
RESEARCH ARTICLE

A novel expert system for objective

masticatory efficiency assessment

Gustavo Vaccaro1☯*, José Ignacio Peláez2,3☯, José Antonio Gil-Montoya4☯
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Abstract

Most of the tools and diagnosis models of Masticatory Efficiency (ME) are not well docu-

mented or severely limited to simple image processing approaches. This study presents a

novel expert system for ME assessment based on automatic recognition of mixture patterns

of masticated two-coloured chewing gums using a combination of computational intelligence

and image processing techniques. The hypotheses tested were that the proposed system

could accurately relate specimens to the number of chewing cycles, and that it could identify

differences between the mixture patterns of edentulous individuals prior and after complete

denture treatment. This study enrolled 80 fully-dentate adults (41 females and 39 males, 25

± 5 years of age) as the reference population; and 40 edentulous adults (21 females and 19

males, 72 ± 8.9 years of age) for the testing group. The system was calibrated using the fea-

tures extracted from 400 samples covering 0, 10, 15, and 20 chewing cycles. The calibrated

system was used to automatically analyse and classify a set of 160 specimens retrieved

from individuals in the testing group in two appointments. The ME was then computed as

the predicted number of chewing strokes that a healthy reference individual would need to

achieve a similar degree of mixture measured against the real number of cycles applied to

the specimen. The trained classifier obtained a Mathews Correlation Coefficient score of

0.97. ME measurements showed almost perfect agreement considering pre- and post-treat-

ment appointments separately (κ� 0.95). Wilcoxon signed-rank test showed that a com-

plete denture treatment for edentulous patients elicited a statistically significant increase in

the ME measurements (Z = -2.31, p < 0.01). We conclude that the proposed expert system

proved able and reliable to accurately identify patterns in mixture and provided useful ME

measurements.
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Introduction

Objective evaluation of the masticatory function

Health care services for the elderly and physically disabled population are ever-increasing chal-

lenges where practitioners are required to evaluate the functional impairments of individuals

in faster and more accurate ways while using less invasive methods. One approach to this mat-

ter is the objective evaluation of the human mastication, which is a complex biomechanical

process that involves coordinated movements of the jaw, tongue, lips, and cheek; and one of

the main functions of the stomatognathic system. [1].

Objective mastication assessment can be performed in two ways: firstly, by quantifying the

changes that the food has suffered during mastication, i.e. the Masticatory Performance; and

secondly, by calculating the number of chewing strokes that would be required to achieve a

certain degree of food degradation, i.e. the Masticatory Efficiency [2]. The Masticatory Perfor-

mance (MP) has been defined as: a measure of the comminution of food attainable under stan-

dardized testing conditions [3]; and is considered an objective indicator of oral functional

capabilities, widely used to measure the impact of dental treatments, to assess levels of disabil-

ity and orofacial functional impairments following stroke [4,5], and has also been associated

with malnutrition risk [6]. On the other hand, the Masticatory Efficiency (ME) has been origi-

nally defined as the number of extra chewing strokes needed by the patient to achieve the same

pulverization as the standard person [7]; however, the strict measurement of the ME is pres-

ently in disuse, mainly because patients with impaired mastication would need to masticate for

very large periods of time. Furthermore, it is important to notice that several studies used the

terms MP and ME interchangeably while referring exclusively to the MP.

Current MP assessment techniques are based on the objective quantification of the degra-

dation of a test-food subjected to mastication. The degradation level is determined by measur-

ing a property (colour, weight, median particle size, chemical concentration, etc.) of a piece of

natural or artificial food (e.g. Optosil/OptocalTM, peanuts, ham, chewing gums, paraffin

blocks, carrots, jelly gums, etc.), where the property is prone to changes related to the number

of chewing strokes.

The fastest and easiest routine for objective MP assessment is the mixture quantification of

a two-coloured cohesive specimen subjected to mastication [8–10]. In a mixing test a test-food

specimen is formed by two differently-coloured layers of chewing gum or paraffin stacked

together. Previous studies suggest that there are similarities among the visual characteristics of

chewing gums masticated for the same number of chewing strokes when considering young

and healthy human subjects [11]. These similarities have allowed experts to subjectively iden-

tify the mixture using comparison tables. An example set of masticated specimens for 3, 9, 15,

and 25 chewing cycles is shown in Fig 1; where it is possible to notice that the red and white

layers are mixed, to some extent, in a regular fashion. The amount of mixture reached with

each chewing cycle would depend on the masticatory function of the individual and on the

structural characteristics of the specimen such as the size, thickness, density, hardness, viscos-

ity, and tinctures used for colouring.

Several studies have proposed simple digital image analysis approaches for mixture quanti-

fication that are more precise than visual inspection techniques, and modern mixing tests cur-

rently focus on these kinds of procedures [8]. The first attempt to measure the mixture of food

using digital image analysis employed several custom-made algorithms, but these were not

fully described, hence not possible to replicate [12]. Later on, the magic wand tool of the

Adobe Photoshop Elements1 software was used to select and count the pixels corresponding

to the regions of the masticated bolus that were not mixed [8]. The “unmixed fraction” of

the specimen was manually calculated using a Microsoft Excel1 spreadsheet (Microsoft
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Corporation, One Microsoft Way, Redmond, WA, USA). The measurements provided by this

procedure were highly affected by the user, meaning high variability of the results; also, it was

time-consuming and difficult for clinical settings.

