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We introduce a new nonparametric outlier detection method for linear series, which requires no missing or removed data
imputation. For an arithmetic progression (a series without outliers) with 𝑛 elements, the ratio (𝑅) of the sum of the minimum
and the maximum elements and the sum of all elements is always 2/𝑛 : (0, 1]. 𝑅 ̸= 2/𝑛 always implies the existence of outliers.
Usually, 𝑅 < 2/𝑛 implies that the minimum is an outlier, and 𝑅 > 2/𝑛 implies that the maximum is an outlier. Based upon this,
we derived a new method for identifying significant and nonsignificant outliers, separately. Two different techniques were used
to manage missing data and removed outliers: (1) recalculate the terms after (or before) the removed or missing element while
maintaining the initial angle in relation to a certain point or (2) transform data into a constant value, which is not affected by
missing or removed elements. With a reference element, which was not an outlier, the method detected all outliers from data sets
with 6 to 1000 elements containing 50% outliers which deviated by a factor of ±1.0𝑒 − 2 to ±1.0𝑒 + 2 from the correct value.

1. Introduction

Outlier detection and management of missing data are the
two major steps in the data cleaning/cleansing process [1–
3]. For achieving a training set, data mining, and statistical
analyses, it is very important to have data sets that have no
(or as few as possible) outliers and missing values. Except for
model-based approaches, outlier detection and replacing of
detected outliers or replacing missing values are two separate
processes.

The existing outlier detection methods are based on
statistical, distance, density, distribution, depth, clustering,
angle, and model approaches [1, 4–7]. The nonparametric
outlier detection methods are independent of the model. For
the data without prior knowledge, nonparametric methods
are known as a better solution than the statistical (parametric)
methods [8–10]. The most common nonparametric methods
are based on distance, density, depth, cluster, angle, and res-
olution techniques. Among various methods/techniques are
least square method (LSM) [4] and the sigma filter [11] which

have been used frequently to remove the outliers of linear
regression. These methods require data in Gaussian or near
Gaussian distribution, which cannot be always guaranteed. If
the correct model can be identified, model-based approaches
like the Kalman filter [12–14] are suitable for removing and
replacing outliers. However, if it is not possible to identify the
correct model, the model-based approach is not feasible [15].

In addition to the noise, missing data is another challenge
in the data cleaning/cleansing process. Even if the original
data set is without missing elements, removing outliers
(without replacement) automatically creates a missing data
environment. The most common two techniques to recover
this situation are (1) filling themissing data with an estimated
value (filling) or (2) using the data without missing val-
ues (reject missing values). Complete-case analysis (listwise
deletion) and available-case analysis (pairwise deletion) are
the most common missing data rejection methods [16–18].
The mentioned methods are under the assumption that they
yield unbiased results. Among the different missing data
filling methods hot deck, cold deck, mean, median, k-nearest
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neighbours, model-based methods, maximum likelihood
methods, and multiple imputation are the most common
methods [18–22]. Filling methods derive the filling value
from the same or other known existing data. If there are a
considerable number of outliers, derived data may be biased
due to the influence of outliers [23, 24]. Therefore, the best
way is to remove all outliers and replace the outliers with a
suitable method.

In this paper, we introduce a new nonparametric outlier
detection method based on sum of arithmetic progression,
which used an indicator 2/𝑛, where 𝑛 is the number of terms
in the series. The properties used in existing nonparametric
methods such as distance, density, depth, cluster, angle, and
resolution are domain dependent. In contrast, the value 2/𝑛,
which we used in our new method, is independent of the
domain conditions.

Contrary to the existing nonparametric methods men-
tioned earlier this work addressed identifying outliers in a
dataset that is expected to have linear relation.Themethod is
capable of identifying significant and nonsignificant outliers,
separately. Moreover, until all the outliers were removed,
the new method requires no missing or removed data
imputation. This will eliminate the negative influence due
to wrongly filled data points. This is an advantage over the
methods, which require filling the removed data points. The
outlier detection method we introduced showed its best per-
formances when the significant outliers are in non-Gaussian
distribution.This is an advantage over existing methods such
as LMS and sigma filter. The method uses a single data point
as a reference data point.The reference point is assumed to be
nonoutlier. Therefore, accuracy of the outcome is depending
on the reference point, especially when locating nonsignifi-
cant outliers. If the selected reference point is not an outlier,
the method was capable of locating outliers from a data set
containing very high rate of outliers, such as 50% outliers.

In this work, data from biogas plants were used for
evaluating the new method. Since the biogas process is
very sensitive, these data contain a considerable amount of
noise even during apparently stable conditions.This provides
suitable data set for evaluating our method. We were able to
get the best outlier-freemacroscale data set which agrees with
linear (increasing, decreasing, or constant) regression from
selected segments of a data set.

