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ABSTRACT Monoclonal antibodies were prepared to identify molecular components specific 
to the mitotic apparatus of sea urchin eggs. The mitotic apparatus or asters induced within 
unfertilized eggs by taxol treatment were isolated from Strongylocentrotus purpuratus and used 
for immunization of mice. After fusion with spleen cells, the supernatant of hybridomas were 
screened in two stages by indirect immunofluorescence staining, first on isolated sea urchin 
mitotic spindles in 96-well microtiter plates to identify rapidly potential positive hybridomas, 
and second, on whole mitotic eggs on coverslips to distinguish between spindle-specific 
staining and adventitious contamination. Two hybridomas, SU4 and SU5, secreted antibodies 
reactive to microtubule-containing structures in eggs during the course of development. They 
preferentially stained the centrosphere both in isolated mitotic apparatus and in whole 
metaphase eggs, which was further confirmed by staining the isolated centrospheres with 
these antibodies. SU4 recognized a major 190-kD polypeptide on immunoblots as well as a 
species at 180 and 20 kD, whereas hybridoma SU5 stained a species at 50 kD. Thus, these 
polypeptides may be components of the centrosphere. 

The molecular basis of mitotic poles is a major unsolved 
problem of mitosis. Clearly, the equal segregation of chro- 
mosomes in mitosis requires the establishment of a bipolar 
spindle. The poles of the spindle may be defined functionally 
as the loci toward which the chromosomes move in anaphase 
and as specifying the axis that determines the orientation and 
position of the plane of cleavage. Yet, the material basis of 
the poles remains virtually unknown. 

In animal cells, the morphological expression of the poles 
is the centrosome, (37) which electron microscopy has shown 
to consist of a pair of centrioles surrounded by a cloud of 
amorphous substance designated the pericentriolar cloud (29). 
An accumulation of studies has shown that the centrioles are 
not required for mitosis (1, 2, 5, 6, 33), although a role for 
the centriole in the production or organization of the pericen- 
triolar cloud has not been excluded. 

On the other hand, the pericentriolar cloud has been shown 
to be the focus of microtubule organization (26) and can serve 
to nucleate the formation of microtubules in vitro (8). There- 
fore, attention has shifted to investigating the molecular com- 
position of the cloud. 
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Efforts to isolate and purify the cloud have so far not been 
successful, principally because of the small amount of material 
available and the lack of a simple and reproducible assay 
system. Consequently, we have chosen to use hybridoma 
technology, combined with immunocytochemistry, to iden- 
tify, from heterogeneous isolated spindle fraction, compo- 
nents specific to the centrosome. A number of previous studies 
using preimmune or immune sera (3, 4, 13, 22, 23, 25, 32) 
have reported labeling of centrosomes and preliminary iden- 
tification of centriolar antigens (21, 35). However, these an- 
tigens were mainly common to centrioles and basal bodies (4, 
13, 23, 25). One report, in which the monoclonal antibody 
technique was used, describes antibodies that reacted with the 
mierotubule organizing centers of several lines of cultured 
animal cells (28). These antibodies additionally reacted with 
either Tetrahymena basal bodies, Chinese hamster ovary cell 
centrioles, or vimentin-type intermediate filaments, suggest- 
ing that they were directed toward determinants shared among 
several cytoskeletal elements. However, no characterization 
of the antigenic determinants has yet appeared. 

Sea urchin eggs have traditionally been an important source 
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of material for studies on mitosis since they provide a natu- 
rally synchronizable, homogeneous population of dividing 
cells available in substantial quantities. The mitotic centers of 
dividing sea urchin eggs are larger than those of cultured cells 
and have been referred to by a different term--the centro- 
sphere (9; see reference 37 for review); however, the functional 
role is thought to be equivalent. 

