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Abstract

Energy consumption is one of the primary considerations in animal locomotion. In swimming

locomotion, a number of questions related to swimming energetics of an organism and how

the energetic quantities scale with body size remain open, largely due to the difficulties with

modeling and measuring the power production and consumption. Based on a comprehen-

sive theoretical framework that incorporates cyclic muscle behavior, structural dynamics

and swimming hydrodynamics, we perform extensive computational simulations and show

that many of the outstanding problems in swimming energetics can be explained by consid-

ering the coupling between hydrodynamics and muscle contraction characteristics, as well

as the trade-offs between the conflicting performance goals of sustained swimming speed U

and cost of transport COT. Our results lead to three main conclusions: (1) in contrast to pre-

vious hypotheses, achieving optimal values of U and COT is independent of producing max-

imal power or efficiency; (2) muscle efficiency in swimming, in contrast to that in flying or

running, decreases with increasing body size, consistent with muscle contraction character-

istics; (3) the long-standing problem of two disparate patterns of longitudinal power output

distributions in swimming fish can be reconciled by relating the two patterns to U-optimal or

COT-optimal swimmers, respectively. We also provide further evidence that the use of ten-

dons in caudal regions is beneficial from an energetic perspective. Our conclusions explain

and unify many existing observations and are supported by computational data covering

nine orders of magnitude in body size.

Author summary

Fish-like undulating swimming exhibits remarkable speeds, efficiencies and versatility

over many orders of magnitude in body size. Using theoretical considerations from first

principles coupled with a novel muscle-hydrodynamic model, and extensive computa-

tions, we answer a number of outstanding controversies regarding swimming energetics.

We find that maximizing swimming speed or minimizing cost of transport COT (energy

consumed per body mass per distance traveled) do not, in general, correspond to optimal

muscle or total efficiency (power produced as a fraction of power consumed). These effi-

ciencies are found to decrease with the size of the swimmer, in surprising contrast to
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runners or fliers who are generally more efficient with increasing body size. For all these

different modes of locomotion, it is COT that always decreases with body mass, and it is

optimizing for COT (and not efficiency) that provides evolutionary drive for greater body

sizes. Our conclusions explain and unify existing observations and are supported by our

computational data covering nine orders of magnitude in body size.

Introduction

From the very beginning of the study of animal swimming, the problem of swimming energet-

ics has generated a lot of interest. The problem was brought to the forefront by Gray’s paradox

[1]—the notion that dolphin’s muscles should produce seven times more power per unit mass

than other types of mammalian muscles. This remained a long-standing controversy, but has

finally been found as flawed [2].

Much less is known about the energetics of swimming than about its kinematics due to the

inherent complexity of measuring energetic quantities in swimming animals. For example,

empirical measurements of metabolic power consumption, one of the most important quanti-

ties characterizing locomotion in general, are usually obtained in an indirect way by measuring

the oxygen consumption during swimming in a respirometer [3–6]. These experiments pro-

vide us with the knowledge on how the total consumption (and indirectly the swimming effi-

ciency [3]) depends on the body size and speed, but not on how the consumption is

distributed along a swimming body.

Unlike these efforts aimed at obtaining the overall power consumption, experimental

efforts related to mechanical power have been focused on obtaining the longitudinal pattern of

its production based on in vivo measurements of neural signals. One approach to obtaining

the power output from a neural stimulus is to employ the work-loop technique [6–8], which is

based on the assumption that an isolated bundle of muscle fibers produces the same amount of

power as the one which is an integral part of a body, if activated and stretched in an identical

way [9, 10]. A different approach is to use a mathematical model of muscle fiber response to

predict the power output based on the measurements of EMG activation and the strain cycle

[11, 12]. The results obtained from these two approaches, however, appeared conflicting [13–

16]—some indicated that most of the power was produced anteriorly, while others indicated

that most of it was produced posteriorly. This disparity has not been resolved yet.

These examples of long-standing controversies illustrate one of the core problems in swim-

ming energetics [6, 17]—a lack of a comprehensive theoretical model that could satisfactorily

address all the relevant physics, from muscle activation to the hydrodynamics of swimming,

and, thus, provide an understanding of the underlying phenomena. As a result of this lack of

theoretical understanding, further important questions remain unresolved. For example, the

muscle efficiency in swimming, in contrast to that in flying or running, does not increase with

the body size, and a satisfactory explanation is still missing [17]. At an organism level, it had

been assumed that muscle fibers in fish operate at maximum possible power levels during

swimming at maximum sustained speeds [3, 8, 18]; this premise was called into question by

later experiments [6].

Current modeling efforts predominantly focus either solely on the hydrodynamics of swim-

ming of certain species [19–22], or on modeling muscle activation and the transfer of forces to

the fluid [23–29]. A notable drawback of all these models is that they cannot capture the meta-

bolic power consumption, which is of central importance for understanding fitness. Further-

more, as they do not capture all the physics relevant to the mechanics of swimming, they are
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not suitable for studying undulatory swimmers of general shape and motion that are still

constrained by the mechanical properties of tissues (e.g. muscles) and by the physics of

the surrounding flow. In recent years, we developed a comprehensive model of sustained

undulatory swimming based on a coupled consideration of muscle behavior during periodic

contractions, structural dynamics and hydrodynamics [30]. The key ingredient here is the

introduction of a muscle model that enables us to obtain both the mechanical power produc-

tion and the previously intractable metabolic power consumption along the body from the

knowledge of the required muscle contractive forces and velocities. With this model in place,

we can obtain the full picture of swimming energetics from body and motion characteristics

alone.

In this paper, we conduct a theoretical and an extensive computational analysis of the ener-

getics of optimal undulatory swimmers based on our above-mentioned coupled model [30].

The swimmers are optimized with respect to two conflicting performance measures of argu-

ably crucial importance [2]—achieving the maximum steady sustained swimming speed U
and the minimum cost of transport COT. We present detailed energetic data of optimal model

swimmers across nine orders of magnitude in size and discuss both the integrated values and

the longitudinal distributions of the crucial energetic quantities (powers, efficiencies). We find

that our predictions match the empirically observed data from swimming fish, and we offer

explanations for the aforementioned controversies in swimming energetics. We show that

they can be reconciled by considering the coupled interaction between the muscle behavior

and hydrodynamic forces and by considering the trade-offs between U-optimal and COT-

optimal swimmers. These results and analyses complement those presented in our previous

study [30].

Model of an undulatory swimmer

We study sustained straight-line undulatory swimming, where an organism passes a muscle-

produced wave of curvature down its body and propels itself using the hydrodynamic forces

exerted on the body as a reaction to the undulatory motion. Intermittent undulatory motion,

such as burst-and-coast swimming, is not considered in this work.

We consider an idealized swimmer of mass m and arbitrary three-dimensional shape char-

acterized by its body length L, tail height D and body width B, Fig 1A and 1B. We assume that

the body is symmetric with respect to the horizontal and vertical planes, with elliptical cross

sections of area A(x). The height and width distributions are denoted by d(x) and b(x),

respectively.

The locomotory muscle is arranged into a thin axial strip of muscle fibers located superfi-

cially along the horizontal symmetry plane on each side of the body, i.e. located 1/2b(x) away

from the body symmetry plane, Fig 1A and 1B. The cross section area Am(x) of the muscle on

one side of the body is a small portion μ0 of the body cross-section A(x) (Am(x) = 0.5μ0A(x),

μ0� 1); the rest of the body is considered passive and visco-elastic. The mass of the muscle on

one side of the body mM = 0.5μ0m is also equal to the maximum possible mass of activated

muscle fibers since the fibers on only one side of the body are active at any time and any longi-

tudinal location.

We describe the undulatory motion of the body neutral line h(x, t) using a single time har-

monic [4, 14]:

hðx; tÞ ¼ rðxÞ cosð2px=lb � otÞ ; ð1Þ

where ω is the angular frequency of tail beat, r(x) is the deformation envelope and λb the wave-

length of the body undulation. The instantaneous contraction speed v(x, t) of superficial
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muscle fibers is given by

vðx; tÞ ¼ �
1

2
bðxÞ

@

@t
@

2h
@x2

� �

; ð2Þ

where the plus(minus) sign corresponds to the fibers on the right(left) side of the body being

active. For periodic motion described by (1), the amplitude of v is directly proportional to the

tail-beat frequency ω.

