of the network. Therefore, if an
edge (i , j ) connects nodes from different parts, the associated
cost is wi +wj − 1, as vivj =−1 and Ai,j = 1. In contrast, if the
edge (i , j ) connects nodes from the same cluster (vivj = 1), it
will not be removed and the associated cost is zero. Without loss
of generality (see SI Appendix, section 1 for more details), we
assume that the proxy for the weight is proportional to the degree
centrality wi ∝ di . The term (wi +wj − 1) contains the constant
element −1 to lead to a more elegant notation. Now, we define
the matrix B by the elements Bi,j =Ai,j (wi +wj − 1) and define
the node-weighted Laplacian of the matrix B =AW +WA−A
by Lw =DB −B . In matrix notation the optimization problem
can now be written as

min
1

4
vTLwv [3]

subject to
1Tv = 0, [4]

vi ∈{+1,−1} , i ∈{1, 2, . . . ,n} . [5]

Matrices W and DB are diagonal matrices with the elements
Wii = di and (DB )ii =

∑n
j=1 Bij . See SI Appendix, section 1 for

more details.
When the cost matrix equals the identity matrix (W = I ),

we get the unweighted Laplacian, which corresponds to the
classical bisection problem (30, 35). The additional constraint
1Tv = 0 enforces that clusters are of the same size. Unfortu-
nately, the optimization problem is NP hard. Therefore, we
follow the standard relaxation (30) from the integer constraint
vi ∈{+1,−1} to vi ∈R. The solution to this relaxed constrained
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A B C

Fig. 1. (A) Steps of the GND algorithm. (A, 1) The inputs are the adjacency matrix A and the node removal cost matrix W . (A, 2) Construction of the cost-
weighted network defined by the matrix B and its corresponding node-weighted Laplacian Lw . (A, 3) Construction of the power Laplacian operator L̃k, which
is applied to the random vector v′ on an n-dimensional sphere. The result gives an approximate solution to partition the network into two components
{i : vi < 0} and {i : vi ≥ 0}. (A, 4) Fine-tuning of the spectral solution with the weighted vertex cover on the subgraph of nodes that contains edges between
components (represented in black and red). (B) Illustration of the procedure of the iterative GND algorithm. (C) Contributions of different parts of our
method to the dismantling solution for the Petster–Hamster network. The blue line shows the performance when only steps 1–3 are adopted. The red solid
line (GND algorithm) shows the performance when steps 1–4 are applied, which generates a more efficient node removal process. The red dashed line
(GNDR algorithm) shows the performance when the algorithm includes steps 1–4 and the reinsertion step, which is characterized by a smaller overall node
removal cost.

minimization problem is, according to the Courant–Fisher the-
orem, analytically given by the second-smallest eigenvector of
the node-weighted Laplacian λ2v

(2) =Lwv
(2). A more detailed

derivation of this solution is presented in SI Appendix, section
1. If we remove all of the nodes i whose corresponding value
in the second-smallest eigenvector is nonnegative (v (2)

i ≥ 0) and
has a neighbor j with a negative entry (v (2)

j < 0), the network
will fragment into two subnetworks M and M . Note that we fine-
tune the spectral approximation solution, which increases the
performance of our algorithm and is described later.

The node-weighted spectral cut is recursively applied to M
and M̄ until the network is sufficiently fragmented into small
subnetworks of maximum size C .

Spectral Approximation. To find the second-smallest eigenvec-
tors for large-scale networks, we propose the following simple
and elegant approximation algorithm, which falls into the class
of power-iteration methods (36). Note that Lw is a real, sym-
metric, and positive semidefinite matrix. Then, it has real non-
negative eigenvalues λ1≤λ2≤ . . .≤λn with the eigenvectors
v (1), . . . , v (n), which form an orthonormal basis of Rn . In SI
Appendix, section 2, we show spectral bounds for degree-based
cost λn ≤ 6 · d2

max, where dmax is the maximum degree of any node
of the network. In the case of nontopological costs, we use the
following spectral bound λn ≤ 4dmax(wmax + 1), where wmax is the
maximum cost. To compute v (2), we consider the matrix L̃=