A preliminary report has already been made by Izant et al. 
(11) to identify spindle components by using the monoclonal 
antibody technique. We have also employed the same tech- 
nique of monoclonal antibody in a "shotgun" approach to 
identify hitherto unknown molecular components in a het- 
ergeneous preparation of isolated mitotic spindles. In this 
paper, we focus in particular on two antibodies that are 
directed specifically toward determinants of the centrosphere. 

A brief account of this work has already appeared elsewhere 
(18). 

MATERIALS AND METHODS 

Isolation of Mitotic Apparatus, Centrosphere, and 
Taxol Asters from Sea Urchin Eggs 

Sea urchins, Strongylocentrotus purpuratus and Lytechinus pictus, were 
obtained from Pacific Bio-Marine Laboratories Inc., Venice, CA; Arbacia 
punctulata were collected at the Marine Biological Laboratory, Woods Hole, 
MA. Gametes were obtained and fertilized as described previously (17). Taxol 
asters were induced by treatment of unfertilized eggs with 1-10 ug/ml taxol for 
30-90 rain at room temperature (31). Taxol-induced asters and mitotic appa- 
ratus at metaphase were isolated and purified as described elsewhere by using 
1 M glycerol, 5 mM MES (2, [N-morpholino]ethane sulfonic acid), 1 mM 
EGTA, 2 mM MgSO4, 0.05% Triton X-100 at pH 6.15 as a standard isolation 
medium (17). To check extraction of antigens from mitotic spindles during the 
course of spindle isolation, we also isolated spindle fractions in media prepared 
with different microtubule-stabilizing reagents and at different pH, ionic 
strength, and detergent concentration from the standard isolation medium. The 
differences included I M hexylene glycol-5 mM MES at pH 6.15 (12), 25% 
glycerol-10 mM PIPES-5 mM EGTA-0.5 mM MgC12-0.5-1% Triton X-100 at 
pH 6.8 (30), or 100 mM PIPES-1 mM EGTA-I mM MgC12-0.2% Triton X- 
I00 at pH 6.8 (27). 

Centruspheres were prepared by extracting the metaphase spindles with 0.5 
M KCI in the standard isolating medium for 10-30 rain at room temperature 
(17). 

Preparation of Monoclonal Antibodies 
IMMUNIZATION AND CELL FUSION:  Female BALB/c mice were 

immunized with mitotic spindles or taxol asters isolated from eggs of Strongy- 
tocentrotuspurpuratus. About 100 tag/ml of native protein in Freund's complete 
adjuvant was injected intraperitoneally. During a 4-6 wk period, each mouse 
received three additional 100-~g injections of denatured proteins, and on the 
third day after the last boost, they were killed and the spleens were removed 
for fusion. Hybridomas were prepared by a method first described by Kohler 
and Milstein (16). After fusion of spleen cells and NS-I mouse myeloma cells 
in 50% polyethylene glycol 1500, they were then plated into 96-well plates 
containing a feeder layer of mouse red blood cells, and grown for 1-2 wk in 
medium containing hypoxanthine, amethopterin, and thymidine. 

SCREENING: Two stages of sereening were done to identify monoclonal 
antibodies specific to the sea urchin mitotic spindle. For both stages, indirect 
immunofluorescence was applied to test material adsorbed to a solid substra- 
tum, but in the first stage, the test materials were isolated mitotic spindles, and 
in the second stage, the test materials were whole sea urchin eggs at first mitosis. 
Isolated mitotic apparati were fixed and stored in methanol, and whole eggs 
(10) were stored in 50 mM EGTA in methanol at -20°C until use. After 
rehydration with phosphate-buffered saline (PBS), plates or coverslips were 
incubated with test supernatants for 1-1.5 h at 37*(2, rinsed thoroughly with 
PBS, and then stained with second antibodies as described in a previous paper 
(19). 