2. Methodology

2.1. Arithmetic Progression. An arithmetic progression (AP)
or arithmetic sequence is a sequence of numbers (ascending,
descending, or constant) such that the difference between the
successive terms is constant [25]. The 𝑛th term of a finite AP
with 𝑛 elements is given by

𝑎
𝑛
= 𝑑 (𝑛 − 1) + 𝑎

1
, (1)

where 𝑑 is the common difference of successivemembers and
𝑎
1
is the first element of the series. The sum of the elements

of a finite AP with 𝑛 elements is given by

𝑆
𝑛
= (

𝑛

2

) ∗ (𝑎
1
+ 𝑎
𝑛
) , (2)

Table 1: Sample calculations for illustrating the relation between 2/n
and (𝑎

1
+ 𝑎
𝑛
)/𝑆
𝑛
.

𝑎
𝑛

Data set 1 Data set 2 Data set 3 Data set 4 Data set 5
𝑎
1

100 100 100 99.99 1
𝑎
2

101 101 101 101 101
𝑎
3

102 102 102 102 102
𝑎
4

103 103 103 103 103
𝑎
5

104 104.01 204 104 104
(𝑎
1
+ 𝑎
5
)/𝑆
5

0.4 0.40001 0.498 0.399 0.255
2/𝑛 0.4 0.4 0.4 0.4 0.4
Outlier? — Yes-𝑎

5
Yes-𝑎
5

Yes-𝑎
1

Yes-𝑎
1

where a1 is the first element and an is the last element of the
series.

Equation (1) is a 𝑓(𝑛) and fulfils the requirements of a
line. In other words, finite AP is a straight line. In addition, a
straight line is a series without outliers. If there are outliers,
the series is not a finite AP. Therefore, any arithmetic series
that fulfils the requirements of an AP can be considered a
series without outliers. Equation (2) can be represented as

2

𝑛

=

(𝑎
1
+ 𝑎
𝑛
)

𝑆
𝑛

; ∞ > 𝑛 ≥ 2, 0 <

2

𝑛

≤ 1. (3)

For any AP, the right-hand side (RHS) of (3) is always 2/𝑛,
which is independent of the terms of the series. In other
words, if there are no outliers, the value (𝑎

1
+𝑎
𝑛
)/𝑆
𝑛
will always

be equal to 2/𝑛. If the RHS of (3) is not 2/𝑛, it always implies
that the series contains outliers. Therefore, the value 2/𝑛 can
be used as a global indicator to identify any AP with outliers.

Since we use the relation of AP, we define that elements
lying on or between two lines (linear border) are nonoutliers,
and others are outliers. When the distance between two
lines is zero, they represent a single line. In relation to the
method presented in this paper, the term nonoutlier implies
an element that lies within a certain linear border, and the
term outlier implies an element that does not lie within the
linear border.

Primary investigations showed that themethod is capable
of not only indicating the existence of outliers but also
locating the outlier. (𝑎

1
+ 𝑎
𝑛
)/𝑆
𝑛

< 2/𝑛 indicates that the
maximum element is the outlier. (𝑎

1
+ 𝑎
𝑛
)/𝑆
𝑛
< 2/𝑛 indicates

that the minimum element is the outlier. However, (𝑎
1
+

𝑎
𝑛
)/𝑆
𝑛

= 2/𝑛 does not imply that the series is free of
outliers. Furthermore, primary investigations showed that
the method is capable of locating both large and small
outliers. Table 1 shows sample calculations for illustrating the
relation between 2/𝑛 and (𝑎

1
+ 𝑎
𝑛
)/𝑆
𝑛
.

As a principle, the relation of (3) is capable of identi-
fying and locating the outliers. However, we found seven
drawbacks, which made relation (3) unusable for identifying
outliers in actual data. In Sections 2.1 to 2.7, we address the
challenges for making the relation usable.

2.2. Challenge 1: Notation of the Equation. The symbols used
in (3), especially 𝑎

1
, 𝑎
𝑛
, create a logical barrier. For example,

if there are outliers, the minimum and the maximum can be
other elements rather than 𝑎

1
, 𝑎
𝑛
. Therefore, it is necessary
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0 12/n = no outliers

Figure 1: Distribution of criteria range (0, 1].

to use meaningful symbols that reflect the purpose of the
method. The first and the last elements are either the mini-
mum or the maximum. Therefore, it is possible to replace a1
and 𝑎

𝑛
by the minimum (𝑎min) and the maximum (𝑎max) of

the series. Then (3) can be represented as

2

𝑛

=

(𝑎min + 𝑎max)

𝑆
𝑛

. (4)

Since the RHS of (4) consists of minimum, maximum, and
sum of the series, RHS was namedMMSwith the meaning of
minimum, maximum, and sum:

MMS =

(𝑎min + 𝑎max)

𝑆
𝑛

. (5)

2.3. Challenge 2: Set a Range for the Outlier Detection
Criterion. According to (3), outlier detection criterion is 2/𝑛
and can be used to check the elements that exactly agree with
a line (Figure 1). To identify elements in a certain range, it is
necessary to have a criteria range rather than a single value
2/𝑛.