6 · d2
max · I −Lw , which has the same eigenvectors v (1), . . . , v (n)

as Lw . Now the corresponding eigenvalues are shifted such that
λ̃1 = 6 · d2

max≥ . . .≥ λ̃n = 6 · d2
max−λn ≥ 0. Let v (1) be the eigen-

vector with the largest eigenvalue and v (2) be the eigenvector
with the second-largest eigenvalue. Then, we find the eigenvector
of Lw associated with the eigenvalue λ2 via the following steps:
(i) Start with a random vector v uniformly drawn from the unit
sphere Sn , (ii) force it to be perpendicular to the first eigenvector
v1 = (1, . . . , 1)T of the weighted Laplacian Lw , and (iii) apply the
linear operator L̃k with unit normalization to our vector v . The
pseudocode of this spectral approximation is as follows: (i) Draw
v randomly from a uniform distribution on the unit sphere. (ii)

Set v = v − vT
1 v

vT
1 v1
· v1. (iii) For i = 1 to k = η(n), set v = L̃v

‖L̃v‖ .

The intuition that the random vector v converges expo-
nentially to some eigenvector of Lw with eigenvalue λ2 is
closely related to the spectral properties of operator L̃k . Note
that we can represent our random vector v in the orthonor-
mal eigenvector basis as v =

∑n
i=1 ψiv

(i). The second step of

A B

C D

Fig. 2. (A) Network dismantling of three strategies: Min-Sum algorithm (17),
random removal (site percolation), and GND. For the same dismantling cost
0.4, the result of Min-Sum is 5% worse than the random removal. (B) Dynam-
ical process [susceptible-infected-removed (SIR) model (27) with β= 0.04,
γ= 0.01] on the residual network after the node removal up to 40% of the
total cost. The GND produces the best immunization. (C and D) Visualization
of the set of removed nodes according to Min-Sum (red) and GND (blue).

6556 | www.pnas.org/cgi/doi/10.1073/pnas.1806108116 Ren et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806108116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806108116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806108116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1806108116


A
PP

LI
ED

M
A

TH
EM

A
TI

CS

orthogonalization ensures ψ1 = 0 and ψ2 6= 0 (almost surely).
Finally, by applying the linear operator L̃k to vector v we get

L̃kv =

n∑
i=2

ψi λ̃i
k
v (i)∝ψ2v

(2) +

n∑
i=3

ψi

(
λ̃i

λ̃2

)k
v (i). [6]

When λ3>λ2, we have | λ̃i

λ̃2
|< 1,

(
λ̃i

λ̃2

)k
ψivi→ 0 with exponen-

tial speed. The expected value of vector v converges to some
eigenvector of Lw with eigenvalue λ2,

E
[
|λ2−

vTLwv

vTv
|
]
→ 0, [7]

when the power k of operator L̃ scales asO(log(n)1+ε) for every
real number ε> 0, where n is the size of the network.

If λ2 =λ3 = . . .=λk <λk+1, this sequence converges to a unit
length linear combination of v2, . . . , vk and is therefore a vector
which still minimizes vTLw v

vT v
among all vectors that are orthog-

onal to v1. Formal proofs for the convergence and bounds are
given in SI Appendix, section 3.

The computational complexity of recursively applying this pro-
cedure to smaller and smaller partitions is O(n · η(n) · log(n))
for sparse networks. Due to the fast convergence, one can expect
asymptotically good partitions when η(n) = log(n)1+ε and ε>
0, which finally ends in the complexity of O(n · log2+ε(n)) for
sparse networks. Further details about the asymptotic complexity
are given in SI Appendix, section 4.

Fine-Tuning of the Spectral Solution. Let us represent by E∗ the
set of separating edges that connect nodes from the set {vi ≥ 0}
to the set {vi < 0}. The set of nodes that are adjacent to the
separating set E∗ is denoted by V ∗. We can optimize the solu-
tion by finding a set of nodes which covers all of the edges in
E∗ with minimal cost. This is the weighted vertex cover problem
(28) on the graph G∗= (V ∗,E∗) with weights wi , from the orig-
inal network G = (V ,E). Further details about the fine-tuning
approximation are provided in SI Appendix, section 5. A general
overview of our proposed method is given in Fig. 1, which we
refer to as the generalized network dismantling (GND) method
in the rest of this paper.

Reinsertion. Finally, as the proposed GND method is offering
a recursive solution, some of the nodes from early stages of
fragmentation do not contribute to the final stage of com-

plete fragmentation. Thus, to produce better dismantling solu-
tions [GND with reinsertion (GNDR)], we apply the reinsertion
method (19).