The purpose of the first stage of screening was to rapidly identify potential 
hybridomas positive for spindle antibody production. Isolated spindles were 
adsorbed to the bottom of wells of a 96-well microtiter dish (Costar, Cambridge, 
MA), and hybridoma supernatants were added and assayed by indirect immu- 

nofluorescence using a 16x phase neofluar objective on a Zeiss inverted 
microscope (Carl Zeiss, Inc., Oberkochen, FRG) equipped for epifluoreseence. 
In this way, the screening could be done directly on the microtiter dish. Whole 
eggs were not suitable for the initial screening because they did not adhere 
tightly to the wells and would be removed during the washing steps and changes 
of solution. Of 1,820 wells in the initial plating, 1,172 contained growing 
hybridomas after 1-2 wk and, of these, 94 were positive in the first screening. 
These were immediately screened by indirect immunofluorescence on whole 
eggs adsorbed to coverslips. 

The purpose of the second stage of screening was to confirm spindle-specific 
antibodies. Isohted spindles might have stained positively if they had trapped 
some cytoplasmic component toward which the antibody was directed. If this 
were the case, their staining in the whole eggs would be distributed throughout 
the cytoplasm and not confined to the spindle. By examining the staining in 
whole eggs, we could distinguish between antibodies directed toward bona fide 
components of the spindle and adventitious contaminants. The staining pat- 
terns in whole eggs were examined by epifluorescence using 25x or 40x phase 
neofluar objectives. Objectives of higher magnification were not useful on the 
whole eggs because of their limited depth of focus. Positive hybridomas were 
defined as showing clearly brighter staining in the spindle region than in the 
cytoplasm. 

Of the 94 positive wells in the first screening, five hybridomas were deemed 
to exhibit specific staining of the mitotic apparatus in whole eggs. In addition, 
one hybridoma, selected from the group of 89, was positive in the first screening 
but negative in the second screening. These six hybridomas were subcloned 
twice by the limited dilution method and assayed in each instance by indirect 
immunofluorescence using isolated spindles adsorbed to microtiter plates. Two 
hyhridomas (SUI and SU2) stained the chromosomes, two hybridomas (SU4 
and SU5) stained the centrosphere, one hybridoma (SU7) stained the fibers of 
the spindle, and the hybridoma obtained from the group of 89 (SU6) stained 
the cytoplasm and especially the cortex. This paper will deal principally with 
the centrospheric antibodies SU4 and SU5. 

ANTI BODY CLASS: After subcloning~ the antibody class of the monoclo- 
nals was determined by immunoprecipitation in an Ochterlony test. Hybridoma 
SU4 produced IgM, whereas SU5 produced IgG immunoglobulins (data not 
shown). The IgM class of SU4 was exploited in double label immunofluores- 
eenee with monoclonal antitubulin (see below) since the antitubulin was of the 
IgG class and the two antibodies could be distinguished by class-specific, 
fhiorophore-conjugated secondary antibodies. 

CLONING AND LARGE SCALE PREPARATION OF MONOCLONAL 
ANTIBODIES: Positive hybridomas were subcloned by limited dilution with 
feeder cells at 3-4 wk after fusion. After a second subcloning, hybridomas were 
retained if they showed a proportion of positive response ->60%. To obtain 
large quantities of antibodies, ascites fuid was prepared by injection of twice- 
subcloned hybridomas into mice. 

FLUORESCENCE MICROSCOPY: Isolated mitotic apparatus, centro- 
spheres, or taxol asters and whole eggs at various stages of development were 
mounted on polylysine-coated coverslips and fixed with cold methanol with or 
without 50 mM EGTA as above. Before fixation, mitotic cells on coverslips 
were sometimes extracted with 0.4 M PIPES, 1 mM EGTA, 2 mM MgSO,, 
0.05% Triton X-100 at pH 6.7 for several minutes. Extraction of metaphase 
eggs with this detergent buffer did not alter the staining pattern with antitubulin, 
SU4, and SU5 antibodies at all. After the coverslips were washed three times 
with PBS, they were then incubated 1-2 h with 3% gelatin dissolved in PBS. 
They were next treated with diluted ascites fluid containing monoclonal sea 
urchin spindle antibodies or monoclonal antibody raised against yeast tubulin 
(15) (generous gift from Dr. J. V. Kilmartin, Medical Research Council, 
Laboratory of Molecular Biology, Cambridge, England). For negative controls, 
we treated whole eggs or isolated structures with either PBS or supernatants 
secreted by negative hybridoma clones. 