Describing the most important phenomena relevant for the mechanical and energetic

aspects of swimming requires a comprehensive model that captures the physics from the force

creation and energy consumption in the muscles to the generation of thrust force. We intro-

duced such a comprehensive model in [30], based on simple, fast models that are valid for a

problem of such general nature and its vast computational scope. This comprehensive model

can be divided into three parts: (i) a hydrodynamic model that provides the forces exerted on

the body during swimming and determines the swimming speed U, (ii) a structural model that

determines the bending moment M(x, t) that is necessary to sustain the undulatory motion

(see (9)), and (iii) a muscle model that determines the feasibility and the energy cost of such

motion. In this study we use the comprehensive model introduced in [30] and provide a fur-

ther analysis of the muscle submodel. The main aspects of the hydrodynamic and structural

models are briefly explained in the Models section; for more details, see [30].

We consider large Reynolds number Re≳ 104 flows only (Re = UL/ν, ν is the kinematic vis-

cosity of the fluid). To model the flow around a swimmer, we use the simple Lighthill’s slen-

der-body potential flow model [31], which enables us to model swimmers of diverse shapes

over a wide range of large Reynolds numbers. For the justification of this model, see Models

section. It is important to note that the modeled hydrodynamic drag on a swimmer exhibits a

discrete jump in value when the flow around the swimmer transitions from a laminar to a tur-

bulent one. This occurs when the Reynolds number Re reaches a critical value Recr. The result-

ing friction drag coefficient Cf is modeled using an empirical formula (Eq (8)), Fig 1F. While

the empirical formula presents a significant simplification, the physics it captures is present in

Fig 1. Description of body shape and motion. (A) Lateral view of a swimmer (arbitrary shape) and idealized muscle layout (red line). (B) Body cross

section (area A(x)) and muscle cross section (area Am(x)) on each side of the body (red). (C) Dorsal view of the motion kinematics. (D) Three-

dimensional view of a body with a cross-section highlighted. (E) Instantaneous contraction velocity v(x, t) along the body and its envelope v̂ðxÞ. (F)

Friction drag coefficient Cf. The critical Reynolds number is Recr = 5 × 105. For the exact expression for Cf and the shape-dependent drag coefficient CD,

see Eq (8).

https://doi.org/10.1371/journal.pcbi.1007387.g001
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reality—namely, the flow around a swimming organism, and the associated power required to

support it, changes drastically as the flow transitions from laminar to turbulent.

In the following, we introduce our muscle model in more detail.

Muscle performance in oscillatory contraction

The majority of muscle models are based on the given timing of a neural stimulus [11, 27, 28,

32], which can usually be obtained from electromyographic (EMG) and sonomicrometry

recordings. While the response of a muscle fiber to a neural stimulus can be modeled relatively

well, the downside of modeling the behavior of the entire muscle based on the timing of the

stimulus is that the fraction of the activated muscle fibers at any location, and, hence, the resul-

tant force and power, cannot be determined solely from it. Rather, this approach results in

modeling the maximum potential for producing force or power [13]. The same downside

exists for the results obtained from the work-loop technique [15].

We approach the muscle activation problem from an inverse direction: for a given undula-

tory body motion (of the form (1)), we calculate the required force the muscles have to pro-

duce (from a realistic force-velocity relationship) to sustain the motion and determine the

muscle activation and performance based on it. The muscle model in our framework, illustra-

tively summarized in Fig 2 (Fig 2E in particular), serves two main purposes: (I) to determine

the necessary muscle force to produce the required bending moment M(x, t) for a feasible

motion h(x, t), and (II) to determine the power produced by the muscles for such motion and

the consequent metabolic power consumption. We consider motion powered solely by the

superficial (red) muscle, Fig 1A and 1B, and assume that the muscle is longitudinally and

Fig 2. Muscle dynamics. (A) Hill’s model for the muscle fiber contraction force Ff and the associated power consumption Qf as a function of the relative

contraction speed vr of the fiber. (B) Mechanical power production pf and muscle fiber efficiency ηf. (C) Sketch of the active part of the red muscle at a certain time

instant. (D) Relative phase lagF between the periodic muscle force Fm and the periodic contraction speed vr. (E) A visualization of the muscle model for cyclic

contraction performance in the cross section contracting with F̂m ¼ 0:35, v̂r ¼ 0:20,F = 60˚. The force ellipse is marked in red. Maximum muscle force (full

muscle used, i.e. muscle activation fraction μ = 1) is represented by thick blue lines; thin blue lines for μ< 1 isolines. The regions where muscle produces negative

work (“braking”) is marked in orange. (F) Force ellipse shape as a function of phase lag F. (G) Maximum obtainable average powers over a cycle max(ψ) and

max(θ) as a function of relative velocity amplitude v̂r (F = 0). The orange dashed vertical line represents the values of v̂r for which the average power output

obtains an absolute maximum. (H) Maximum muscle efficiency max(ηm) (F = 0) as a function of relative velocity amplitude v̂r . The red dashed vertical line marks

the relative velocity amplitude v̂Zmr at which max(ηm) is maximum.

https://doi.org/10.1371/journal.pcbi.1007387.g002
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laterally sufficiently innervated to allow different spatial and temporal muscle employment

patterns [4].

Underlying assumption. The basis of our muscle model is the assumption that the force

in a muscle fiber during steady swimming is a function of the instantaneous contraction veloc-

ity v(x, t) alone. During steady swimming, muscle fibers regularly operate on the plateau of

length-tension curve [16]; thus, the effect of the fiber excursion on the contraction force can be

neglected. Similarly, the characteristic time for muscle fibers to adapt to a new load is typically

much shorter than the characteristic tail-beat period T of steady swimming [14, 33]. Hence, we

assume quasi-steady muscle behavior, i.e. the muscle fibers contract with a constant velocity in

tetanic contraction at every instant during the cycle.

For contraction with constant velocities v, the muscle fiber contraction force Ff (v) and con-

sumed power Qf (v) for the concentric (v> 0) and the eccentric contraction (v< 0) are given

by the Hill’s model [33]. (The exact expressions are given in the Models section.) These are

plotted in Fig 2A as a function of the relative contraction velocity vr� v/vmax, where vmax is the

maximum achievable contraction velocity for a particular fiber type; the contraction force is

normalized by the isometric force F0� Ff (0). The mechanical power output Pf = Ff × v pro-

duced by a fiber and the corresponding fiber efficiency ηf = Pf /Qf are plotted in Fig 2B. The

fiber efficiency is defined only for vr> 0, reaching the maximum of ~Z f � maxZf ¼ 45:1% at

~vZfr ¼ 0:23. The maximum power output occurs at a slightly larger contraction velocity

~vPr ¼ 0:31. This forms a constitutive model that we use to build a model for the cyclic behavior

of the entire muscle during swimming.

I. Motion and force feasibility. In order for the body motion h(x, t) to be physiologically

feasible at every location along the body and at every instant, the following conditions have to

be satisfied: (i) the fiber contraction speed v(x, t) has to be always smaller than vmax, and (ii)

the muscle cross-section area Am(x) has to be large enough to produce the required bending

moment M(x, t) (given by Eq (9)) at every length-wise position.

The required contractive force Fm(x, t) that muscles have to provide at any cross-section is

Fm(x, t) = M(x, t)/0.5 b(x), where 0.5 b(x) is the distance of the muscle cross-section from the

body symmetry line. The sign of Fm uniquely determines the side of the body on which the

muscles are active. By our convention, Fm is positive(negative) when the muscles on the right

(left) side of the body are active. This, in turn, uniquely determines the sign of v in (2). In the

case of linear underlying hydro-structural models (as we assume here, see Models), Fm(x, t) is

described by the same number of time harmonics as h(x, t). For h(x, t) given by (1), both v(x, t)
and Fm(x, t) contain only one time harmonic, i.e. they are purely sinusoidal in time.