Results
To demonstrate the applicability of the proposed generalized
network-dismantling framework to realistic scenarios, we apply it
to some real-world networks and show that the current state-of-
the-art dismantling strategy (19) delivers different results from
the nonunit cost problem, as expected. In addition to the com-
plete dismantling, we also focus on the partial dismantling of the
system’s giant connected component (GCC), which reflects the
fact that the budget is usually limited such that only a partial
dismantling is possible.

Fig. 2 shows some results of network dismantling, which cor-
respond to suppressing the spread of misinformation, computer
viruses, or other harmful contagion processes on the online social
network [Petster–Hamster (37)]. The cost for the 80% partial
dismantling with the state-of-the-art Min-Sum strategy (19) is
0.4. However, although the Min-Sum algorithm removes only 5%
of nodes in this process, its cost is rather large. The reason for this
becomes clear if we study the degree distribution of the removed
nodes in Fig. 2C, where we note that the largest hubs tend to
be removed by Min-Sum. In contrast, the random removal of
nodes, also known as the site percolation process, with the same
cost of 0.4 achieves fragmentation to ∼75% of the original GCC
size. This implies that the state-of-the-art algorithms for unit-
cost problems tend to be inefficient when applied to problems
with nonunit costs. However, with the same cost of 0.4, our GND
method fragments the network to 62% of the original GCC size,
and for the target of 80% of the GCC size, the corresponding
cost is only 0.2.

Next, we study the dismantling on different real-world net-
works for three different state-of-the-art methods: equal graph
partitioning (EGP) (39), Min-Sum (17), and belief propagation-
guided decimation (BPD) (20). The networks in the main text
include (i) a crime network with 754 nodes obtained by the pro-
jection of a bipartite network of persons and crimes (37), (ii) a
corruption network (38) with 309 nodes and 3,281 edges, (iii) the
online social network of Petster–Hamster (37) with 2,000 nodes
and 16,631 edges, and (iv) a power-grid network (37) with 4,941
nodes and 6,594 edges. For more algorithms and networks see SI
Appendix, section 8.

In Fig. 3, the results show that, for partial dismantling, the
proposed methodology (GND and GNDR) achieves the same
fragmentation level with a much smaller overall dismantling cost:

A B C D

Fig. 3. Dismantling of the criminal and corruption networks and creation of firewalls to stop the spread of misinformation or malicious software in online
networks. We show the size of the GCC vs. the overall dismantling cost for four different networks: (A) crime network (37), (B) corruption network (38), (C)
Petster–Hamster online social network (37), and (D) power-grid network (37). The dismantling strategy with a smaller area under the curve performs better.
The EGP-W, Min-Sum-W, and BPD-W algorithms are the weighted versions of the original EGP, Min-Sum, and BPD algorithms, generalized to nonunit node
removal costs (SI Appendix, section 8). For comparison with more algorithms see SI Appendix, section 8 and Fig. S4.
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A B

Fig. 4. (A and B) Dismantling curves showing the performance of node
removal for the unit-cost case, for the (A) Petster–Hamster online social net-
work (37) and (B) power-grid network (37). We observe that even for unit
costs and complete dismantling, our proposed dismantling strategy (GNDR)
provides good solutions. For the comparison of more algorithms and more
networks, see SI Appendix, section 8, Figs. S5 and S6, and Table S1.

c = 0.2 with 0.18 (GND) vs. 0.42 (BPD) for the crime network,
c = 0.2 with 0.24 (GND) vs. 0.9 (Min-Sum) for the corrup-
tion network, c = 0.2 with 0.63 (GND) vs. 0.8 (BPD) for the
Petster–Hamster network, and c = 0.3 with 0.11 (GND) vs.
0.17 (BPD) for the power-grid network. In Fig. 4, we show the
performance of different algorithms for the unit-cost case on
two networks, where the GND and GNDR algorithms show
better or comparable performance. More detailed experiments
for the unit and nonunit costs are in SI Appendix, section 8.
Also in SI Appendix, section 8, we summarize the ratio of
the removal cost of BPD, Min-Sum, and GNDR algorithms
when the target size is 0.8, 0.6, 0.4, and 0.2, respectively.
The results show that the performance of GNDR is better
or at least comparable for both degree-based and unit node
removal costs. In SI Appendix, section 7, we have constructed
the benchmark network with many loops, for which we know the
optimal solution. Interestingly, we observe that loops can cre-
ate problems for the BPD and Min-Sum algorithms and that
the optimal solutions for network dismantling and its general-

ized version may coincide or deviate, depending on the chosen
value of c.