These difficulties promoted the creation of a specialized tool called ViewGum (dHAL Soft-

ware. Kifissia, Greece, www.dhal.com), which has been receiving special attention from the

dental and medical communities because of its ease of usage [9,13]. ViewGum uses the Bai and

Sapiro segmentation algorithm to isolate the bolus from the background of the image, and

measures the Circular Standard Deviation of the Hue channel (SDHue) in the HSI colour

space; however, SDHue measurements may not to be suitable for white-coloured chewing

gums [9,11], thus limiting the range of potential test-foods. In a different work, the Wolfram

Mathematica1 software (Wolfram Research, Champaign, IL, USA) was used to compute the

custom visual feature “DiffPix” for mixing quantification [10]; nevertheless, neither the seg-

mentation, nor filtering, nor the feature extraction procedure itself were clearly exposed, so the

DiffPix computation approach is not available for reproduction.

The problematics of masticatory performance assessment

The MP quantification techniques based on digital image processing retain various weak-

nesses. Firstly, most of the algorithms or tools employed for this task are not well-documented

Fig 1. Example set of masticated chewing gums.

https://doi.org/10.1371/journal.pone.0190386.g001
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[8,9,11–13]. Also, there is neither consensus about which properties of the test-food should be

monitored, nor scales for the mixture. The mixture can be quantified by numerous features of

the resultant bolus [9,11,14]; however, existing MP measurement approaches rely on a single

feature as the MP indicator, thus leading to high variability in the measurements and severely

limiting the assessment methodology to a narrow set of test-foods [11]. Furthermore, MP

assessment techniques require specialized training, equipment, and considerable amounts of

time. For all these reasons, a comprehensive and integral reference framework for assessing

the mixture in two-coloured chewing gums is needed.

Proposed approach and purpose of this work

This study explores the possibility to accurately measure the level of mixture in two-coloured

chewing gums subjected to mastication within a comprehensive reference scale (0 to 100%).

Consequently, important questions arise: what aspect of the masticated bolus should be con-

sidered as the mixture indicator? And, from other point of view: how do specimens mixed by

0%, 25%, 50% (and so on) look like? These are not easy questions, as there are limitless ways to

describe a digital image; and on the other hand, mastication is an erratic process, thus samples

mixed under similar conditions would surely present noticeable differences.

To overcome these difficulties, this study redefines the MP and ME under the premise that

it is possible to identify patterns in the visual characteristics of masticated two-coloured chew-

ing gum specimens when considering a young and healthy reference population. Firstly, we

have redefined the MP for mixing tests as “the set of measurements that characterize the state

of a sample subjected to a given number of chewing strokes”, thus extending the original defi-

nition to include more than one feature. On the other hand, the MP of a given specimen

would not suffice to achieve a diagnosis of the masticatory function of the patient, because a

reference dataset is needed for comparison. Therefore, we have also redefined the ME for mix-

ing tests as “the equivalent number of chewing strokes that an individual from a healthy refer-

ence population would need to achieve a similar degree of mixture under controlled

experimental conditions measured against the known number of chewing strokes applied to

the sample”. The key aspect of this new ME definition is the calculation of the number of

chewing strokes that would produce a similar MP outcome for the reference population; there-

fore, the challenge of evaluating the masticatory function of an individual can be summarized

as a classification problem where the MP (observed state) of a masticated specimen is classified

into a category represented by the number of chewing strokes needed by the reference popula-

tion. Mathematically, the ME can be represented as:

ME ¼
P
T

ð1Þ

where ME� 0, P is the number of chewing strokes needed for an individual from a healthy

reference population (P 2 N,), and T is the known number of chewing strokes applied to the

sample (T 2N, T> 0). Consequently, a specimen with a ME of 0 implies a total absence of

mixture, while a ME of 1 implies a normal level of mixture, i.e. comparable to what a reference

healthy person would achieve. Furthermore, an ME > 1 implies that the diagnosed individual

chews better than the average healthy person. The ME can also be expressed as a percentage

for easier interpretation and easily associated with linguistic tags as shown in Table 1.

The issue of evaluating multiple visual characteristics and performing an accurate classifica-

tion of the sample can be efficiently solved by the application of computational intelligence

techniques for pattern identification and automatic classification. Therefore, the aim of this

paper is to present and validate a novel expert system for mixture patterns recognition in
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young and healthy individuals, and objective Masticatory Performance efficiency assessment

in masticatory-compromised individuals. The hypotheses tested in this work are:

1. The proposed system can accurately classify masticated two-coloured chewing gum speci-

mens into the corresponding group represented by the number of chewing cycles applied.

2. The proposed system is able to identify differences between the patterns of mixture of eden-

tulous individuals prior and after treatment with complete removable dentures.

Materials and methods

Knowledgebase

The proposed expert system involves the identification of mixture patterns in two-coloured

chewing gums; these patterns are the basis of a classification procedure to compute the P score

(see Eq 1) of new specimens obtained from masticatory-compromised individuals. However,

it is important to notice that the structural characteristics of a chewing gum brand are related

to its visual characteristics; besides, a brand’s availability may not be the same worldwide. To

overcome these problems the proposed system comprises two main components, as shown in

Fig 2: a calibration stage oriented to identify patterns in the mixture of a reference population

for a selected chewing gum brand; and a diagnosis stage oriented determine the ME of a

patient using the same brand of chewing gums. These are related by an auxiliary component

called Masticatory Efficiency and Performance Assessment Technique (MEPAT) which con-

tains the information generated from the calibration in order to accurately perform mastica-

tory assessment tests.