At any cross section, the required muscle force Fm is the sum of all the active single-fiber

contractive forces Ff. To obtain the required force Fm(x, t) constrained by Ff (v(x, t)), we

assume that only a fraction μ(x, t) of the total muscle cross-section area Am(x) is activated (Fig

2C):

mðx; tÞ ¼
jFmðx; tÞj

Ff ðvðx; tÞÞAmðxÞ
: ð3Þ

This expression for the active muscle fraction μ(x, t) determines both the physiological feasibil-

ity of motion (the requirement that μ� 1) and the way how the muscle force Fm is provided

(by activating μAm of the muscle cross section).

II. Resulting energetic quantities. The instantaneous metabolic power q(x, t) consumed

by the muscle fibers at any cross section is the sum of the power consumed by all active muscle

fibers at that instant and location, resulting in q(x, t) = μ(x, t)Am(x)Qf (v(x, t)). The power con-

sumption is always positive, reflecting the physical fact that muscles always consume metabolic
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energy. At the same time, the muscles at every cross section produce mechanical power output

p(x, t) = Fm(x, t)v(x, t). It can be positive or negative, i.e. the muscles are either providing useful

work or extracting energy from the system by contracting while being extended by external

forces (eccentric contraction). As both Fm and v are sinusoidal, the indicator of the overall

character of the mechanical power output at some cross section is the relative phase difference

F(x) between these two quantities, Fig 2D. For 0� F< 90˚, the mechanical power output p is

mostly positive during the motion cycle (�p > 0, where �ð�Þ denotes the time average) and the

muscles are in the “power” mode; for 90˚ < F(x)� 180˚, p is mostly negative (�p < 0). To sim-

plify the terminology, we will refer to the regime where negative net work is being done, i.e.

the muscles are predominantly in eccentric contraction, as the “braking” mode. For F = 0, the

mechanical power is positive during the entire cycle; the opposite is true forF = 180˚. ForF =

90˚, the average mechanical power output �p is zero. The average metabolic power consump-

tion �q in all these cases is positive.

The maximum values average power consumed or produced over a cycle occur forF = 0,

so they depend on the relative contraction velocity amplitude v̂r alone. The maximum values

of the average power production and consumption per muscle area c � �p=Am and y � �q=Am

are shown in Fig 2G. As a consequence of the cyclic (sinusoidal) muscle operation, the maxi-

mum average power output per muscle area max(ψ) is exactly one half of the maximum power

output for fibers contracting with a constant velocity, and it occurs at the same relative

contraction velocity ~vPr ¼ 0:31. For characteristic muscle properties used in this work (see

Models), the maximum obtainable power output per muscle mass based on our model is

~c ¼ 35:8 W=kg, a value comparable to those found in nature [7, 15]. Away from ~vPr , max(ψ) is

monotonically decreasing. The maximum values of average consumed power per muscle area

θ as a function of v̂r exhibit an overall maximum at v̂r very close to ~vPr . For the chosen muscle

properties, the maximum power consumption per muscle mass is ~y ¼ 81:2 W=kg. Unlike max

(ψ), max(θ) is nonzero at v̂r ¼ 0 (for a fully activated muscle, max(θ)(0) = 2/π × Qf (0)).

The efficiency of producing mechanical work at a particular location can be quantified by

the local muscle efficiency ηm. At any cross-section, we define ηm as the ratio between the aver-

age mechanical power produced over a cycle and the average metabolic power consumed over

that cycle, i.e.

ZmðxÞ �
�pðxÞ
�qðxÞ

: ð4Þ

The local muscle efficiency is meaningfully defined only for the cross sections where �pðxÞ is

positive, i.e. muscles are producing positive net power (phase lag F< 90˚). The maximum val-

ues of ηm are attained forF = 0 and are a function of v̂rðxÞ only, Fig 2H. The overall maximum

of ηm based on our model is ~Zm ¼ 44:5% and it occurs when the amplitude of relative contrac-

tion velocity is ~vZmr ¼ 0:27; ηm monotonically decreases away from ~vZmr . Note that ~Zm, which

represents the maximum efficiency of cyclical contractions of muscle fibers, is only marginally

smaller than the maximum fiber efficiency ~Z f , which measures the fiber efficiency when con-

tracting with constant vr. It is also comparable to the empirically obtained maximum efficiency

of red muscle fibers of 51% [34].

Muscle diagram. The dependency between the contraction velocity, the required muscle

force, the maximum available muscle force, and the mode in which the muscle is operating at

a certain cross section x0 can be illustrated by a four-quadrant force-velocity diagram, Fig 2E.

Here, the muscle force Fm(x0, t) is plotted as a function of contraction velocity vr(x0, t) such

that the positive(negative) values of Fm correspond to the activation of the fibers on the

right(left) side of the body, (respectively). The maximum force the muscle can produce
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Ff (vr) × Am(x0), corresponding to the full muscle activation μ = 1, provides a limit that Fm can-

not exceed. Note that for the left side muscle activation, the μ = 1 envelope is plotted propor-

tional to −Ff (−vr) to account for our sign convention.

In the Fm–vr coordinate system, the contraction velocity vr and the muscle force Fm form

what we term a force loop, which is an ellipse in the case of a sinusoidal Fm and vr. Time is only

implicitly (parametrically) present in the force ellipse. A physiologically feasible motion is any

motion for which the force ellipse is entirely contained within the μ = 1 lines. The activation

fraction μ(x0, t) for a certain point on the force ellipse (i.e. Fm(x0, t)–vr(x0, t) pair) is deter-

mined from the intersection of the ellipse with a particular μ-isoline, which is a proportional

reduction of the μ = 1 line. The amplitudes F̂m and v̂r of Fm and vr determine the bounding

box of the force ellipse, and the ellipse shape and the orientation of its major axes depend on

the phase difference F, Fig 2F. For F = 0˚ and F = 180˚ (pure power and braking modes), the

ellipse reduces to a line.

Time response. The time dependency of the relevant quantities, which is only implicitly

present in Fig 2E, is explicitly shown in Fig 3 for a certain cross section x0. The intervals during

which the muscle fibers at x0 are producing negative work p(x0, t)< 0, i.e. braking, are marked

in all plots. Since F(x0)< 90˚ for this cross section, a smaller fraction of the tail-beat period is

spent in the braking mode. The instantaneous consumed power q(x0, t) is always positive

and greater than p(x0, t). The intermittent character of the muscle fiber activation is shown in

Fig 3B. The fibers on only one side are active at any given time. The muscle fibers on each side

undergo the concentric and eccentric contraction (braking) intervals. The kink in μ(x0, t) at

Fig 3. Time response of a muscle in oscillatory contraction. The plots represent the time response at a cross section x0 where the

muscle is contracting with F̂m ¼ 0:35, v̂r ¼ 0:20,F = 60˚. Intervals of eccentric contraction (“braking”) are marked in orange. Time

t is normalized by the tail-beat period T. (A) Metabolic power consumption q (blue line) and mechanical power production p
(orange line). The average values �p and �q are represented by dashed lines in corresponding color. (B) Muscle activation fraction μ(x0,

t). Green line represents the active fraction of the muscle on the right side, red line for that on the left side. (C) Muscle fiber efficiency

ηf. The resulting local muscle efficiency ηm(x0) is shown in dashed gray line. Maximum fiber efficiency ~Z f from Hill’s model is shown

in dashed magenta line.

https://doi.org/10.1371/journal.pcbi.1007387.g003
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the end of every braking interval is due to the kink in Ff at vr = 0 (cf. Fig 2E). The efficiency of

active fibers ηf as a function of time in shown in Fig 3C. Note that ηf is not defined during the

braking intervals. Outside the braking intervals, ηf is close to the maximum achievable ~Z f for a

significant portion of the cycle. The local muscle efficiency ηm(x0), which accounts for the time

averaged power transfer, is greater than zero (ηm(x0) = 33.6% here) sinceF< 90˚, but still

lower than ~Z f . For a cross section where F> 90˚, the average power output would be negative,

so ηm for that cross section would be zero. To account for the contributions from all cross sec-

tions, we consider length-integrated time-averaged energetic measures next.