The left-hand side of (4) is the ratio 2 : n and named as Rw
by adding a weight “w” to “R.” Then,

𝑅
𝑤

=

2

𝑛

+ 𝑤; 0 ≤ 𝑤 ≤ 1 −

2

𝑛

. (6)

The status 𝑤 = 0 (𝑅
0
) represents a single line, and w >

0 represents a line with a certain width (linear border).
The outlier criteria range is a range with both floor (0)

and ceiling (1), and standardization is not required. This
is an additional advantage over the most common average,
variance, and slandered deviation based approaches, which
require a separate standardization process.

2.4. Challenge 3: Influence of Negative Values. Due to negative
values, the numerator or both the numerator and the denomi-
nator of RHS of (5) can be 0 (e.g.,−4, −1, 0, 1, 4), evenwithout
outliers. When there are outliers, RHS of (5) can be negative,
which cannot be accepted as valid values for 2/𝑛, 0 < 2/𝑛 ≤ 1,
must always hold.

Subtracting the first element (𝑎
𝑖 new = 𝑎

𝑖
− 𝑎min) from

each element of any AP creates a new transformed AP where
𝑎min = 0 and guarantees a series without negative values.
From (5) and 𝑎

𝑖 new = 𝑎
𝑖
− 𝑎min, (7) is derived, which is

more robust. Another advantage of (7) is that it performs the
transformation, automatically:

MMS =

((𝑎min − 𝑎min) + (𝑎max − 𝑎min))

∑
𝑛

𝑖=1
(𝑎
𝑖
− 𝑎min)

,

MMS =

(𝑎max − 𝑎min)

(𝑆
𝑛
− 𝑎min ∗ 𝑛)

.

(7)

2.5. Challenge 4: Uneven Distribution of Criteria Range. The
ranges (0, 2/𝑛) and (2/𝑛, 1] are to identify outliers, which
areminimums andmaximums, respectively (Figure 1).When
𝑛 → ∞ and 𝑅

0
→ 0, then 𝑅

𝑤
: (0, 1] is not equally

distributed, which provides a large range for maximum
outliers and a small range for minimum outliers. This is a
problem when locating minimum outliers.

To solve this, we used the idea of complement. For
any series, this will convert the maximum value into the
minimum, theminimum value into themaximum, and inter-
mediate values into their complements. Most importantly,
now the minimum value represents the maximum value of
the original series and vice versa, while still representing the
original series. The complement of an element in a series
can be defined as 𝑎

𝑖 𝑐
= (𝑎max + 𝑎min) − 𝑎

𝑖
. From (5) and

𝑎
𝑖 𝑐

= (𝑎max + 𝑎min) − 𝑎
𝑖
this gives

MMS =

((𝑎max + 𝑎min − 𝑎max) + (𝑎max + 𝑎min − 𝑎min))

∑
𝑛

𝑖=1
(𝑎max + 𝑎min − 𝑎

𝑖
)

,

MMS =

((𝑎min) + (𝑎max))

∑
𝑛

𝑖=1
(𝑎max + 𝑎min − 𝑎

𝑖
)

.

(8)

Apply 𝑎
𝑖 new = 𝑎

𝑖
− 𝑎min (to remove effect from negative

values):

MMS =

((𝑎min − 𝑎min) + (𝑎max − 𝑎min))

∑
𝑛

𝑖=1
((𝑎max − 𝑎min) + (𝑎min − 𝑎min) − (𝑎

𝑖
− 𝑎min))

,

MMS =

(𝑎max − 𝑎min)

∑
𝑛

𝑖=1
(𝑎max − 𝑎

𝑖
)

,

MMS =

(𝑎max − 𝑎min)

(𝑎max ∗ 𝑛 − 𝑆
𝑛
)

.

(9)

Consequently, the range 𝑅
0

> 2/𝑛 represents the range for
minimum outliers related to the original series and vice versa
(Figure 2), and it is possible to ignore the range (0, 2/𝑛). In
addition, (9) automatically performs the transformation.