Calibration

The calibration stage aims to identify patterns in the visual characteristics of masticated two-

coloured chewing gums by analysing a broad distribution of reference samples. This process

can be resource-intensive and time-consuming because it requires the participation of various

reference individuals and the analysis of multiple samples per participant. In this work, the cal-

ibration stage was performed in the Faculty of Dentistry of the University of Guayaquil, Ecua-

dor; and was orchestrated by four trained clinicians. The calibration process comprises the

test-food selection, reference population selection, sample retrieval, digitization, segmentation,

feature extraction, feature selection, machine learning, and classifier validation steps; which

are described in the following sections.

Test-food selection. The test-food considered for this approach was a chewing gum wafer

composed of two differently coloured layers. These colours were different enough to permit an

adequate interpretation of the level of mixture with a mere visual inspection. Previous studies

have proposed red-blue[8], green-blue [13], red-white [11], among other colour combinations.

Table 1. Example of linguistic tags associated to Masticatory Efficiency levels.

Linguistic tag Masticatory Efficiency level

Totally impaired 0%

Impeded 25%

Limited 50%

Adequate 75%

Normal 100%

Better than the norm Greater than 100%

https://doi.org/10.1371/journal.pone.0190386.t001
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In this work, the selected test-food was composed of two flavours of Trident1 chewing gums:

watermelon (red dye) and spearmint (white dye); which are commercially available in Ecuador

at the time of the experiment. The chewing gum strips came in the form of individually

wrapped strips measuring 2.5 × 9 × 38 mm. Each specimen was formed by manually stacking

the two pieces of chewing gum.

Reference population selection. A total of eighty volunteers (N1 = 80) were recruited for

the reference group (G1): 41 females aged 25 ± 4.2 years; and 39 males aged 25 ± 5.8 years. Sub-

jects were students from the Faculty of Dentistry of the University of Guayaquil, Ecuador. The

inclusion criteria were being 18 to 35 years old, having at least 28 natural teeth, Angle Class I

occlusion, and a DMFT score of 2 or less. Exclusion criteria were TMJ dysfunction symptoms,

orofacial pain, bruxism, tooth wear, and the presence of fixed or removable orthodontic appli-

ances. Written informed consent was obtained from all participants. Formal approval through

the Ethical Committee for Human and Animal Experimentation of the University of Guaya-

quil was obtained for this experiment.

Sample retrieval. An operator instructed the subjects in G1 to masticate five specimens by

0, 5, 10, 15, 20 chewing cycles correspondently, and silently counted the number of cycles. Sub-

jects rested for 30–60 seconds between mastication sessions to prevent fatigue. The subjects

expelled the resultant boluses and the operator located each bolus between two sheets of trans-

parent film intended for document lamination, and immediately flattened them to a 1mm

thick wafer using a wheel-driven screw press. The flattening step is important because this

assembly provides resistance to manipulation and is ideal digitization [9]. A total of 400 sam-

ples were collected this way.

Fig 2. Proposed mastication assessment solution model.

https://doi.org/10.1371/journal.pone.0190386.g002
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Regarding the selection of the set of chewing cycles, previous studies indicate that this list

must include 20 chewing strokes as the mean human mastication duration; and no more than

50 chewing strokes because of fatigue of the masticatory muscles [15]. On the other hand, 0

chewing strokes represents the “pre-mastication state” of the specimen, and it is obtained by

retrieving the food specimen right after the subject introduces it into the mouth. This is impor-

tant because saliva may play an important role during the image analysis process. Nevertheless,

the task of selecting the adequate number of chewing cycles is currently a point of discussion

among scholars.

Digitization. All specimens were individually scanned on both sides using a Canoscan

Lide 2201 flatbed scanner (300 dpi, standard calibration parameters for colour images). A

flatbed scanner was chosen against digital photography because empirical experimentation

showed that scanned images offered better image quality and even illumination. However,

empirical tests during the calibration stage exhibited that digital photography under controlled

conditions may also provide adequate images.

Segmentation. The resultant digital images were segmented to isolate the area of the

bolus against the background. Specimens often had irregular shapes, vague boundaries, and

very heterogeneous coloration; therefore, these conditions made precise automatic segmenta-

tion a nontrivial task. Active contour modelling have been used previously, but required addi-

tional effort for the clinicians [13]; so a more general approach was needed. Watershed

algorithms can serve to transform the brightness levels of the image into a set of clusters or

“water pools” by identifying relevant markers on the image and filling their surroundings [16];

in this regard, improvements of the Watershed algorithm has been proposed in the literature

which are specially tailored for complex medical imaging [17]. On the other hand, Watershed

algorithms can become highly complex for colour image segmentation and usually identify

many clusters per image, hence they often require post-processing methods. Another approach

for this matter involves iterative shrinkage methods for the selection of a specific region in the

image, which has been successfully used for complex medical imaging segmentation such as

magnetic resonance imaging [18]; however, these are better suited for sparse level images with

diffuse contours and may require supervised intervention to indicate the desired search

region.

In this regard, the proposed approach implemented a fully-automated colour-based seg-

mentation algorithm, constructed upon the combination of Mean Shift [19,20], distance map,

and K-Means classification algorithms [21]. Further details about this segmentation approach

are detailed in S1 Appendix. This custom-made segmentation algorithm was used to divide

the image into two regions: the bolus located in the centre of the image, which is considered as

the Region of Interest (ROI); and the Background, surrounding the bolus. An example of the

application of the proposed region classification process considering Mean Shift (MS) + dis-

tance map (DM) + K-Means (KM) is shown in Fig 3, where it is possible to notice an improve-

ment in the classification of regions, compared to the usage of KM, MS + KM, and DM + KM.