Integral energetic measures

Arguably the most important energetic measure of swimming (and locomotion in general) is

the cost of transport (COT), a non-dimensional measure that accounts for the absolute

amounts of consumed energy. COT is defined as the total energy spent per unit mass and dis-

tance traveled [4, 35], which can be expressed as

COT �
PT

mgU
¼
Ps þ Q
mgU ð5Þ

where PT, the total metabolic power consumed while swimming at the speed U, is the sum of

total the metabolic power Q consumed for swimming (length-integrated, time-averaged

q(x, t)), and the speed-independent standard metabolic rate Ps required for other physiological

processes; g is the acceleration of gravity and is used only for nondimensionalization purposes

here. As such, COT is a “gallons-per-mile” measure and is likely to be the governing criterion

for long migrations [4]. Since COT is normalized by the body mass, it also serves as a compara-

tive measure of energy consumption across the scales.

The process of energy conversion during swimming can be separated into three parts—the

conversion of metabolic energy acquired by food into mechanical work through the contract-

ing muscle fibers, the conversion of that mechanical work into the work passed to the fluid,

and the conversion of the fluid energy into the propulsion work, the final useful energy form.

The corresponding efficiencies of these conversion processes can be labeled as the muscle, the

internal and the hydrodynamic efficiency, respectively.

We define the muscle efficiency ηM as the efficiency in converting the total consumed meta-

bolic energy into mechanical work

ZM � P=Q ; ð6Þ

where P is the total mechanical work produced by the muscles per tail-beat cycle, i.e length-

integrated, time-averaged power output. The total produced work is always positive since the

muscles power swimming. Therefore, ηM is always meaningfully defined. The muscle effi-

ciency ηM is bounded from above by the local muscle efficiency ηm, setting the upper limit of

ηM to maxZM ¼ maxZmðxÞ ¼ ~Zm ¼ 44:5% as well.

The work produced by the muscles to power the swimming motion is only partly trans-

ferred to the fluid because some of it is used to overcome the internal visco-elastic losses occur-

ring in the tissues. We quantify these losses through the internal efficiency ηI, which relates the

power transferred to the surrounding flow and the work produced by the muscles. The inter-

nal efficiency could also be combined with the muscle efficiency to produce a combined “mus-

cle” efficiency Z�M ¼ ZM ZI [3]. For real organisms with non-zero visco-elastic losses, Z�M < ZM .

The use of ηM and ηI allows for a more detailed insight into the energy conversion process by

accounting for where the energy losses are.
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The hydrodynamic (Froude) efficiency ηH is commonly defined as the ratio between the

useful power for propulsion FTU (where FT is the time-averaged thrust force) and the average

power transferred to the surrounding fluid by the body motion [31]. Taking the entire energy

conversion process into account, the total swimming efficiency ηT can be written as

ZT �
FTU
Q
¼ ZH ZM ZI : ð7Þ

The efficiencies, unlike COT, are ratios of average powers and as such cannot differentiate

between the absolute amounts when the ratios are the same. This is a major drawback of using

efficiencies as energetic measures for optimization in cases when neither the produced nor the

consumed power is prescribed, as it is the case in our optimization problem.

Optimal populations

In this study, we focus on the multi-objective optimization of swimming organisms with

respect to two conflicting performance measures of arguably great importance in the evolu-

tionary scenario [2, 4]: maximizing the sustained swimming speed U and the minimizing cost

of transport COT. Simultaneously optimizing conflicting objectives usually leads to an infinite

number of optimal solutions. In the multi-objective context, a solution is considered optimal

when it is non-dominated, i.e. when there is no feasible variation of optimization variables that

could improve every objective. We call the set of non-dominated organisms the optimal popu-

lationP.

In the two-dimensional objective space, the non-dominated solutions P form a so-called

Pareto front, which illustrates the functional trade-offs between the conflicting objectives, e.g.

Fig 4A. In this space, solutions that optimize a single objective alone are always at the ends of

the Pareto front. In a general space, these single-objective optimal organisms do not necessar-

ily obtain extreme values within the optimal population. In our results, we focus particularly

on the representatives from the optimal populations for which either U or COT is optimal.

Fig 4. Optimal populations and Pareto front. (A) Pareto front (black) representing the optimal (non-dominated)

population P(m); non-optimal (dominated) solutions behind the Pareto front are also shown, colored according to the

generation of the evolutionary algorithm they belong to. No solution among the dominated ones is better in both

objectives (i.e. higher U and lower COT) than the solutions on the Pareto front. The COT-optimal solution is marked

by a blue dot, the U-optimal by a red dot. (B) Reynolds number Re of optimal organisms (from [30]). Optimal

populations are represented by the yellow area. Red dots correspond to U-optimal organisms, blue dots to COT-

optimal ones. The transition ranges ðMÞU and ðMÞCOT are marked in red and blue regions, respectively.

https://doi.org/10.1371/journal.pcbi.1007387.g004
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The values corresponding to those solutions are henceforth denoted by (�)U or (�)COT,

respectively.

For any quantity χ characterizing swimming performance across many scales in body mass

m, the values of χ that optimal populations P(m) obtain form a band when plotted as a func-

tion of m; for example Fig 4B for χ� Re. When we observe (χ)U or (χ)COT values across the

scales in m, the behavior of swimmers of intermediate sizes (among those that we consider) is

noticeably different from that of either smaller organisms that swim in a laminar regime or

larger organisms that swim in a turbulent one. This common change in scaling behavior

occurs when organisms of increasing m abandon the Re–m scaling at some value of m (corre-

sponding to the critical Reynolds number Recr) to remain in the laminar regime, Fig 4B. We

call the range of m over which this occurs a transition range M. The optimal swimmers in M
maintain the subcritical Reynolds number by being of shorter length and/or by swimming at a

lower speed, relative to the scaling observed for the range of m below M. The width of M (in

terms of the range of m) and the value of m at which M begins is generally different for U-

optimal and COT-optimal organisms. Given that U-optimal organisms are faster than COT-

optimal ones for any m, the transition range ðMÞU for the U-optimal organisms starts and

ends for lower m than the ðMÞCOT one.

Results

We present here the energy-related quantities of optimal swimming organisms, obtained

from a multi-objective optimization of swimmers covering a large range of body sizes (from

m = 0.001 kg to m = 1, 000, 000 kg). The swimmers are simultaneously optimized with

respect to maximizing the sustained swimming speed U and minimizing the cost of transport

COT.

The optimization of nine variables parameterizing the body shape and motion was per-

formed using the MO-CMA-ES evolutionary algorithm [36], starting from initial populations

with random shape and motion parameters (for more details, see Models). Note that apart

from the body wavelength, no kinematic or dynamic quantity is prescribed, i.e. all the quanti-

ties are outcomes of the optimization process. The assumed body and muscle properties are

realistic and considered constant for all swimmers (see Models section). The total number of

simulation evaluations required to obtain the converged results for all body sizes presented

here is O(107).

We present the results of relevant integrated and distributed internal energetic quantities,

and show that they are consistent and in agreement with the empirically obtained ones across

the scales. These results complement our previously published results on the shapes, motion

patterns and kinematic quantities of optimal populations in this size range [30]. Note that

some of the results are quantitatively dependent on the values of the assumed muscle proper-

ties (F0, vmax and μ0).

Optimal COT is inversely proportional to maximum efficiency

The cost of transport, power production/consumption and accompanying efficiencies of opti-

mal populations P(m) across the scales of body mass m are shown in Fig 5. For every m, these

quantities obtain a range of values, each corresponding to one of the non-dominated solutions

from P(m).

The cost of transport COT of optimal swimmers continuously decreases with m (except in

the transition ranges M), Fig 5A. The rate of the decrease matches that of fish and cetaceans

[4]. The COT-optimal and U-optimal organisms achieve extreme values of COT within each

optimal population P(m), being at a minimum for (COT)COT and at a maximum for (COT)U.
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This is expected due to the conflicting nature of the two optimization objectives. These COT

values were already reported in [30]; we present them here for completeness and to contrast

them with the other energetic values.

Unlike COT, the total swimming efficiency ηT does not exhibit a consistently minimum or

maximum values for either U-optimal or COT-optimal organisms, Fig 5B. Surprisingly, swim-

ming at minimum COT is not correlated with the maximum efficiency, i.e. with what one

might consider as energy-efficient swimming, but rather to the minimum of efficiency. The

key to this behavior lies within the muscle efficiency ηM. The COT-optimal organism consis-

tently achieve minimum ηM within the optimal populations P(m). Furthermore, (ηM)COT is

decreasing with an increase in body size. Having a minimum ηM within the optimal popula-

tion is obviously no impediment to having the optimal cost of transport (cf. Fig 5A). In con-

trast, (ηM)U is constantly maximum within P(m), reaching the values close to maximum

attainable ~Zm ¼ 44:5% for body sizes at the upper end of ðMÞU .