Now there are two equations for MMS, (7) and (9), to
check whether the maximum or the minimum of the series
is an outlier. We named the two versions of MMS asMMSmax
(10) and MMSmin (11)

MMSmax =

(𝑎max − 𝑎min)

(𝑆
𝑛
− 𝑎min ∗ 𝑛)

, (10)

MMSmin =

(𝑎max − 𝑎min)

(𝑎max ∗ 𝑛 − 𝑆
𝑛
)

. (11)
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Table 2: Sample calculations for illustrating the relation between 2/n
and MMSmax and MMSmin.

𝑎
𝑛

Data set 1 Data set 2 Data set 3 Data set 4 Data set 5
𝑎
1

100 100 100 99.99 1
𝑎
2

101 101 101 101 101
𝑎
3

102 102 102 102 102
𝑎
4

103 103 103 103 103
𝑎
5

104 104.01 204 104 104
MMS (Max) 0.4 0.401 0.945 0.399 0.254
MMS (Min) 0.4 0.399 0.254 0.401 0.945
2/𝑛 0.4 0.4 0.4 0.4 0.4
Outlier? — Yes-Max Yes-Max Yes-Min Yes-Min

Maximum outliersMinimum outliers

Minimum
outliers

Maximum outliers
(represent the minimum outliers of original series)

Rw for original series

Rw for complement series

R0 = 2/n
0

1

Figure 2: Range of𝑅
𝑤
for original series and complement of original

series.

The following equation shows the overview of the MMS
process:

−
or

MMSmax

=
amax − amin
Sn − amin ∗ n

maximum is the outlier

MMSmin

=
amax − amin
amax ∗ n − Sn

minimum is the outlier

{

{

{)))
)

))
))

)))

}
}

}

>(( 2
n
) + w1);

≤(( 2
n
) + w1)

≤(( 2
n
) + w1)

>(( 2
n
) + w1);

{

{

{)))
)))
))

(12)

and Table 2 shows sample calculations using (10) and (11) for
the same data sets in Table 1.

2.6. Challenge 5: How to Deal with Removed Outliers/Missing
Values. In a series, there can be initial missing values. In
addition, if there is no replacement after removing an outlier
it also creates a missing value environment. If there is no
filling, it would transform the elements after the element is
removed into another value and destroy the original relation-
ship of elements (Figure 3).These transformed values become
outliers in relation to the original data. Therefore, for using

the relation of AP, it is compulsory to maintain the original
relation of the data even after removing an outlier. Thus, any
rejection technique is not feasible. To maintain the original
relation, one possible way is replacing the missing value.
However, the data we are considering contain a considerable
amount of outliers. Therefore, we cannot guarantee that an
element derived from existing elements is not an outlier.

To overcome this problem, we considered two different
options: (1) recalculate only the data points after (or before)
the removed or missing element, thereby maintaining the
initial angle in relation to a certain point or (2) transform the
elements into a new series where the missing value has no
effect.

2.6.1. Recalculate the Data Points after (or before) Removed
and Missing Elements. If there is a missing element, the next
elements will be shifted horizontally and transformed into
wrong values in relation to the current index of the elements
(Figure 3). However, angular shifting will not introduce such
an error (Figure 3).

In Figure 4, the plot consists of elements a0 to 𝑎
𝑟+1

(𝑟 ∈ R+), and element ar at r needed to be removed. After
removing element r, element 𝑟+1 becomes element r, element
𝑟+2 becomes element 𝑟+1, and so on.However, shiftingwhile
maintaining the same anglewith respect to a certain reference
element (e.g., the first element), the same form of the series
can be maintained. Equation (13) shows the new value after
angular shifting.Weused this techniquewithMMSalgorithm
to recalculate the series after (or before) missing values or
removed elements:

𝐵
𝑟
𝑇
𝑟
= (

𝐵
𝑟+1

𝐶
𝑟+1

𝐴𝐵
𝑟+1

) ∗ 𝐴𝐵
𝑟
= (

(𝑎
𝑟+1

− 𝑎
0
)

(𝑟 + 1)

) ∗ 𝑟,

(𝑎
𝑟+1

)new = 𝑎
𝑜
+ 𝐵
𝑟
𝑇
𝑟
.

(13)

2.6.2. Transformation of Data to a Constant Value. A series
with a constant value (𝑦 = 𝑐 form, where c is a constant) is a
series that has no effect of missing values. Because of that, if
it is possible to transform any linear series to 𝑦 = 𝑐 form, the
transformed series is free of any effect ofmissing values. After
that, the transformed series can be used for outlier detection.