For double immunofluorescence staining of the mitotic apparatus, coverslips 
with adsorbed mitotic apparatus were first treated with antispindle antibody, 
then with fluorescein-conjugated goal anti-mouse lgM (mu chain specific) 
(Miles Laboratories Inc., Naperville, IL). After the coverslips were thoroughly 
washed with PBS, antitubulin antibody was added, then rhodamine-conjugated 
rabbit anti-rat IgG (gamma chain specific). 

Microscope observations were made under a Zeiss Inverted or Zciss Univer- 
sal microscope (Carl Zeiss, Inc.) equipped with epifluorescence optics, and 
photographed with Kodak Tri-X film. 

IMMUNOBLOTT1NG: Pellets of whole mitotic eggs or isolated spindle 
and centrosphere fractions were resuspended and boiled in SDS sample buffer 
as described in a previous paper (19). Gradient polyacrylamide gels (5-15%) 
were prepared according to the method of Laemmli (20). Proteins on the gels 
were electrophoretically transferred (34) to 0.15 or 0.45-#m nitrocellulose 
membranes (sehleicher and Sehuell, Inc., Keene, NH) in transfer buffer (25 
mM Tris-HCI, 192 mM giycine, 20% methanol at pH 8.5) with 0.2% SDS 
overnight, followed by transfer in the same buffer without detergent for 2 h at 
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4"C. To identify total protein, some lanes of the nitrocellulose membranes were 
stained with 0.2% Brilliant Black (Pelikan AG D-3000, Hanover 1, Germany) 
in 45% methanol, 7% acetic acid, and the staining was stopped with distilled 
water. Other parallel lanes were first blocked with 3% gelatin dissolved in 20 
mM Tris-HC1, 500 mM NaCI at pH 7.5 (TBS) for 2 h and incubated with 
monoclonal antibodies in TBS containing 1% gelatin. The nitrocellulose strips 
were rinsed in TBS for 20-30 min, then further incubated for 2 h with second 
antibody of either peroxidase-conjugated IgG fraction, goat anti-mouse lgM 
(mu chain specific), or peroxidase-conjugated affinity purified goat anti-mouse 
IgG (heavy and light chain specific) (Cappel Laboratories, Cochranville, PA) in 
a medium of 1% gelatin containing TBS. Immunoreactive polypeptides were 
visualized by incubation of the nitrocellulose strips with 4-chloro-l-naphthol 
to develop the color of substrate against peroxidase according to the procedure 
of Bio-Rad Immun-Blot Assay Kit (Bio-Rad Laboratories, Richmond, CA). 

RESULTS 

Morphology of Antibody Staining 
Immunofluorescence microscopy of monoclonal antibody 

staining of whole mitotic eggs is presented in Fig. 1, both at 
low magnification (A, C, and E) to show the uniformity of 
the staining reaction, and at high magnification (B, D, and F) 
to show structural details. Monoclonal antitubulin (A and B) 
bound to fibers of the mitotic spindle, whereas antibodies of 
US4 (C and D) and SU5 (E and F) bound primarily to the 

central region of the aster resulting in the staining pattern of 
a dumb-bell shape. However, the patterns of SU4 and SU5 
were slightly different from each other in that SU5 also showed 
staining in the spindle region (the region between the asters), 
whereas the staining by SU4 was confined to the astral region. 