The hydrodynamic efficiency ηH of optimal populations P(m) reaches values between

55%–90%. The values of (ηH)U occur within a narrow range, roughly between 65%–75%. In

contrast, (ηH)COT covers a greater range; it is higher than (ηH)U for smaller body sizes and falls

below it for body sizes beyond the transition range ðMÞCOT. The hydrodynamic efficiency is

never maximum or minimum for COT-optimal and U-optimal organisms (except for (ηH)COT

for large m); the extreme values of ηH are generally achieved by some other members of the

optimal population P(m). The overall values of ηH, however, might be slightly over-predicted

by the simple hydrodynamic model that we use in the present study, as has been indicated by

some CFD studies [21].

The predicted muscle efficiency ηM of optimal populations for smaller body sizes is roughly

in the range of 20%–40%, but for larger body sizes, ηM generally decreases to values as low as

2%–20%. The corresponding values of Z�M are in the 1.5%–20% range. Thus, the total efficiency

ηT, despite relatively high ηH, is in the*2%–16% range. The range of values for Z�M and ηT are

in agreement with previously reported values for fish [3].

Fig 5. Energetic characteristics of optimal populations P(m) across the scales. Organisms with minimum COT are marked by blue circles and U-optimal

organisms by red circles; the rest ofP(m) are represented by yellow region(s). The transition range ðMÞU is marked by a red region and ðMÞCOT by a blue region.

(A) Cost of transport COT. Empirical data [4] for fish (magenta stars) and cetaceans (bottlenose dolphin and gray whale; black stars) are shown for comparison. (B)

Hydrodynamic efficiency ηH (upper region), muscle efficiency ηM (middle region) and total efficiency ηT (lower region). The dashed magenta line represents the

maximum achievable muscle efficiency ~Zm of 44.5%. (C) Mechanical power production per muscle massC (lower region, small circles) and metabolic power

consumption per muscle mass Θ (upper region, large circles). The dashed horizontal lines represent the maximum obtainable power per muscle mass ~c and ~y for

the selected muscle properties. The intersection of optimal regions in B and C is shown in a darker shade of yellow.

https://doi.org/10.1371/journal.pcbi.1007387.g005
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Power scales significantly different for U-optimal and COT-optimal

organisms

To asses the energetic utilization of the available muscle in optimal swimmers across the scales,

we study the total power production P and consumption Q per muscle mass mM. For nota-

tional convenience, we define C� P/mM and Θ� Q/mM as power produced and consumed

per muscle mass measures, respectively.

The values of C and Θ scale significantly different for U-optimal and COT-optimal organ-

isms, Fig 5C. The maximum values within P(m) are consistently achieved for U-optimal

swimmers, and the obtained (C)U and (Θ)U values are almost constant across the scales of

body sizes (even through the transition range ðMÞU), decreasing only slightly for very large m.

The maximum power-per-mass values for U-optimal swimmers are not surprising since it can

be expected that organisms at every size utilize all the available muscle fibers to achieve maxi-

mum sustained swimming speeds [15]. On the other hand, the powers obtained for COT-opti-

mal organisms (C)COT and (Θ)COT consistently acquire minimum values among P(m). As a

consequence of ηM-scaling, (C)COT and (Θ)COT values exhibit a significant decrease with an

increase in m; the rate is faster for (C)COT. Within the transition range ðMÞCOT, the decrease

rate is even more pronounced.

The range of C values obtained from our calculations is largely within the reported empiri-

cal values. The measurements of the muscle fiber power production of swimming fish that are

up to 10 kg in body size give the values of roughly between 1 W/kg–30 W/kg (skipjack tuna

being an outlier at 100 W/kg) [15], which covers the range predicted here.

Longitudinal distribution of energetic quantities depends on the

optimization objective

The single-valued energetic measures presented in Fig 5 give only a part of the picture of the

swimming energetics of optimal organisms. Since energy is being consumed and useful work

produced throughout the body, we present next the longitudinal distributions of relevant

quantities to gain a deeper insight into the workings of the locomotory muscles.

We have chosen three representatives from P(m) at three characteristic body sizes to show

how the envelope of the relative contraction velocity v̂rðxÞ, the local muscle efficiency ηm(x)

and the power production/consumption vary along the length, Fig 6. Two representatives cor-

respond to the extremes of the Pareto front, i.e. U-optimal and COT-optimal representatives,

while the third representative is chosen from the middle of the Pareto front. The characteristics

of other optimal organisms can generally be smoothly interpolated between the presented

characteristics, both along the Pareto front and across the scales. In the following discussion,

we will focus on the U-optimal and COT-optimal characteristics, as the characteristics for the

third representative are usually in between these two.

The distribution of the average mechanical power output �pðxÞ of optimal populations show

consistent characteristics across the scales, Fig 6A. The anterior part of U-optimal swimmers

produces most of the power, as indicated by the location of maxima of ð�pðxÞÞU . Compared to

the posterior, the anterior part of the U-optimal swimmers becomes even more energetically

dominant with an increase in body size. Note that the decrease in total power levels in the cau-

dal region is in part due to the reduced muscle mass, proportionally to the reduction in the

cross-section area. For COT-optimal organisms, the power is mostly produced mid-body, or

slightly aft. With an increase in body size, there is a notable growth of the braking region in the

caudal area where the the power production ð�pðxÞÞCOT is negative.

The local efficiency (ηm(x))U is almost always consistently greater than (ηm(x))COT, reaching

its maximum achievable value of 44.5% for most of the anterior part of the body for smaller
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body sizes. A prominent feature of (ηm(x))COT for all but the largest body sizes is the existence

of two local maxima of ηm, separated by (nearly) zero efficiency in the middle. The maximum

of (ηm(x))COT is generally located in the posterior half of the body. Note that (ηm(x))U and

(ηm(x))COT are generally not defined in the tail region where �p becomes negative (“braking”

mode). With an increase in body size, the “braking” region enlarges.

The maximum longitudinal value of the envelope v̂rðxÞ of the relative contraction velocity

vr(x, t) is always less than ~vZmr ¼ 0:27 for which ηm is maximum, and it is generally decreasing

with an increase in body size, Fig 6C. The decrease in the maximum values of v̂r with m is

due to the fact that the tail-beat frequency ω is also decreasing with an increase in m, while

the maximum achievable contraction velocity vmax is constant. The values of ðv̂rðxÞÞU are

always greater than ðv̂rðxÞÞCOT, indicating that faster contraction rates correspond to faster

swimming, which is intuitive. For v̂r < ~vZmr , v̂r is positively correlated with ηm(x) and �p
so that a relatively higher v̂rðxÞ corresponds to higher efficiency ηm(x) and higher power out-

put �p.

Larger values of ðv̂rðxÞÞU are found anteriorly, especially for smaller organisms where

ðv̂rðxÞÞU is close to ~vZmr , producing the regions of nearly maximum ηm(x). The character of

ðv̂rðxÞÞCOT is similar to that of (ηm(x))COT in that it exhibits two regions with higher values,

with (nearly) zero values of v̂rðxÞ in between. The locations of zero values of ðv̂rðxÞÞCOT approx-

imately correspond to the locations of the minima of motion envelopes (r(x))COT [30].