Feature extraction and MP calculation. The proposed expert system approach considers

the whole observed state of a specimen, i.e. the MP of the sample. Mathematically, the MP can

be described as:

MP ¼ ðf 1; f 2 . . . ; f kÞ ð2Þ

where fi represents the ith observed feature, and k represents the total number of features. It is

important to notice that if just one feature is considered then it may lack of sufficient informa-

tion about the sample; consequently, the MP comprises multiple features at once. Additionally,

these features can be obtained from different extraction methodologies that are already
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acknowledged by clinicians, e.g.: pixel counts, histogram analysis, etc. [10,13]. Under this

premise, a custom set of feature extraction models was applied over the ROI of each pair of

images corresponding to the same specimen. Feature extraction models included the mean

and the absolute variance of the colour pixels; and the absolute variance, skewness, energy,

entropy, and highest peaks of the colour histograms. These were computed for each compo-

nent of the RGB, CIE-L�u�v� [22], HSI, and Normalized RGB colour spaces separately (see S2

Appendix). Additionally, the Circular Variance of the Hue channel of the HSI colour space

was computed [9,13]. Consequently, the feature extraction stage considered a total of 121 fea-

tures obtained from different image processing methodologies and colour space models (10

methods × 12 channels + CVOH). Heuristic extraction models such as Binary Particle Swarm

Optimization or advanced texture characterization like Wavelet-based methods were not con-

sidered for this experiment because of their high computational times compared to simple

pixel and histogram feature extraction models; nevertheless, further improvement of the pro-

posed solution should make extensive use of these kind of advanced characterization

approaches [23,24].

The selection of the colour spaces was based on empirical experience. In this case the origi-

nal images are represented in the RGB colour space, which is used for fast representation of

256 shades of Red, Green, and Blue. The CIE-L�u�v� is an easily computable transformation of

the CIE XYZ (Tristimulus) colour space [25], extensively used in graphical computing. The

HSI (Hue, Saturation, and Intensity) colour space is a cylindrical-coordinate representation of

the points in the RGB with applications in computer vision [24], and previous studies suggest

it is useful for characterizing the mixture of chewing-gums [9]. Finally, the Normalized RGB

colour space is obtained from the RGB by a normalization procedure [26]; the influx of the

Fig 3. Comparison of different automatic segmentation methods applied over chewing-gums identification. The goal of the segmentation process was to

discriminate the chewing gum bolus in the centre of the image against the background. Three segmentations methods were employed: Mean Shift (MS), Distance Map

(DM) and K-Means (KM).

https://doi.org/10.1371/journal.pone.0190386.g003
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brightness is diminished by the normalization, so it is less susceptible to changes related to the

light-source.

Feature selection. The large number of features increases the chances of accurately char-

acterizing a sample; however, it hiders the effectiveness of pattern recognition processes that

will be applied in further stages. It is possible to discard some of the features by computing a

relevancy score (q) associated to each extracted feature, computed as:

qi ¼

jrðFiÞj þ

 
gðFiÞ 
n

2

!

!

2

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

ð3Þ

where Fi represents the set of measurements obtained from extraction of the ith feature, ρ(Fi) is

the coefficient of correlation with the number of chewing cycles calculated with Spearman’s

rho, γ(Fi) is the amount of statistically different pairs of chewing strokes that the ith feature can

discriminate, and n is the amount of different numbers of chewing strokes (n = | C |). The

value γ(Fi) is calculated with ANOVA, considering the number of chewing strokes as the fixed

factor, corrected with post hoc Bonferroni, and considering that:

0 � gðFiÞ �
n

2

 !

ð4Þ

A feature can be discarded if the associated q score is lower than 0.5. The above-mentioned fea-

ture selection process may serve to reduce the size of the Artificial Neural Network model that

will be used for pattern recognition in this experiment. Additional dimensionality reduction

can be achieved by applying principal component analysis (PCA) to the set of non-discarded

features by converting the set of possibly correlated features into a set linearly uncorrelated

principal components [27]. Nonetheless, previous experimentation showed that dimensional-

ity reduction using PCA may not necessarily improve pattern recognition performance of this

solution. In this regard, PCA results for the non-discarded features are shown in the Results

section for comparison purposes.

Machine learning. The information extracted from each specimen (S) during the calibra-

tion phase was summarized as a 2-touple consisting of the MP of the specimen and the number

of chewing strokes (t), such that:

S ¼ ðMP; tÞ ð5Þ

Then, the specimens were grouped as:

Si ¼ fSjS ¼ ðMP; xÞ ^ x ¼ tig ð6Þ

where Si represents the set of MPs of all specimens that were masticated by ti chewing strokes.

The proposed methodology used an artificial neural networks (ANN) algorithm for pattern

identification [28–31]. ANNs are rough mathematical models of biological neurons where

electrical signals are represented as numerical values; they mimic some features of biological

brains, especially the ability to learn, i.e. to acquire the ability of processing information in cer-

tain patterns [32]. The chosen ANN architecture was the Multilayer Perceptron (MLP) [33].

The MLP maps a set of inputs to a set of desired outputs through multiple layers of nodes;
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where each node is an artificial neuron. The basic MLP structure consists of an Input layer, an

Output layer, and any number of Hidden layers [24,34–36].

In our case, the MLP structure consisted of k nodes in the Input layer (where k is the num-

ber of features extracted from the specimens), 1 node in the Output layer (binary: true or

false), and a variable number h of nodes in the Hidden Layer (k/3� h� k). A set of MLPs was

constructed for each Si with the task of determining if the sample was masticated by pi chewing

strokes and considering different numbers of hidden neurons. The best number of neurons h
in the Hidden layer was computed by sequentially increasing by 1 the value of h from k/3 to k,

and executing 10 trainings per h value.