The centrospheres develop as the egg progresses toward 
division. Antibodies to the centrosphere would be expected 
to show an equivalent developmental pattern. Therefore, the 
temporal specificity of the antibody reaction was assayed 
during the process from fertilization to first cleavage. As has 
already been reported (10), antitubulin labeled the microtu- 
bule fibers of the sperm aster (Fig. 2A), cortical microtubules 
in interphase (not shown), and first cleavage spindles at var- 
ious stages (Fig. 2, B, C, and D). With the monoclonal 
antibodies SU4 and SU5, staining first appeared as two con- 
centrations in the perinuclear region. Unlike the antitubulin 
staining, no fibrous patterns were obvious. The staining re- 
gions enlarged and then moved apart as the egg passed from 
metaphase to telophase, which is in good agreement with light 
(10, 37) and electron (7) microscopic observations of changes 
in the centrospheric region during mitosis. Thus, the temporal 
sequence of changes in staining with SU4 and SU5 were 
consistent with their reaction with centrospheric components 

FIGURE "l Immunofluorescence micrographs of mitotic sea urchin eggs stained with monoclonal antitubulin (A and B), SU4 (C 
and D), or SU5 (E and F) antibodies. (A, C, and E) x 160; (B) x 450; (Dand F) x 460. 
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FIGURE 2 Immunofluorescence micrographs of sea urchin eggs stained with monoclonal antitubulin (A-D), SU4 (E-H), or SU5 
(I-L) antibodies. Photographs were taken according to the process of egg development from fertilization to first cleavage. (A, B, 
E, G, H, and K) x 350; (C) x 300; (D) x 310; (Fand L) x 340; (I) X 380; (J) x 320. 

(7). In addition, dot staining with SU5 was observed over the 
nucleus (Fig. 2, I and J). Although the same type of intranu- 
clear staining has been observed in sea urchin eggs after 
incubating with antitubulin antibody (10), we detected the 
dot staining only in eggs treated with SU5 antibody. The 
significance of this reaction is not known. 

In order to study the specificity of antibody localization in 
more detail, isolated mitotic spindles were immunofluores- 
cently stained and examined with a high numerical aperture 
objective (63x, 1.4 numerical aperture phase planapochro- 
mat). The results are shown in Figs. 3 and 4. In Fig. 3, the 
staining patterns of spindles incubated with antitubulin (A, 
B), SU4 (C and D), and SU5 (E and F) antibodies are 
illustrated. Panels are paired to show the same isolated spin- 
dles as seen by phase-contrast (.4, C, and E) and fluorescence 
(B, D, and F) microscopy. As expected, the fibrous microtu- 
bular structures in the spindle and asters are evident after 
antitubulin staining. Because of a higher density of microtu- 
bules at the central region of asters, especially bright fluores- 
cence is seen at the rim of the centrosphere. Monoclonal 
antibodies SU4 and SU5 seemed to react primarily with the 
centrospheric region of the isolated spindle, although weaker 
staining was also evident throughout the spindle structure. In 
contrast to the antitubulin staining, fibrous patterns were 
weak and barely discernible in the spindles stained with these 
antibodies. The isolated spindle in Fig. 3, C and D was 
somewhat compressed in the pole-to-pole direction, and 

formed "D"-shaped rings of fluorescence at each pole. While 
SU4 showed dot staining along the astral and spindle fibers 
(Fig. 3, D), some continuous fibrous staining was detectable 
in the isolated spindle treated with antibody SU5 after adjust- 
ing the planes of focus (Fig. 3, F). 