If yT is a linear series, where 𝑦
𝑇

𝑘
= 𝑦
𝑘
− 𝑦
1
, 𝑥𝑇
𝑘

= 𝑥
𝑘
− 𝑥
1
,

𝑥
𝑘
is the initial index of elements and yk is the 𝑘th element of

the series, 𝑘 = 1, 2, . . . , 𝑛. The gradient of the line (m) is given
by ∑
𝑛

𝑖=1
𝑦
𝑘
/∑
𝑛

𝑖=1
𝑥
𝑘
. If one element (e.g., the first element) is

(0, 0), this relation is always true even with missing values.
The element (0, 0) can be considered as the reference element.
The yT is a series with first element (0, 0) and m that can
be calculated even with missing values. Also, it is possible
to derive a new series as 𝑦

󸀠 where 𝑦
𝑘

= 𝑥
𝑘
∗ 𝑚. If there

are no outliers, both yT and 𝑦
󸀠 coincide and 𝑦

𝑇

− 𝑦
󸀠

= 0.
If 𝑦
𝑇𝑇

= 𝑦
𝑇

− 𝑦
󸀠, 𝑦𝑇𝑇 is in the form of 𝑦 = 𝑐 without

any influence from missing values. Therefore, this is another
method to overcome missing values without replacing them
(Figure 5).

2.7. Challenge 6: Locate Outliers That Are Neither the Max-
imum Nor the Minimum of the Series. When the outlier is
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0 r Index
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lu

e

Index

(b)

Figure 3: (a) Data set with an outlier at index r. (b) Value autotransformation effect after removing the outlier at index r without replacement,
where circle corresponds to elements after removing the outlier, red triangle corresponds to expected (correct) elements, and square
corresponds to initial values of the shifted elements after removing the outlier.

Table 3: “Bad Detection” identified wrong (minimum) element as
the outlier.

𝑎
𝑛

Data set 6
𝑎
1

100
𝑎
2

101 MMSmax 0.377
𝑎
3

102 MMSmin 0.425
𝑎
4

103.6 2/𝑛 0.4
𝑎
5

104 Outlier? Yes-Min

neither the maximum nor the minimum, MMS is unable to
locate the outlier (Table 3). We named this phenomenon as
“Bad Detection.” When Rw reaches “Bad Detection Level,”
MMS cannot be applied. To overcome this situation, we
introduced an improved version of MMS as enhanced MMS
(EMMS) based on the missing data imputation technique in
Section 2.6.2.

EMMS is expressed as

EMMSmax =

(𝑎
𝑇𝑇

max − 𝑎
𝑇𝑇

min)

(𝑆
𝑇𝑇

𝑛
− 𝑎
𝑇𝑇

min ∗ 𝑛)

; 𝑎
𝑇𝑇

max ⟨ ⟩ 0, (14)

EMMSmin =

(𝑎
𝑇𝑇

max − 𝑎
𝑇𝑇

min)

(𝑎
𝑇𝑇

max ∗ 𝑛 − 𝑆
𝑇𝑇

𝑛
)

; 𝑎
𝑇𝑇

max ⟨ ⟩ 0, (15)

where 𝑎
𝑇𝑇

𝑘
= |𝑎
𝑇

𝑘
− 𝑥
𝑘
(𝐺𝑎
𝑇

/𝐺𝑥)|, 𝑎𝑇
𝑘

= 𝑎
𝑘
− 𝑎
0
, xk is the index

of data, ak is the kth term of the series, 𝑘 = 0, 1, . . . , 𝑛 − 1, n is
the number of elements in current window, 𝐺𝑎

𝑇

= ∑
𝑛−1

𝑘=0
𝑎
𝑇

𝑘
,

𝐺𝑥 = ∑
𝑛−1

𝑘=0
𝑋
𝑘
, and 𝑆

𝑇𝑇

𝑛
= ∑
𝑛−1

𝑘=0
𝑎
𝑇𝑇

𝑘
⟨ ⟩0.

Remove

Va
lu

e

A
𝜃r+1

𝜃r+2

a0

ar−1

Tr

ar+1

Cr+1

Tr+1

ar ar+2

Br Br+1

r Index

Figure 4: Solution for value autotransformation phenomenon. Use
angular shifting instead of horizontal shift, where (×) corresponds
to horizontal shift and (✓) corresponds to angular shift.

Always the term 𝑎
𝑇𝑇

> 0. Thus, the term 𝑎
𝑇𝑇

min = 0. Then
(14) and (15) are simplified as

EMMSmax =

𝑎
𝑇𝑇

max
𝑆
𝑇𝑇

𝑛

; 𝑎
𝑇𝑇

max ⟨ ⟩ 0, (16)

EMMSmin =

𝑎
𝑇𝑇

max
(𝑎
𝑇𝑇

max ∗ 𝑛 − 𝑆
𝑇𝑇

𝑛
)

; 𝑎
𝑇𝑇

max ⟨ ⟩ 0. (17)

If there are outliers, EMMSmin > 2/𝑛 or EMMSmax > 2/𝑛

and the greater value represents the outlier. Table 4 shows
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Table 4: EMMS for identifying an outlier.
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Figure 5: Transformation of data to a constant value to overcome
the missing data problem, where red diamond corresponds to 𝑦 =
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an example calculation of EMMS and the following equation
shows an overview of EMMS process:

−or

maximum is the outlier

minimum is the outlier.
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However, EMMS uses derived information from existing
data. If there are biased values, it may lead to biased infor-
mation. Because of that, direct application of EMMS is not a
good practice. Hence, significant outliers should be removed
first using MMS, before applying EMMS.