Inputs and outputs were obtained by breaking the information (i.e., the S) of each sample

in two: the MP was considered the input, and the p as the output. The entire data set was ran-

domly divided in three groups for each training execution: 40% for the Training Group (TG),

30% for the Validation Group (VG), and 30% for the Testing Group (SG). Each MLP was

trained using the data in the TG, and using the VG as a reference to stop overfitting [37].

Classifier validation. The proposed system fed each trained network with the MP inputs

from the SG group, and compared the predicted outputs (the P score) against the known num-

ber of chewing strokes. Then, the system computed the Matthews Correlation Coefficient

(MCC) to assess the performance of a trained network for each execution [38]. The MCC is a

measurement of the quality of binary classification that considers true and false positives and

negatives, and can be regarded as a correlation coefficient between the observed and predicted

classifications, where MCC = 1 represents a perfect prediction, MCC = 0 represents a random

equivalent prediction, and MCC = -1 represents a complete disagreement between prediction

and observations. The MCC was computed as follows:

MCC ¼
TP� TN � FP� FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞ � ðTP þ FNÞ � ðTN þ FPÞ � ðTN þ FNÞ

p ð7Þ

where TP represents the number of true positives, TN represents the number of true negatives,

FP represents the FP represents the number of False Positives, and FN represents the number

of False Negatives. The system considered an MPL as suitable if its MCC was over 0.95, and

choose the MLP with the highest MCC. The calibration stage would be considered unsuccess-

ful if no suitable MLPs are found after iterating through all the possible h values. The system

assembled the set of suitable MPLs for each pi as a unique classifier in the form of a binary cas-

cade: new samples were classified for S1, then for S2, and so on. The system discarded any sam-

ple that could not be classified into any Si group.

The MEPAT

The information obtained from the calibration stage includes details about the Test-Food, the

features that best characterize it, relevant data about the experimental procedure, and the

trained classifier. To perform diagnostic analyses over new specimens a clinician operator

must follow the same sample retrieval procedure, utilize the same feature extraction methods,

and feed the trained classifier with information about a new sample formatted in the right

way. This paper proposes a new standardized representation of the information, procedures,

and tools required to perform Masticatory Efficiency and performance diagnoses named Mas-

ticatory Efficiently and Performance Assessment Technique (MEPAT). With this, the pro-

posed solution explores the possibility to standardize the information resulting from a

calibration execution following these objectives:

1. To be written in a comprehensive markup language.
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2. To contain relevant information about the calibration experiment.

3. To contain all the information needed to execute a diagnosis over a new specimen.

4. To be portable between different users and devices.

5. To provide scalability for new feature extraction procedures.

6. To be open-source.

The MEPAT follows a custom-made XML structure (see S1 File), which is software-inde-

pendent, and can be easily stored and transferred. The MEPAT can be graphically represented

as shown in Fig 4; and mathematically consists of a tuple:

MEPAT ¼ hTF; ES;CH;CLS;OP; PERi ð8Þ

where TF represents the information about the test-food, ES represents the Experimental Set-

tings, CH represents the set of selected features that characterize the test-food, CLS represents

the trained classifier, OP represents the information about the Operator that orchestrated the

calibration stage, and PER represents the performance of the overall MEPAT. On the other

hand, additional information such as a Unique Identifier (UID), creation date, and upload

date, may be used for synchronization purposes. Additional information about the MEPAT

components can be found in S3 Appendix. The resultant information obtained from the cali-

bration process was included in a MEPAT structure and used in further stages of this work.

Diagnosis

The ultimate purpose of the calibration stage was to provide the necessary information to per-

form an adequate diagnosis of the masticatory function of an individual. To do so, the system

employed a MEPAT to execute a single diagnosis mixing-test, which is defined as a calibrated

methodology for assessing the masticatory function of an individual using a single specimen of

a two-coloured chewing gum.

Fig 4. Graphical representation of the MEPAT XML schema.

https://doi.org/10.1371/journal.pone.0190386.g004
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MEPAT selection. This experiment considered the MEPAT that was created during the

previous calibration execution because it contained all the information necessary to perform

single diagnosis mixing-tests with the available resources at the University of Guayaquil in

Ecuador.

Clinical procedure and sample retrieval. A total of 40 volunteers (N2 = 40) were

recruited for the testing group (G2): 21 females aged 73 ± 8.7 years; and 19 males aged 71 ± 9.1

years. Subjects were patients from the dental prosthetics clinic of the Faculty of Dentistry of

the University of Guayaquil, Ecuador. The inclusion criteria were being older than 60 years

old and complete edentulism. Exclusion criteria were TMJ dysfunction symptoms, orofacial

pain, and severe cognitive impairment. Written informed consent was obtained from each

subject after a full explanation of the research project. The Ethical Committee for Human and

Animal Experimentation of the University of Guayaquil provided a formal approval for this

experiment.

Four samples were obtained from each patient: first, patients received two consecutive tests

without wearing dental prosthesis; then, patients received the next two tests 30 days after com-

plete removable dentures were fitted during a follow-up appointment. The overall procedure

for sample retrieval for was conducted as follows:

1. An operator provided the patient with a specimen of the selected test-food.

2. The operator instructed the patient to masticate the test-food specimen by 20 chewing

strokes on the preferred chewing side (notice that the largest number of chewing cycles dur-

ing the calibration stage was 20).

3. The operator monitored the patient while silently counting the number of chewing strokes.

4. The masticated specimen was retrieved when 20 chewing cycles were achieved.

5. The operator put the specimen between two sheets of transparent film intended for docu-

ment lamination.