To check whether there were immunoreactive components 
readily extractable from the spindle during the isolation step, 
we prepared mitotic spindles from metaphase eggs with media 
different in pH, ionic strength, and detergent concentration 
from the standard solution. Variations in the isolation me- 
dium included: (a) 5 mM MES, 1 M hexylene glycol at pH 
6.15 (12); (b) 25% glycerol, l0 mM PIPES, 5 mM EGTA, 
0.5-1 mM MgC12, 0.5-1% Triton X-100 at pH 6.8 (30); (c) 
100 mM, 1 mM EGTA, 1 mM MgCI2, 0.2% Triton X-100 at 
pH 6.8 (27). Identical patterns of antibody staining were 
obtained for mitotic apparatus isolated with control as well as 
three different media (data not shown). Mitotic apparatus 
isolated with the standard isolation medium were also further 
treated either with I% Triton X-100, 0.5 M KCI, 10 mM 
EDTA, or 10 mM EGTA in the standard isolation medium 
for 15-60 min at room temperature. Neither treatment re- 
suited in loss or change in the staining of mitotic apparatus 
with SU4 and SU5 antibodies. Salmon and Segall have already 
reported that the isolated spindles with medium b were highly 
extracted and contained no membranes (30). Also, the treat- 
ment of isolated spindles with 1% Triton X-100 resulted in 
the prominent feature of fibrous elements in spindle and 
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bules were manifest with tubulin staining (Fig. 4 B), only the 
centrospheric area was well visualized after staining with SU4 
monoclonal antibody (Fig. 4 C). 

Centrospheres were isolated from metaphase spindles to 
further test the specific binding capacity of these structures. 
Both SU4 (Fig. 5) and SU5 (data not shown) stained the 
isolated centrospheres brightly, showing clearly that the stain- 
ing reaction was not dependent on the presence of microtu- 
bules and was retained in the isolated centrospheres. These 
isolated centrospheres have already been demonstrated to be 
able to nucleate microtubule assembly in vitro (17). 

Asters induced in unfertilized eggs by treatment with taxol 
were also examined. In contrast to the asters at the poles of 
spindles, no particular staining was observed with SU4 or 
SU5 at the center of the taxol aster. However, as with natural 
asters, weak punctate staining with SU4 and continuous stain- 
ing with SU5 was observed along the astral fibers (data not 
shown). 

The species specificity of the staining reaction was exam- 
ined with isolated spindles of Lytechinus pictus and Arbacia 
punctulata. Although spindles of both sea urchins stained 
strongly with the monoclonal atitubulin, no cross-reaction 
was detected with the SU4 and SU5 antibodies raised against 
Strongylocentrotus purpuratus. 

FIGURE 3 Light micrographs of isolated mitotic apparatus. The 
micrographs are paired to show the same mitotic apparatus in 
phase-contrast (A, C, and E) and fluorescence (/3, D, and F) micros- 
copy. Mitotic apparatus was stained with anti-tubulin (A and B), 
SU4 (C and D), or SU5 (E and F) antibodies. (A and B) x 540; (C, D, 
L, and F) x 620. 

FIGURE 4 Light micrographs of isolated mitotic apparatus as seen 
by phase-contrast (A) and fluorescence (B and C) microscopy. The 
same mitotic apparatus was stained with antitubulin (B) and SU4 
(C) antibodies, x 600. 

Molecular Identity of Antigens 
The molecular specificity of antibodies SU4 and SU5 was 

examined by the immunoblotting technique. Proteins sepa- 
rated on one-dimensional polyacrylamide gels were trans- 
ferred to nitrocellulose membranes. Lane BB in Fig. 6 shows 
the Brilliant Black-stained microtubule proteins (MTL and 
samples containing whole lysate of metaphase eggs (L), iso- 
lated mitotic spindles (S), and isolated centrospheres (C), 
respectively. Panel SU4 demonstrates identification of im- 
munoreactive polypeptides to antibody SU4. The major re- 
active species was 190 kD. In addition, reactive species at 180, 
80, and 20 kD were detected. These polypeptides were not 
detectable in the fraction of whole cell lysate. When spindles 
were isolated in a medium containing 0.3 mg/ml of the 
protease inhibitor, phenylmethylsulfonyl fluoride, the same 
blotting pattern as lane S was obtained. Therefore, it seems 
unlikely that proteolytic degradation of antigens during sam- 
ple preparation was the cause of the multiple reactive species. 
The 80-kD polypeptide was not retained in the isolated frac- 
tion of centrospheres, suggesting that it is not a centrospheric 
component but may be a microtubule-associated protein of 
the spindle. 