Start

Consecutive
series

Recalculate

Outlier
detected

the series

Yes

Yes

No

Rw = 2/n ∗ (1 + k1)

use MMS

Outlier
detected

YesYes

NoNo

No

Apply

Stop

EMMS

use EMMS

∙ Remove the outlier
∙ n = n – 1

∙ Remove the outlier
∙ n = n – 1

∙ n = number of elements
∙ k = k2

∙ n = number of elements
∙ k = k1

Rw = 2/n ∗ (1 + k2)

Figure 6: Implementation of MMS and EMMS. Initially algorithm
checks for the significant outliers using MMS. After removing all
significant outliers, then remove the nonsignificant outliers using
EMMS. There is no removed data imputation in relation to both
MMS and EMMS.

2.8. Challenge 7: Determining of Outlier Detection Criteria
(𝑅
𝑤
). The value 𝑅

𝑤
is the factor that determines the outliers,

when 𝑤 = 0 (𝑅
0
= 2/𝑛) represents exactly a line and 𝑤 > 0

represents a linear border with certain width. In this section,
we propose several possible methods that can be used to
determine the outlier detection criteria.

2.8.1. Express the Value “𝑤” as𝑓(1/𝑛). If the valuew is𝑓(1/𝑛)

then 𝑤 = 2 ∗ 𝑘/𝑛; 𝑘 ≤ (𝑛/2) − 1; and 𝑘 ∈ R+. Then 𝑅
𝑤

=

2/𝑛 + 2 ∗ 𝑘/𝑛:

𝑅
𝑤

=

2

𝑛

∗ (1 + 𝑘) ,

𝑅
𝑤

𝑅
0

= 1 + 𝑘 (= constant) .
(19)

When the MMS or the EMMS is greater than 𝑅
𝑤
of (19), this

implies the existence of outliers. Because 𝑅
𝑤
/𝑅
0
is constant

and gives standards to 𝑅
𝑤
, determination of k still depends

on the knowledge of the domain. Figure 6 shows an algorithm
based on this technique.

2.8.2. When the First and the Last Items Are Nonoutliers.
In the total process, the “Bad Detection level” is the most
important criteria. If Rw of MMS is less than the “Bad
Detection Level” it is possible to identify nonoutliers as
outliers as mentioned in Section 2.7. If there is preknowledge
about outliers, it is possible to use a safe value for MMS.
Otherwise, there is no 100% guarantee on “Bad Detection
Level.”
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Table 5: Different environments used to validate the new method.

Type of the original dataset Number of elements Type of outliers Reference (first) element
is an outlier? Initial missing values?

Increment, constant, and
decrement. 10 to 1000 Non-Gaussian, Gaussian Yes, no Yes, no

Outlier
detected

First
or last term

Outlier
detected

First
or last term

Apply
EMMS

∙ Remove the outlier

Consecutive
series

Recalculate the
series

use MMS

use EMMS

Yes

Yes

Yes

Yes

No

No

No

No

Stop

No

Yes

Start

∙ Get window with the first and the last terms being
nonoutliers

Yes
No

∙ n = number of elements

∙ n = number of elements

∙ k = k1

∙ k = k2

∙ n = n – 1
∙ Remove the outlier
∙ n = n – 1

Rw = 2/n ∗ (1 + k1)

Rw = 2/n ∗ (1 + k2)

Figure 7: Outlier detection method including the “Bad Detection
Level” detection technique. The first and the last data points of the
window must be nonoutliers. If the first or the last element was
identified as an outlier, it will become a contradictory situation.
Thus, this point can be considered as the terminating point of MMS
and EMMS.

However, when the first and the last elements are not out-
liers, the “BadDetection Level” can be detected automatically.
If the first or the last element was identified as an outlier, it
will become a contradictory situation.Thus, this point can be
considered as the terminating point ofMMS and EMMS.The
decision diagram elaborated in Figure 7 expresses the new
outlier detectionmethod including the “BadDetection Level”
detection technique.