6. The operator flattened the specimen to a 1mm thick wafer using a calibrated press.

7. The pressed wafer was scanned for both sides.

Digital image analysis. The system segmented all the digital images obtained from the

samples using the MS + DM + KM procedure (see S1 Appendix); then, the system extracted a

set of features following the instructions stored in the CH component of the MEPAT.

Classification. The proposed system extracted a set of features from each sample follow-

ing the instructions in the CLS component of the MEPAT. Then, the classifier categorised

each sample in one of the classes related to a number of chewing strokes. This classification

provided the number of chewing strokes that a healthy reference individual would need to

achieve a similar degree of mixture, i.e. the P score of the sample.

Masticatory Efficiency quantification. The system computed the ME correspondent to

each sample using Eq 1, considering T = 20 and the P score calculated in the Classification

step. For instance, if a sample scored a P of 15 then the corresponding ME would be: ME =

(15/20) × 100% = 75%.

Statistical analysis

Statistical analyses were performed on MATLAB 2015a (The MathWorks Inc., MA, USA)

using the Statistic Toolbox. First, the Mathews Correlation Coefficient [38] was used for vali-

dating the pattern identification performance for G1. Secondly, the inter-rater agreement
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(consensus) of consecutive ME measurements of the G2 was verified using the Cohen’s Kappa

statistic, considering the initial and follow-up appointments separately [39]. Thirdly, the differ-

ences between the ME measured prior and after treatment with complete removable prosthe-

ses (first appointment and follow-up appointment respectively) were evaluated using the

Wilcoxon signed-rank test, considering the highest ME value from the two measurements.

The performance of the proposed ANN classification approach was compared against a sin-

gle-feature classification methodology. The goal was to verify the practicality of implementing

a complex classification procedure instead of computing the ME directly from single MP mea-

surements obtained from traditional methods. To do so we implemented a binary cascade to

determine the closeness of each sample to the appropriate number of chewing strokes by com-

puting its standard score (z-score) as the number of standard deviations by which the MP mea-

surement is above the mean. The z-score has been used previously by Halazonetis et al. [13] to

diagnose the state of the masticatory function by comparing the MP (CVOH, see S2 Appendix)

measurements of a given sample against a known MP distribution. Mathematically, the z-

score was computed as:

zi;T ¼
mpi � mpT

sT
ð9Þ

Where zi,T is the z-score of the i-th sample computed for T chewing strokes, mpi is the MP

measured from a single feature, mpT is the mean MP value computed from the Training

Group, and σT is the standard deviation. Then, samples from the Testing Group were pre-clas-

sified as part to the T group if |zi,T|� 0.25; hence, the core binary classification performance

per T group was computed using the MCC score. Finally, the samples were classified in the T
group that provided the lowest absolute z-score; i.e., where the MP value was closest to the

mean.

Results

Calibration stage

This study retrieved a total of 400 specimens during the calibration stage (800 digital images).

The complete calibration process required a combined total of 156.05 hours, which corre-

sponded to 9 sessions of sample retrieval (~4 hours per session with 4 operators), and one ses-

sion of image processing and classifier training (3.86 hours) which was performed on an Intel

Core i7-5930K PC with 32GB of RAM. The Table 2 provides detailed information about the

time required for the calibration phase; in this regard, the mastication, resting and digitization,

and image processing steps accounted for 64.5%, 33%, and 2.5% of the calibration execution

time respectively.

A total of 35 features with a q score above 0.5 were selected as good mixture characterizers

(calculated with Eq 3). On every case, the Kolmogorov-Smirnov test confirmed the normality

Table 2. Distribution of time shares of the calibration stage for 400 samples.

Execution time per sample in seconds: average (std. dev.) Total execution time in hours Time share

Mastication 90.6 (19.1) 100.7 64.5%

Digitization a 52.9 (4.2) 51.5 33.0%

Image processing 3.5 (1.1) 3.9 2.5%

Total 178.6 (5.8) 156.1 100.0%

a Also includes the resting time

https://doi.org/10.1371/journal.pone.0190386.t002

Objective masticatory efficiency assessment

PLOS ONE | https://doi.org/10.1371/journal.pone.0190386 January 31, 2018 13 / 20

https://doi.org/10.1371/journal.pone.0190386.t002
https://doi.org/10.1371/journal.pone.0190386


of the distribution per chewing stroke (p< 0.05); significant differences among mixing states

were confirmed with ANOVA corrected with post hoc Bonferroni (p< 0.05); and showed

moderate-to-high correlation with the number of chewing strokes (| ρ |> 0.5; p< 0.05). The

PCA executed over the set of selected features indicated that 3 principal components (PC1 to

PC3) explained 91.301%, 4.488%, and 4.211% of the variance respectively. The Table 3 lists the

selected features along their corresponding q scores and PCA factors rotated with Promax
rotation method.

Classifiers trained with all the 35 selected features performed slightly better than those

trained solely with the first 3 principal components after 200 iterations, although no significant

differences were found between training groups (p = 0.412). The classifier that showed the best

Table 3. List of features selected as mixture state characterizers, showing the model, the colour space channel, the relevancy q score, and the PCA factors for the

first 3 principal components.