A 50-kD polypeptide was a band that reacted with antibody 

asters. Therefore, it would be unlikely that the antibodies 
recognized components of membranes associated with the 
poles; rather, they appeared to react with integral components 
of the centrosphere specifically. 

To delineate more clearly the difference in localization 
patterns, double indirect immunofluorescence staining was 
done with antitubulin and SU4 antibodies as outlined in 
Materials and Methods. The isolated structure presented in 
Fig. 4 lacked an aster at one side and was selected to demon- 
strate clearly the staining patterns in the polar region with the 
different antibodies. Again, while spindle and astral mierotu- 

FIGURE 5 Light micrographs of isolated centrospheres as seen by 
phase-contrast (A) and fluorescence (B) microscopy. Centrospheres 
were stained with SU4 antibody, x 600. 

5 2 8  THE JOURNAL OF CELL BIOLOGY • VOLUME 101, 1985 



FIGURE 6 Immunoelectrophoretic detection of antigens reactive with the monoclonal antibodies SU4 and SU5. BB, nitrocellulose 
membrane stained with Brilliant Black after electrophoretic transfer of proteins. 5U4, immunoreaction of nitrocellulose blot with 
antibody SU4. SUS, immunoreaction of nitrocellulose blot with antibody SU5. Lane MT, high-speed supernatant fraction of 
porcine brain microtubule protein purified by two cycles of assembly and disassembly. Lane L, whole lysate fraction of metaphase 
eggs. Lane S, fraction of isolated mitotic spindles. Lane C, fraction of isolated centrospheres. Numbers at left indicate positions 
of molecular weight markers myosin (200 kD), B-galactosidase (I 16 kD), phosphorylase B (92.5 kD), BSA (66 kD), ovalbumin (45 
kD), and carbonic anhydrase (31 kD). 

SU5 in whole cell lysate, isolated spindles, and centrospheres. 
It should be noted here that, unlike SU4 antigens in whole 
cell lysate (Fig. 6, lane L in panel SU4), the 50-kD polypeptide 
antigen of SU5 was dearly identified in the whole cell lysate 
(lane L in panel SU5). Since the background fluorescence of 
the cytoplasm had a tendency to be higher in SU5-treated 
cells than in eggs treated with antitubulin or SU4 antibody 
(Fig. 1, A, C, and E), it is not clear whether the 50-kD antigen 
is localized in the cytoplasm as well as in the mitotic spindle 
in whole metaphase eggs. 

The bands appearing on the immunoblots were not prom- 
inent on the gels and nitrocellulose membranes stained with 
Coomassie Blue and Brilliant Black, respectively, suggesting 
that the components recognized by antibodies SU4 and SU5 
were not present at high concentrations in the mitotic spindle. 

DISCUSSION 

We here report the first preparation of monoclonal antibodies 
against previously unidentified components of the centro- 
sphere in the mitotic apparatus of sea urchin eggs. It has been 
observed that the spindle and astral microtubules of sea urchin 
eggs appear to end at the periphery of the centrosphere where 
an array of dense granules is seen (9). The centrosphere, 
containing randomly oriented microtubule fragments, en- 
larges during the progress of mitosis. Since the microtubule 
density increases as the focal point is approached, the enlarg- 

ing centrosphere can be visualized by antitubulin staining as 
an expanding bright rim around the pole (10). In contrast, 
monoclonal antibodies SU4 and SU5 stained the isolated 
mitotic apparatus quite differently. Fibrous patterns were 
weak or absent after SU4 and SU5 staining, whereas the 
centrospheric region was stained brightly. A strong positive 
reaction of the antibodies to the isolated centrosphere that no 
longer reacted with antitubulin antibody (data not shown) 
further supports the presence of antigens specific to this area. 