Consideration of the maximum muscle activation fraction along the length m̂ðxÞ (the enve-

lope of μ(x, t)) together with the longitudinal distribution of the phase lag F(x), Fig 7, provides

Fig 6. Longitudinal distributions of energetic quantities across the scales. Different representatives from optimal

populations are denoted by colors: (�)COT quantities in blue, (�)U in red, and quantities related to the intermediate

representative from the Pareto front in green. (A) Normalized average mechanical power �p 0ðxÞ. For clarity, all

quantities have been normalized with their corresponding maximum values due to a large difference in scales. These

maximum values for each swimmer are shown in the bar plot above, expressed as power per muscle mass ψ, in

corresponding color for each representative. The maximum obtainable power output per muscle mass ~c ¼ 35:8 W=kg
is shown in dashed orange line. (B) Local muscle efficiency ηm(x). The dashed magenta line marks the theoretically

maximum achievable muscle efficiency (~Zm ¼ 44:5%). (C) The envelope v̂rðxÞ of the relative contraction velocity.

https://doi.org/10.1371/journal.pcbi.1007387.g006
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additional insights into the effectiveness of muscle performance. The presented results corre-

spond to the same optimal individuals as in Fig 6 and can be smoothly interpolated between

those shown.

All U-optimal organisms achieve m̂ ¼ 1 at some point along the length, as the maximum

achievable sustained speed is constrained by the available muscle. Usually, ðm̂ðxÞÞU � 1 for

the majority of the body length. With an increase in body size, there is a notable decrease in

the active muscle fraction ðm̂ðxÞÞU in the caudal peduncle area. Nearly maximum ðm̂ðxÞÞU
offers part of the explanation for maximum values of (P)U and (Q)U within the optimal popula-

tions—as more muscle fibers are employed, the power levels are higher. The other part comes

from the way the muscles are operating. The phase lag (F(x))U is nearly 0˚ for the anterior part

of the body, especially for smaller m, indicating large average power output. In the caudal

region, however, (F(x))U is generally greater than 90˚, indicating that the caudal muscles are

used for braking. These large values of F cause a decrease in �pðxÞ (Fig 6A), despite the large

muscle activation ðm̂ðxÞ � 1Þ.

COT-optimal organisms are generally not constrained by the available muscle. The active

muscle fraction ðm̂ðxÞÞCOT is larger in the posterior half of the body, but is generally less than 1.

For smaller body sizes (below ðMÞCOT), the maximum value of ðm̂ðxÞÞCOT along the length

decreases with an increase in body mass m, reaching its minimum for m around 100 kg. For

larger body sizes (above ðMÞCOT), the maximum value of ðm̂ðxÞÞCOT increases with the increase

in m. This behavior has already been reported [30]. For very large organisms, the increase in

ðm̂ðxÞÞCOT is concentrated in the tail region, exhibiting an abrupt peak in the values. The phase

lag (F(x))COT exhibits similar behavior to (F(x))U, with muscles in the caudal region produc-

ing mostly negative work (braking). The anterior regions for small COT-optimal organisms,

where muscles do almost no net work ((F(x))COT� 90˚), are of little importance since m̂ << 1

there.

Fig 7. Muscle activation envelope across the scales for select optimal representatives from the Pareto front. The fill

color represents the corresponding phase lag F(x). The top row corresponds to ðm̂ðxÞÞU , the bottom one to ðm̂ðxÞÞCOT,

while the middle row ðm̂ðxÞÞp corresponds to optimal organisms from the middle of the Pareto front, like in Fig 6.

https://doi.org/10.1371/journal.pcbi.1007387.g007
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Discussion

The presented results, obtained by extensive computational simulations based on a coupled

muscle-structural-hydrodynamic model, offer a comprehensive look into the undulatory swim-

ming energetics, both within a swimming body and across the scales. Such a coupled analysis

has not been reported in the literature, and we argue that without understanding the dynamics

of both the muscle behavior and the surrounding flow, we cannot fully understand the dynamics

of swimming and the evolutionary trade-offs that might have taken place in fish and cetaceans.

To that end, we have provided a deeper analysis of our muscle model (first introduced in [30])

that is an integral part of our framework, and introduced the concept of a force loop (Fig 2). Our

results provide further confirmation that the optimization of swimming organisms with respect

to the maximization of the sustained swimming speed U and the minimization of the cost of

transport COT—two conflicting, evolutionary important performance measures—leads to opti-

mal populations that have energetic characteristics similar to those found in nature. The conflict-

ing nature of the performance measures contributes to the diversity of obtained behavior.

We limit the discussion to sustained, continuous undulatory swimming alone. Some fish at

certain swimming speeds employ intermittent propulsion, where a short burst of undulatory

motion is periodically followed by a stretched-straight, no-power coasting phase [37]. There

are indications that this burst-and-coast swimming could lead to energetic savings over the

continuous undulatory swimming [38, 39]. However, since it is (predominantly) powered by

white, anaerobic muscle [40, 41], and the periodic acceleration/deceleration requires a more

elaborate hydrodynamic model, the analysis of such swimming motion is outside the scope of

this work.

In the following, we discuss the three main conclusions that can be drawn from our results.

These conclusions provide a new insight into swimming energetics or challenge the established

understanding of it. We primarily focus on the nature of energetic quantities and the relation-

ships between them, as we have shown in the previous section that the absolute values of our

results generally match the empirical measurements.

Conclusion 1. The muscle efficiency and power output are not maximized

in optimal swimmers

Swimming at the maximum sustained speed U was often related to the condition of producing

the maximum power per muscle mass ψ [8, 42]. Later work-loop studies offered indications

that this might not be the case [6, 7, 43], but the issue is still not conclusively resolved [15, 44].

Similarly, minimum-COT swimming was postulated to be related to the maximum of hydro-

dynamic efficiency [45, 46] or of muscle efficiency [3, 6]. Our results suggest, however, that

neither of these conjectures may hold for U-optimal and COT-optimal swimmers.

Consider U-optimal swimmers first. A swimmer is increasing its swimming speed by

increasing the tail-beat frequency ω. As the contraction velocity amplitude v̂ is proportional to

ω (Eq (2)), U-optimal swimmers strive to achieve as high v̂ as possible. The maximum value of

v̂ that a swimmer can achieve is limited by the ability of its muscles to produce force. For a

given v̂, the maximum force can be exerted if the contraction velocity and the required muscle

force are in phase (pure power mode, F = 0). In swimming, the hydrodynamic forces increase

with v̂ (increase in ω and U), while the maximum muscle force is a decreasing function of v̂.

Thus, the maximum sustained swimming speed (U)U is governed by the maximum amplitude ~v
of the contraction velocity, at which the balance of muscle and hydrodynamic forces is possible
with a fully employed muscle ðm̂ ¼ 1Þ operating in the pure power mode (F = 0). As long as

the muscles can provide the required force at the given ~v, the average power production (or

consumption) is irrelevant for sustained aerobic swimming because it can be continuously
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supplied. For realistic muscle fibers, our results show that the maximum value of v̂r where this

balance holds is below ~vZmr (and, thus, below ~vPr ) for U-optimal swimmers, Fig 6C, so the mus-

cles are operating in the monotonically increasing region of maxðcÞ � v̂r and Zm � v̂r relation-

ships (Fig 2G and 2H). As a consequence, all U-optimal swimmers have the highest total

power output P and muscle efficiency ηM among the optimal populations, but they do not

reach the maximum attainable values. Swimmers with near-maximum power output have

been empirically observed in nature; for example, carp swim with maximum sustained speed

by contracting their red muscle fibers with slightly lower velocity than ~vPr [18]. The contraction

velocities that result in near-maximum power output and efficiency that were found in these

fish were the likely reason for relating the maximum sustained swimming speed with the maxi-

mum of power production.