Feature extraction model Channel q PC1 PC2 PC3

A. Variance of the histogram H 0.841 0.99 -0.02 -0.04

Entropy of the histogram H 0.827 0.01 0.00 0.00

Value of the 1st peak of the histogram u 0.825 0.00 0.35 0.00

Value of the 1st peak of the histogram B 0.820 0.00 0.00 0.08

A. Variance of the pixels G 0.805 0.00 0.00 0.00

Value of the 1st peak of the histogram S 0.802 0.00 0.00 0.00

Value of the 1st peak of the histogram Rn 0.800 0.00 0.00 0.00

A. Variance of the pixels u 0.799 0.00 0.00 0.00

A. Variance of the pixels S 0.795 0.11 0.01 0.19

A. Variance of the pixels Rn 0.786 0.00 0.00 0.00

A. Variance of the pixels Gn 0.783 0.70 0.26 0.10

A. Variance of the pixels L 0.776 0.00 0.00 0.00

Value of the 1st peak of the histogram G 0.774 0.00 0.00 0.00

Value of the 1st peak of the histogram Gn 0.772 0.01 -0.05 0.25

A. Variance of the pixels B 0.772 0.01 -0.06 0.27

Skewness of the histogram H 0.769 0.00 -0.01 0.28

Mean of the pixels H 0.706 0.00 0.00 0.00

Value of the 1st peak of the histogram L 0.705 0.00 0.00 0.00

Value of the 1st peak of the histogram Bn 0.692 0.00 0.00 0.00

A. Variance of the pixels Bn 0.671 -0.01 -0.05 0.61

Entropy of the histogram R 0.657 0.00 0.00 0.00

Entropy of the histogram I 0.634 0.51 0.00 0.00

A. Variance of the histogram R 0.625 -0.02 -0.03 0.41

Entropy of the histogram u 0.625 -0.02 -0.08 0.40

Entropy of the histogram G 0.624 -0.03 -0.05 0.46

A. Variance of the histogram B 0.623 0.00 0.00 0.00

A. Variance of the histogram G 0.604 0.00 0.00 0.00

Entropy of the histogram S 0.600 0.00 0.00 0.00

A. Variance of the histogram I 0.599 -0.03 0.23 0.32

Entropy of the histogram L 0.598 0.00 0.00 0.00

Entropy of the histogram B 0.595 0.00 0.00 0.00

A. Variance of the histogram S 0.590 -0.02 0.93 -0.10

A. Variance of the histogram L 0.576 0.00 0.00 0.00

Entropy of the histogram Gn 0.571 0.00 0.01 0.00

Entropy of the histogram Rn 0.558 0.00 0.00 0.74

https://doi.org/10.1371/journal.pone.0190386.t003
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overall performance was trained using all the features listed in Table 3, with 16 neurons in the

hidden layer (h = 16), and was obtained after 110 iterations. Further performance details of the

resultant classifier are listed in Table 4.

On the other hand, the core performances of single-feature classifiers are detailed in S4

Appendix. The name of each features is expressed using the corresponding Mixture Feature

Code (MFC, see S3 Appendix). The MCC score was computed per group to better visualize

the ability of the classifier to differentiate between numbers of chewing strokes. Finally, the

global classification score (including T = 0, . . . 20) is presented.

Diagnosis stage

The complete diagnosis stage required a combined total of 6.23 hours, which corresponded to

two sessions of sample retrieval (~2.6 hours per session with 4 operators), and two sessions of

image processing and automatic classification (~ 12 minutes); with an average execution time

per patient of 4.5 minutes. Some operators reported difficulties while counting the chewing

cycles; in those cases, the operator asked an assistant for help and the final number of chewing

cycles was determined by agreement.

The Cohen’s Kappa statistic showed that repeated measurements of ME for the G2 group

showed almost perfect agreement, considering pre- and post-treatment appointments sepa-

rately (κ� 0.95). Furthermore, a Wilcoxon signed-rank test showed that a complete denture

treatment for edentulous patients elicited a statistically significant increase in the ME measure-

ments of the individuals (Z = -2.31, p< 0.01). Additionally, the Absolute Variance of the His-

togram of the Hue channel (VhH) was evaluated separately for comparison reasons [11]; in

this regard, complete denture treatment for edentulous patients elicited a statistically signifi-

cant increase in VhH measurements (p< 0.001). The mean, median, and standard deviations

of ME and VhH measurements are listed in Table 5 along with the corresponding linguistic

tag associated to the ME level (see Table 1).

Table 4. Performance details derived from the confusion matrix of the trained best trained classifier obtained

from the calibration stage.

Confusion matrix component Score

Sensitivity 0.98

Specificity 0.99

Accuracy 0.99

MCC 0.97

https://doi.org/10.1371/journal.pone.0190386.t004

Table 5. Masticatory Efficiency (ME) and absolute variance of the histogram of the Hue (VhH) of edentulous individuals measured prior and after treatment with

complete dentures.

Statistic ME ME level tag VhH

Prior treatment Mean 0.26 Impeded 10.26×106

Median 0.25 Impeded 9.56×106

Standard deviation 0.22 - 1897.01

Mode 0.50 Limited 10.11×106

After treatment Mean 0.71 Adequate 24.05×106

Median 0.75 Adequate 23.49×106

Standard deviation 0.23 - 3314.78

Mode 0.75 Adequate 23.99×106

https://doi.org/10.1371/journal.pone.0190386.t005
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Discussion

This paper introduced new definitions for ME and MP. The differences between ME and MP

were clearly distinguished, and the MP was used as a component for the calculation of the ME.

Additionally, a reference scale for the ME is presented for the first time.

The calibration stage required most of the experimental time and resources, as it involved a

complex (yet easier than traditional) clinical execution. On the other hand, the average execu-

tion time needed to obtain a full ME diagnosis from a patient was 5 minutes, which is consid-

erably fast for a clinical setting. The disparity between calibration and diagnosis stages was

predictable, as the calibration stage required more samples and more complex computational

processing steps.