2.9. Validate the Method. We implemented the MMS (with
recalculation after an outlier is removed) and EMMS with
C++ and conducted the validation process. For the recalcu-
lation process, the existing first element of the window was
the reference element and always used the original value of
the element (not the current updated value of the element).
To validate themethod, we used artificial data sets of different

sizes (10 to 1000) of a line representing increasing, decreasing,
and constant line. Then 50% of items of those data sets were
replaced with very small and very large outliers (±1.0𝑒 − 2 to
±1.0𝑒 + 2 times of correct value). We checked the data sets
for all the environment combinations shown in Table 5. The
outlier detection criteria were determined based on (19). For
all data sets, the same k value was used (for MMS, 𝑘 = 0.5,
and for EMMS, 𝑘 = 0.01). Then the percentage of correctly
and falsely detected nonoutliers in relation to the number of
actual nonoutliers and the percentage of correctly and falsely
detected outliers from the total number of outliers (small and
large outliers) were determined.

2.10. Evaluation Using Real Data. To check the best linear
fitting identification capability, the algorithmwas tested using
several real data sets which were automatically recorded
with a frequency of twelve data points per day (i.e., every
other hour) from a biogas plant, over a period of seven
months. Among the different parameters, we selected the H

2

content measured in ppm, which we expected to maintain
linear behaviour during stable operation. We selected seven
segments of different size for evaluating the algorithm. In
some data sets, there were initial missing elements. We set
the 𝑅
𝑤
for MMS and EMMS by analysing the first and the

third data sets. For the recalculation process, the existing
first element of the window was the reference element, and
we always used the original value of the elements (not the
current updated value of the element).Then the percentage of
correctly falsely detected nonoutliers in relation to the total
number of nonoutliers and the percentage of correctly and
falsely detected outliers from the total number of outliers
(small and large outliers) were determined.

We decided to use the LSM, Sigma filter, and Grubb’s
test [26–29] also known as maximum normed residual test
or “extreme studentized deviate” (ESD) test to compare our
results. We selected Grubb’s test since it has nearly the same
formulation as our method. We checked all the biogas data
using abovementioned methods. We used each of the data
segments as a single window. First, we checked the ability
of each method to identify the general trend of the series.
Then,we checked the amount of correctly and falsely detected
outliers and nonoutliers for each method in relation to the
general trend.

3. Results and Discussion

Results related to validation show that when the reference
element (the first element) was not an outlier, the algorithm
was capable of identifying all outliers with 0% error despite of
the type of outliers (Gaussian or non-Gaussian) (Figure 8). If
the outliers were Gaussian, there were no significant outliers
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Figure 8: Outlier detection from data sets with ten elements. The first element is the reference element, which is not an outlier, where red
triangle corresponds to outliers detected by MMS, yellow circle corresponds to outliers detected by EMMS, and green square corresponds to
nonoutliers. Value of k for MMS and EMMS is 0.5 and 0.01, respectively. When the reference (first) element is not an outlier, the newmethod
is capable of locating all outliers. When the outliers are Gaussian, MMS automatically becomes inactive (now no significant outliers) ((d), (e),
(f)).

and MMS automatically became inactive (Figures 8(d), 8(e),
and 8(f)). When the first few elements were outliers and
outliers were non-Gaussian, MMS detected the significant
outliers correctly (Figures 9(a), 9(b), and 9(c)). However,
EMMSwas unable to locate the nonsignificant outliers, when
the first element for EMMS was an outlier (Figures 9(a) and

9(c)). If the reference element for EMMS was not an outlier,
it was still possible to achieve correct results (Figure 9(b)).
Though it was impossible to locate all nonoutliers, the
detected nonoutliers were 100% correct detections. These
values can be used to estimate the other values usingmethods
like LSM since now all the existing data are cleaned. In
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Figure 9: Outlier detection from data sets with ten elements.The first element is the reference element, which is an outlier, where red triangle
corresponds to outliers detected by MMS, yellow circle corresponds to outliers detected by EMMS, green square corresponds to nonoutliers,
and black arrow corresponds to wrong detections. Value of k for MMS and EMMS is 0.5 and 0.01, respectively. When the reference (first)
element is an outlier and outliers are non-Gaussian, the new method identifies only the significant outliers ((a), (b), (c)). When the outliers
are Gaussian, MMS automatically becomes inactive (now no significant outliers) ((d), (e), (f)).

general, it is fair to state that (1)when the reference element is
not an outlier, themethod is capable of identifying all outliers
and (2) when the first few elements of the series are outliers
and the outliers are non-Gaussian, the method is capable of
identifying only the significant outliers and part of correct
elements.