It is important to discuss the structural components of the 
spindle/centrosphere that are reactive with SU4 and SU5 
antibodies. The preparation of mitotic spindles with a high 
concentration of detergent or extensive extraction of isolated 
spindles with detergent resulted in the disappearance of almost 
all' membranous structures (30). Extracted spindles with de- 
tergent, however, could still react with the antibodies, sug- 
gesting that these putative structural components of the spin- 
dle are not membranes associated with the poles, but rather 
integral component(s) of the centrosphere. Furthermore, the 
antigenic determinants of the centrosphere were resistant to 
extraction by a high ionic strength or by a high concentration 
of chelating reagents such as EGTA or EDTA. It would be 
interesting to know whether those antigens are involved in 
the ability of centrospheres to initiate microtubule nucleation 
both in vivo and in vitro (l 7). 

The staining pattern of isolated spindles was different in 
detail from that of whole mitotic eggs. The astral area was 
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stained evenly in whole eggs, resulting in a dumb-bell-shaped 
staining pattern. Interestingly, the same kind of  dumb-bell 
image, although much weaker in staining intensity than with 
SU4 and SU5 staining, was obtained by incubation of  whole 
metaphase eggs with human autoimmune sera (3) or with 
antimicrotubulin-associated protein 1 antibody (32) (Kuri- 
yama, R., unpublished result). Since both of  those antibodies 
are already known to react specifically with centrosomal 
components in cultured mammalian cells, the dumb-beU 
image in mitotic sea urchin eggs might be common to several 
kinds of anticentrosomal antibodies. In contrast, the centro- 
sphere was frequently seen to contain a nonstaining lumen in 
isolated spindles. Further, while SU5 stained the entire spindle 
region in whole eggs, only the centrospheres were strongly 
stained in the isolated apparatus, with the area between the 
centrospheres weakly fluorescent. Since sea urchin eggs are 
quite large, it might be hard to detect the precise pattern of 
antigen distribution within spindles unless the immunoreac- 
rive structures are distinct enough to define in vivo, such as 
the microtubular fibers. Therefore, it seems difficult to con- 
clude here whether these differences in staining of whole eggs 
and isolated structures simply result from limited resolution 
in images of whole eggs, or whether the distribution of anti- 
gens in the spindles was modified during the isolation process. 

The monoclonal antibodies SU4 and SU5 reacted with 
distinct and different molecular species, the major ones being 
190 and 50 kD, respectively. It is of interest to know whether 
they are related to the polypeptides of  high molecular weight 
microtubule-associated protein 1 (32), 200 kD (28), 50 kD 
(35), or 14 and 17 kD (21) reported as centriole-associated 
proteins in a diverse variety of cell lines. Antibody SU4 also 
reacted with the 80-kD band, which was extracted when the 
spindle microtubules were depolymerized by high salt treat- 
ment. This polypeptide may be related to the 80-kD (14) or 
77-kD (36) proteins identified as a microtubule-associated 
protein of  the spindles in the same sea urchin species. Further 
analysis of these antigens would be desirable from a biochem- 
ical and functional point of  view. 

The production of hybridomas is now a widespread labo- 
ratory procedure, and antibodies obtained by this method are 
especially powerful probes for unknown molecules in heter- 
ogeneous cell fractions as shown in this study. However, it is 
important to point out that monoclonal antibodies generally 
recognize only a single determinant of  a given protein mole- 
cule and it frequently happens that they cross-react with 
essentially nonrelated proteins that nevertheless happen to 
share the determinant of  the immunogenic peptide (24). 
Because of the possibility of adventitious cross-reaction via 
common determinants, it is not possible to conclude from 
the immunoblot data derived from a single monoclonal an- 
tibody that all of  the reactive polypeptides are indeed constit- 
uents of the structures. Further immunocytochemical studies 
will be required before a definitive identification of  centro- 
spheric components can be made. 
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