Could a U-optimal organism swimming at (U)U operate its muscles in a regime far from

that where the power production per muscle mass ψ (or efficiency ηm) is maximized? Gener-

ally, the answer is yes. To illustrate, consider the effect of replacing the existing muscle fibers

with slower ones, i.e. those whose maximum contraction velocity v0max is lower than vmax of the

presently selected fibers; the corresponding dimensional peak-power-output contraction

velocities are vP � ~vPr � vmax and v0P � ~vPr � v0max. In order for a swimmer to achieve the same

swimming speed (U)U when powered by different muscle fibers, the force provided by the

muscles at every cross section has to remain the same for the given amplitude of contraction

velocity ~v, regardless of the change in muscle fibers, Fig 8A. At a characteristic cross section, in

order produce the required force with slower fibers v0max < vmax, the muscle cross section area

has to increase (A0m > Am), Fig 8B. Depending on the contraction velocity ~v relative to the vP

of the original fibers and the relative change in v0max, the resultant operating regime can be

Fig 8. Effect of changing maximum contraction velocity vmax. Consider fiber types I and II with maximum contraction

velocities vmax and v0max and the corresponding peak-power-output velocities vP and v0P. (A) The muscle force amplitude

F̂m (thin lines) and the maximum mechanical power output per muscle mass max(ψ) (thick lines) as a function of the

amplitude of contraction velocity v̂ for fiber types I (blue) and II (green). The required force to overcome hydrodynamic

loading is marked in dashed magenta line. The operating amplitude of contraction velocity ~v and the required amplitude

of muscle force (to balance the hydrodynamic loading) are marked in dashed red lines. For B and C, consider a range of

v0max for fiber II and corresponding v0P. The line colors correspond to the different operating contraction velocities ~v
(relative to fiber I). (B) The required change in the cross-section area A0m of a muscle of type-II fibers to achieve the same

muscle force F̂m. (C) The ratio between ~v and v0P if type-II fibers are used. For ~v=v0P > 1, the muscle is operating at

contraction velocities larger than that for maximum ψ. The gray region marks the unphysical cases (~v > v0max).

https://doi.org/10.1371/journal.pcbi.1007387.g008
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significantly sub-optimal, from the standpoint of max ψ (the total power output �p remains

constant). The operating regime can even be in the monotonically decreasing range of the

maxðcÞ � v̂r relationship, i.e. for ~v > v0P, Fig 8C. This provides further evidence that maximiz-

ing ψ is decoupled from maximizing U because, in this regime, increasing U (i.e. increasing v̂r)
decreases ψ. The same holds for muscle efficiency ηm. Such a condition is not only theoretically

possible, but it also seems realistic. For example, to maintain the same optimal (U)U using 60%

slower muscle fibers (in our case this means v0max ¼ 3 lengths=s), a characteristic cross section

originally operating with ðv̂rÞU � 0:24, i.e. ~v=vP � 0:8, will now operate with v̂ 0r > ~vPr and will

require less than twice as large muscle cross section to achieve this, Fig 8B and 8C.

Our results also show that the departure from the established conjectures is perhaps even

more striking for COT-optimal swimmers. Despite consuming the least amount of energy,

COT-optimal swimmers exhibit the minimum muscle efficiency ηM among the optimal popu-

lations P, Fig 5B. This, however, is no surprise. The reason for this behavior lies in the fact

that COT-optimal swimmers achieve the lowest U among the optimal populations, as COT

and U are conflicting objectives. As U / v̂r, they also swim with the lowest v̂r among P (see

Fig 6C and [30]). As ηm is monotonically increasing function for v̂r < ~vZmr , Fig 2G and 2H, for

a characteristic cross section it will generally be the lowest for COT-optimal swimmers. As a

result, COT-optimal swimmers also exhibit the lowest ηM among the optimal populations.

More importantly, this illustrates that efficiencies, being a ratio of powers, are not a good indi-

cator of optimality of COT when neither input nor output powers are prescribed, as is the case

in this work—or, in fact, in nature. Even more questionable is correlating the minimum of

COT primarily with a maximum of hydrodynamic efficiency [45, 46] (usually related to the

flow structure of oscillating foils [47, 48]), while ignoring the underlying energy consumption

of the prime mover. Our results show that the hydrodynamic efficiency is neither consistently

maximum nor minimum among the optimal populations P(m).

Conclusion 2. The muscle efficiency decreases with swimmer size

In contrast to the increase in efficiency with size in flying and running animals [17], our results

indicate that the same is not true in swimming. While larger organisms are generally better

than the smaller ones in terms of COT as it is decreasing with body size for all organisms and

all types of locomotion, the muscle efficiency ηM is consistently decreasing with body size, Fig

5A and 5B. As a result, the total efficiency ηT also decreases with m (for (ηT)COT), or is roughly

constant at best (say for (ηT)U). To summarize, despite the decrease in the cost of transport

COT with the increase in m, the efficiency of converting the metabolic energy into work is,

surprisingly, decreasing.

The decrease in ηM with m stems from the fact that ðv̂rÞopt is decreasing with m,

(Fig 6C; also see Supplementary Information of [30]), thus lowering ηm along the body

(see Fig 2H). Here, (�)opt is a value corresponding to either U-optimal or COT-optimal

organisms. The decrease in ðv̂rÞopt is mainly driven by the decrease in (ω)opt with m as

ðv̂rÞopt / ðoÞopt � ðB=LÞopt � ðhT=LÞopt, and (B/L)opt × (hT/L)opt does not show appreciable

scaling with m (see [30]). From a broader evolutionary perspective, it is still beneficial to be

larger, since COT is a much more important energetic measure than efficiency [2, 17].

Conclusion 3. Disparate longitudinal power output distributions can be

reconciled by relating them to different optimization objectives

Our results indicate that both anterior-dominant and posterior-dominant longitudinal distri-

butions of the average power output �pðxÞ are possible in optimal swimmers, depending on
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which objective is optimized, Fig 6. This offers an explanation for the conflicting reports [6, 7,

11, 13–16, 49] on the character of �pðxÞ.
The longitudinal distribution of the average mechanical power output �pðxÞ of U-optimal

organisms across the scales is consistently maximum in the anterior part of the body, accom-

panied by nearly maximum muscle efficiency ηm(x) in that region (except for the largest

organisms). Such results are very similar to those obtained from mathematical modeling of red

muscles [11] and empirical measurements [12, 49]. To achieve high power output, the muscles

are almost fully employed (ðm̂ðxÞÞU � 1) and the phase lag (F(x))U is predominantly small, Fig

7. Close-to-optimal efficiency of power production (ηm)U is achieved for smaller organisms

since ðv̂rðxÞÞU is close to ~vZmr in the anterior region, Fig 6C. In contrast, the anterior muscles of

COT-optimal organism barely produce any power (ðm̂ÞCOT << 1, (F(x))COT� 90˚), with most

of the mechanical power coming from the posterior muscles, as empirically found [7, 44].

Thus, the COT-optimal and U-optimal swimmers exhibit distinctly different power pro-

duction distributions, whose characteristics are almost independent of the change in the body

shape and size. Both of these distributions seem to have counterparts in the real world. Note

that a real organism might be neither U-optimal nor COT-optimal; it might be similar to some

other optimal swimmer from the optimal population, i.e. the Pareto front, and its the perfor-

mance could be a mix of the two extremes (e.g. see Fig 6).

While the previous conclusions provided a new perspective on and a potential resolution of

some of the outstanding controversies in swimming energetics, our results also provide addi-

tional evidence for the well established theory that some fish use passive elements such as ten-

dons instead of muscles in the caudal peduncle area to transfer power to the tail [14, 49, 50].

The results of the longitudinal distribution of the muscle activation fraction amplitude m̂ðxÞ
and phase lag F(x) support the notion that the muscles in the caudal peduncle can be effec-

tively replaced by tendons. In general, the muscles in the tail section of optimal swimmers are

considerably employed (μ(x)� 1), but the phase lag F(x) ≳ 90˚ (Fig 7) indicates that the mus-

cles are either doing no net work or that they are used for braking. Introducing additional pas-

sive elastic elements of increased stiffness (e.g. tendons) instead of muscles in this region

would provide the necessary force at no metabolic energy cost as all the elastic energy can be

recovered, thus lowering the energetic expense of swimming. (Such a swimmer can be mod-

eled within our framework by either prescribing or optimizing the lengthwise distribution of

stiffness and muscle cross-section area.) The muscles in the rest of the body would then be pro-

ducing purely positive power (especially for smaller body sizes).

The results presented here reinforce the findings on the shape, motion and kinematic char-

acteristics of the optimal populations [30], and the favorable comparison with a range of differ-

ent empirical measurements lends further validity to our overall framework and to the muscle

model in particular. This study shows that swimming at realistic speeds and energy expendi-

tures is possible with the available muscle, thus providing another nail in the coffin of Gray’s

paradox.