The visual features selected in this experiment as characterizers of the mixture were com-

puted using various deterministic algorithms applied over a broad range of colour channels.

Two feature reduction approaches were followed, first, a relevance-based method selected a

total of 35 bare features, implying that the mixture may be assessed by more than a single fea-

ture, and that some features are better than others at characterizing the mixture. The variance

of the histogram of the Hue channel of the HSI colour space provided the best overall rele-

vancy, while the entropy of the histogram of the normalized-red channel of the normalized

RGB colour space provided the lowest acceptable relevancy. On the other hand, a PCA

approach selected 3 PCs that accounted for 99.9% of the variance, thus suggesting that most of

the features provided little-to-none new variance information to the model.

For both feature selection approaches pattern identification and classifier training showed

very high performance scores, with an MCC = 0.97 for the best case using the 35 bare features

as inputs. This suggest that the proposed expert system was reliable at identifying mixture pat-

terns for the selected test-food. On the other hand, results at S4 Appendix show that single-

feature classifiers performed poorly in comparison to ANN-based classifiers for this purpose.

The best single-feature classifier employed the EhH feature as the MP indicator with global

MCC = 0.321. However, it is interesting to notice that many single-feature classifiers provided

good core classification performance when tasked to identify samples masticated for 20 chew-

ing strokes (T = 20); in this case Nhu, NhB, NhGn, Ehu, EhGn, VhGn, P2H, NhRn, NhL,

NhG, EhH, V1H, NhS, NhI, Nhv, VhB scored an MCC� 0.5, where the Nhu obtained the

highest core classification performance score with MCC = 0.660.

Diagnosis stage results showed that ME of edentulous individuals were significantly higher

after receiving treatment with complete dentures (p< 0.01), implying an increase in the masti-

cation process outcome from “impeded” to “adequate” (see Table 1).

The proposed methodology can be improved in future works by strengthening the feature

extraction and selection processes; as one of the key factors when computing the ME via

pattern recognition is the quality of the MP indicators and the amount of relevant informa-

tion that these provide to the model. Therefore, more sophisticated mixture quantification

approaches such as texture analysis and wavelet transformations may significantly improve the

performance of the proposed system. Also, better feature selection approaches are may help to

reduce the necessity of large datasets of samples during the training stage.

It is possible to sustain that efforts to standardize MP evaluation in a worldwide scale may

not be viable, as there are significant differences in digitization equipment and test-food avail-

ability among countries. Differences in the digitization equipment may produce undesirable

effects on the classifier outcome, although this phenomenon has not been profoundly studied,

and the proposed calibration model can be easily adapted to handle different kinds of digitiza-

tion devices. Additionally, choosing the right test-food was a crucial task, as it greatly influ-

ences the outcome of the masticatory assessment [14]. A very useful list of specifications for
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specimens aimed to use for a two-colour-mixing ability test was presented by Schimmel, et al

(2015) [9]. Regarding this, we recommend that specimens must have two different colours that

would mix when chewed, be sugar-free, be easy to chew, must not have a hard coating, and

should not stick to artificial dentures. Specially made test-foods for masticatory performance

assessment made by Lotte1 (Lotte Co., Ltd., Tokyo, Japan) may be acquired in Japan and

Korea, but they are not available worldwide. Nonetheless, we consider plausible to find suitable

specimens for mixing-tests most of the time.

Further applications of the proposed expert system may be executed in two different scenar-

ios: the calibration stage should be performed within a research context with more resources,

and the diagnosis stage may be performed in a clinical practice context, linked by the sharing

of experimental information in the form of a MEPAT.

Shortcomings of the proposed method

This study considered only one colour combination and brand of chewing gums, hence further

studies may include other colour combinations and brands available in other regions and

countries. In addition, the study sample for the diagnosis stage should be extended to include

more masticatory-compromising pathologies and treatments. In our case, treatment with

complete oral dentures was chosen because it represents a large portion of the daily routine of

dental practice in Ecuador, and Masticatory Efficiency evaluation provides useful diagnostic

information and relevant data for treatment enhancing.

It is important to notice that the proposed system involved algorithms designed to reduce

the influx of the operator during the image processing steps; therefore, subsequent analysis of

the same set of images will always provide the same feature measurements. Nevertheless, pat-

tern identification involved an aleatory component, which was required to ensure the robust-

ness of the classifier. This means that subsequent executions of the machine learning step

would provide different results each time. In this experiment, the classifier validation step

diminished the randomness of the calibration execution by requiring a high MCC score and

the selection of the classifier with the best performance.

The proposed methodology comprises only simple pixel and histogram feature extraction

models, so certain chewing gum colour combinations can affect the quality of the features.

This phenomenon has been registered by Halazonetis et al. where the Circular Variance of the

Hue channel performed poorly with colour combinations that included similar HUE values

although easily differentiable by direct observation [13]. In this regard, the present study

employed red and white chewing gum samples; so, the mixture of these two colours produced

pink shades that may have affected the performance of HUE-based features.

Conclusions

Within the limitations of this study we conclude that the proposed expert system proved able

and reliable to accurately identify patterns in mixture and subsequently classify masticated

two-coloured chewing gum specimens into the corresponding group represented by the num-

ber of chewing cycles applied considering a healthy reference population. Furthermore, the

expert system proved able to identify differences in the ME of edentulous individuals with and

without total prosthesis. Finally, we propose the inclusion of the newly presented ME defini-

tion and reference scale in further research studies in this field.
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