If external information about the removal costs is available, we
are able to incorporate it into the matrix W and proceed with our
GND method. SI Appendix, section 2 gives spectral bounds for
general nonnegative weights, for which the same spectral approx-
imation method can be used. In Fig. 5, we show the results for the
world airport network, where the cost wi of closing an airport i
is assumed to be given by the total passengers flux of the airport.
The closing of an airport can represent quarantine. Correspond-
ingly, the reduction of the GCC size represents the containment
effect for the pandemic spread. In this example, we set the tar-
get size of the GCC to 80% of the initial size. It is interesting
to observe that our GND method dismantles the network with
only 0.06 of the total removal costs of all nodes, which is signif-
icantly less than the cost of 0.25 by Min-Sum. We also provide a
geographical visualization of the dismantling solution, where the
closed airports are represented by red circles.

Summary and Conclusions
In this paper, we have studied the generalized network-
dismantling problem, which seeks to find a set of nodes allowing
one to dismantle a network into components up to small size
C in the most cost-effective way. We do not make the assump-
tion that the cost of removing nodes is the same for all of the
nodes, which has been typically made before. Instead, we allow
for node removal costs that are given by topological proper-
ties or nontopological features such as the price or protection
level of a node. We acknowledge that, for the unit-cost scenario,
the BPD and Min-Sum methods (17, 20) provide good solu-
tions in many cases and have provided additional insights about
the problem. However, for networked systems with nonunit
node removal costs, current state-of-the-art dismantling methods
will often not produce near-optimal results, while our proposed
methods (GND and GNDR) do. These are based on a blend
of spectral properties of a node-weighted Laplacian operator,
a power-iteration method, and weighted vertex cover approxi-
mations. Understanding the theory behind network dismantling
(17, 20, 24) opens up more research directions for all scientists
interested in designing more robust and resilient systems in the
future. Interestingly, our dismantling strategy is different from

A B C D

Fig. 5. Comparison of the dismantling performance for the airport network, where the removal cost is the total passenger flow of the airport. (A) Setting
the target size to c = 80%, the Min-Sum algorithm (17) implies a cost of closing airports with ∼25% of the total passenger flow. In contrast, our GND
strategy dismantles the network to c = 80% size by a cost of only 6%. In B–D, red circles visualize the airports that were closed by the Min-Sum (Upper) or
the GND (Lower).
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previous ones as it removes medium-size rather than big nodes
first. Our results are relevant for the robustness and recom-
mended (re)organization of current sociotechnical systems for
different realistic costs. For example, we have demonstrated that
generalized network dismantling can enable cost-effective immu-
nization strategies against harmful contagion in social and trans-
portation networks as well as the disruption of criminal and
corruption networks.

Ethics
The method presented in this paper aims at offering a possible
solution for emergencies where cutting a dysfunctional network
into pieces can restore its functionality. However, we also warn
of potential misuses or dual uses. When not applied in appropri-
ate contexts and ways, the use of the dismantling approach may
undermine the proper functionality of networks. Therefore, we

point out that related ethical issues must be sufficiently, appro-
priately, and transparently addressed (40) when the method
is applied. The method must be restricted to legitimate uses
and actors. It may be justified to stop harmful cascading prob-
lems such as deadly epidemics and the spreading of disruptive
computer malware or to dismantle criminal organizations or cor-
ruption networks. Note, however, that the use of dismantling
strategies to contain misinformation can be potentially problem-
atic, as it may result in censorship if a government, company,
news agency, or other institution decides what is misinformation
or not. See SI Appendix, section 9 for more details.
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27. Tolić D, Kleineberg K-K, Antulov-Fantulin N (2018) Simulating SIR processes on
networks using weighted shortest paths. Sci Rep 8:6562.

28. Bar-Yehuda R, Even S (1981) A linear-time approximation algorithm for the weighted
vertex cover problem. J Algorithms 2:198–203.

29. Feige U, Hajiaghayi MT, Lee JR (2008) Improved approximation algorithms for
minimum weight vertex separators. SIAM J Comput 38:629–657.

30. Fiedler M (1973) Algebraic connectivity of graphs. Czechoslovak Math J 23:298–
305.

31. Guattery S, Miller GL (1998) On the quality of spectral separators. SIAM J Matrix Anal
Appl 19:701–719.
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