Models

Hydrodynamic model

We employ the classic Lighthill slender-body theory [31], which holds for small-amplitude

undulatory motion and for high Reynolds numbers Re. Both of these assumptions are satisfied

for the model swimmers we consider in this study. The distributed hydrodynamic lateral force

on a slender body is FLðx; tÞ ¼ DðmaðxÞDĥðx; tÞÞ, where D � @t þ U@x is the material deriva-

tive and ma(x) the cross-sectional added mass. Here, ĥðx; tÞ ¼ hðx; tÞ þ y0ðtÞ þ x φðtÞ is the
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total deflection of the body, composed of the undulatory motion h(x, t), the lateral recoil y0(t)
and the angular recoil φ(t), Fig 1C. The unknown rigid-body recoil is determined from the lat-

eral force and moment balance equations.

The balance of time-averaged in-line forces (forward pointing thrust FT and backward drag

force FD) determines the steady-swimming speed U. For Lighthill’s slender-body model, the

average thrust can be obtained analytically [31]. The drag force, not being tractable within the

potential flow framework, is expressed as FD ¼ 0:5rU2SCD, where S is the wetted surface of

the body. The drag coefficient CD is determined from an empirical formula [51]

CDðRe; shapeÞ ¼ Cf ðReÞð1þ 1:5D1:5
L þ 7:0D3

LÞ

Cf ðReÞ ¼
1:33Re� 0:5; Re � Recr

0:072Re� 0:2; Re > Recr

8
<

:
;

ð8Þ

where Recr = 5.0 � 105 is the critical Reynolds number and DL� D/L.

The total power delivered to the fluid is PH ¼ I ½FLðx; tÞ@tĥ�, where

I ½�� � 1=T
R T

0

R L
0
ð�Þ dx dt. The hydrodynamic efficiency is then ZH � FTU=PH .

Note on the validity of the hydrodynamic model. Today, when state-of-the-art compu-

tational fluid dynamics (CFD) studies offer an unprecedented look into the flow around a

swimming body [20–22, 52], one could question the validity of using a simple, slender-body

potential flow hydrodynamic model [31] and empirical formulas for drag that we use in this

work. Due to the large range of Reynolds numbers Re and the extensive computational scope

of this study, we seek fast models that capture the most important flow characteristics (such as

inertial effects and the transition from the laminar flow to turbulent) in the given Re range.

To obtain the results presented in this work required O(107) simulations of different swim-

mers using different undulatory motion, over a large range of Reynolds numbers (Re* 104–

108). As a comparison, to perform a simulation for a single swimmer and a given undulatory

motion using CFD methods would require tens, if not hundreds, of processor-hours, render-

ing the overall computational study based on CFD methods infeasible. Furthermore, we are

mostly interested in the nature and scaling of the salient energetic quantities with the increase

in size (i.e. Re), rather than on the specific features of the flow around a particular swimmer.

As Re increases, CFD studies become computationally infeasible (currently limited to Re up to

O(104)), while the potential flow models become more and more valid (the flow around a

swimmer is becoming increasingly more similar to potential flow). This indicates that the scal-

ing of hydrodynamic forces with the increase in size (i.e. Re) is well captured by potential flow

models. Coupling a CFD model of a particular swimmer with our muscle model could offer a

more realistic view of the swimming energetics for that particular case and serve as an impor-

tant check of the results presented here (e.g. of the hydrodynamic efficiency ηH, Fig 5B). How-

ever, we believe that the overall energetic traits would follow those described in this work.

The Lighthill’s potential flow model [31] we use introduces two further assumptions—the

body needs to be slender and the amplitude of the motion small. Lighthill also developed a

large-amplitude motion elongated-body model that is more generally valid [53]. However,

since the resulting motion amplitude of all the swimmers in this work is small, this more gen-

eral method would not produce significantly different results than those presented here, but it

would result in an increased computational cost. Similarly, (semi-)analytic potential flow mod-

els of swimming that are valid for a certain types of body shapes come at an increased compu-

tational cost (e.g. Chopra’s theory for lunate tail propulsion [54, 55] would only be valid for

body shapes with a pronounced caudal peduncle), while not offering the generality needed for
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an optimization study where different shapes are involved. Thus, despite the simplicity of the

Lighthill’s model, the conclusions of this work should hold as they mainly refer to the nature

and scaling of the swimming energetics, rather than on the particular detailed features.

Structural model

The balance of the distributed internal forces and external hydrodynamic forces acting on a

swimming body is modeled using the Euler-Bernoulli beam equation [25]

rAðxÞ
@

2ĥ
@t2
þ
@

2

@x2
EIðxÞ

@
2ĥ
@x2

 !

þ
@

2

@x2
nbIðxÞ

@
3ĥ

@t@x2

 !

þ FL ¼ �
@

2M
@x2

; ð9Þ

where I(x) is the sectional moment of inertia. The above terms, corresponding respectively to

forces due to inertial, elastic, visco-elastic, and hydrodynamic effects are all balanced by the

bending moment M produced by muscles. Aggregate Young’s modulus E and visco-elastic

coefficient νb (which accounts for visco-elastic losses) correspond to the combined contribu-

tion at each cross section along the length from all the passive elements where elastic energy is

stored and dissipated during bending: elasticity and visco-elasticity of the spine, the skin, the

white muscle, and the inactive part of red muscles (assuming that the morphology of the

model swimmers is equivalent to that of fish).

The sectional bending moment M(x, t) is directly obtained from (9) for a given ĥðx; tÞ
which satisfies the necessary boundary conditions (@xxĥ ¼ 0, @xxxĥ ¼ 0) at both x = 0 and

x = L. The total power lost in overcoming internal visco-elastic losses can be expressed as

PV ¼ I ½nbIðxÞð@xxtĥÞ
2
�. Using the decomposition of the total power output into P = PH + PV,

we obtain the internal efficiency ηI as

ZI �
PH
P
¼

1

1þ PV=PH
: ð10Þ

Hill’s equations

We assume that the contraction force Ff of a muscle fiber is a function of fiber contraction

speed v(x, t) only; it is described by Hill’s model [33] as

Ff
F0

¼

1:8 � 0:8
1þ vr

1 � 7:56G vr
; � 1 � vr < 0

1 � vr
1þ G vr

; 0 � vr � 1

8
>>><

>>>:

: ð11Þ

We take G = 4, following [33]. We assume that the metabolic power consumed per fiber Qf is

also a function of v only, given by Hill’s model [33]

Qf

F0 vmax
¼

0:01 � 0:11vr þ 0:06 expð23vrÞ; � 1 � vr < 0

0:23 � 0:16 expð� 8vrÞ; 0 � vr � 1

(

: ð12Þ

Optimization setup

The body shape and motion are parameterized in such a way to allow the description of very

different distributions with a relatively small number of parameters, while satisfying the

motion feasibility and shape integrity conditions. The shape is parameterized by using the
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coefficients of a series of shape functions designed specifically for this purpose. The motion

envelope is parameterized using the coefficients of a Chebyshev series. The body wavelength

λb = L is kept constant. As we do not focus on shape or motion aspects of optimal organisms

in this text, we refer the reader to [30] for more details.

Optimization is conducted for organisms of mass m = a10b, with log a = 0, 1/4, 1/2, 3/4 and

b = −3, . . ., 6. We use a multi-objective covariance matrix adaptation evolutionary strategy

(MO-CMA-ES), with default parameters. MO-CMA-ES is a stochastic, derivative-free optimi-

zation method where the new candidate solutions are sampled from a multi-dimensional nor-

mal distribution, whose covariance matrix is evolved through optimization iterations [36, 56,

57]. The resulting algorithm is quasi parameter-free. For every m, an initial randomly gener-

ated feasible population of 500 individuals is evolved through 500 generations. The optimiza-

tion converges in all cases, and the bounds imposed on the variables are never active in the

final population.

Assumed body/muscle/fluid properties

For simplicity, in all our calculations muscle and tissue properties are taken as length and size

independent, but characteristic for fish (red fiber isometric force F0 = 150 kN/m2, vmax = 5

lengths/s [58], E = 105 N/m2, νb = 104 m2/s [25, 26, 29], μ0 = 0.1 [16]). The standard metabolic

rate used here is Ps = 0.1327m0.80 [W] [59]. Fresh water properties are used throughout (ρ =

103 kg/m3, ν = 10−6 m2/s). The missing mass measurements in the empirical data presented in

Figs 4B and 5A are supplied from m − L allometric expression (m = 12.62L3.11) obtained from

fish data [4].
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