When the first few elements (reference elements for
both MMS and EMMS) were outliers and the outlier dis-
tribution was Gaussian, outlier detection was poor (Figures
9(d), 9(e), and 9(f)). Due to the Gaussian distribution of
outliers, MMS was inactive and it was not possible to identify
the large outliers. Most importantly, the results highlighted
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Figure 10: Two artificial data samples with 1000 elements each, including 50, 100, 100, and 50 (total 300) missing value regions. The first
element is the reference element, which is not an outlier, where (a) corresponds to a data set with outliers in non-Gaussian, (b) corresponds
to a data set with outliers in nearly Gaussian, red triangle corresponds to outliers detected by MMS, yellow circle corresponds to outliers
detected by EMMS, and green square corresponds to nonoutliers. The value of k for MMS and EMMS is 0.5 and 0.01, respectively. The new
method was able to identify all the elements related to the line with 0% error.

the importance of the reference element. If the reference
element forMMSandEMMSwas not an outlier, it guaranteed
good results despite of other factors.

In the methodology, we derived the method based on
the first element. However, it is also possible to use any
other element as reference point and modify the method.
We considered the simplest situation, where the first element
is not an outlier. Therefore, if it is possible to segment the
data excluding extreme outliers at the beginning, it provides
accurate outlier detection. Another possibility is to replace
the first element with an already known element. This leads
to another possibility for applying the method: if we know
only a single correct element, the use of that element as
reference element and of the modified method according to
the reference element can yield very accurate results.

Some model-based approaches demand a trained data
set for correct output. In contrast, this method requires only
one correct element to produce a correct output. In addition,
it is possible to use multiple reference points and consider
the best fitting. For example, (a) consider each point in first
x% (e.g., 10%) of data points as reference point and (b)
consider all data points as the reference point. Furthermore,
it is important to distinguish the purpose of MMS and
EMMS. MMS removes only the significant outliers, while
EMMS removes nonsignificant outliers. Depending on the
requirement, MMS or/and EMMS can be used to remove
outliers.

The results show that the new method is a good solution
for managing missing values. Figure 10 shows two data sets
with 1000 elements each. Each data set consists of 50, 100,
100, and 50 (total 300) missing value regions. When the first
element was not an outlier, the new method was able to
identify all the elements related to the line with 0% error.

In real world, it is not possible to find nonoutliers that
exactly agreewith linear regression.Therefore, 100% accuracy
is inapplicable. However, it is very important to have a

significant outlier-free data set. The new method guaranteed
a significant outlier-free data set when the outliers were non-
Gaussian. Furthermore, in real world situations, data/outliers
are not always in Gaussian distribution. Due to that, we hope
the new method can be applied to the majority of outlier
detection applications. Our new method is an effective solu-
tion for most common LSM and sigma filter need Gaussian
outliers. Some methods like sigma filter cannot be applied
directly to a certain data segment, and further segmentation
(windowing) is required for better results. In contrast, the
new method is capable of locating nonoutliers automatically
in increment, decrement, or constant form, regardless of the
size of the window.

Results related to biogas data proved the abovementioned
idea and showed that the algorithm clearly identifies three
regions as significant outliers (outliers from MMS), non-
significant outliers (outliers from EMMS), and nonoutliers
within a data segment (Figure 11). In addition, the results
showed that the nonoutliers follow a linear path. Further-
more, the width of the regions can be tuned by changing the
relevant 𝑅

𝑤
values. Figure 11 shows some selected results of

biogas data for a k value of 0.2 for MMS and a k value of 0.1
for EMMS.

One of the interesting observations was the ability of the
algorithm to continue linear detection even with the noncon-
tinuous clusters (Figures 11(b) and 11(e)). In all data segments,
there occurred no false detection (there were no outliers in
nonoutlier regions and vice versa).Most importantly, the new
method required no further windowing and nonoutliers were
detected independent of the window size.

When the general trend was constant and elements were
in Gaussian distribution, the Sigma filter and LSM were able
to identify the linear trend. However, for series with biased
elements, both methods failed to identify the general trend.
When the general trend was increment or decrement, the
Sigma filter failed to identify the general trend (a further
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Figure 11: Results related to real biogas data with different size of data sets. The first element is the reference element, which is assumed not
to be an outlier. Results showed that the algorithm clearly identifies three regions as significant outliers (outliers fromMMS), nonsignificant
outliers (outliers from EMMS), and nonoutliers within each data segment. Most importantly, all the nonoutliers lied within a linear border,
where red triangle corresponds to outliers detected by MMS, yellow circle corresponds to outliers detected by EMMS, and green square
corresponds to nonoutliers. The value of k for MMS and EMMS is 0.2 and 0.1, respectively.

segment would give better result, but we used the whole
window).The newmethodwas capable of locating 4% to 45%
of elements as outliers with 0% error. Grubbs’ test was capable
of identifying very small amount of elements as outliers
(0%–17%), even with the significance level of 0.05. However,
all outliers were significant and no wrong detections were
reported.

4. Conclusions and Outlook

This paper introduced a new outlier detection method using
the relation of the sum of the elements of an arithmetic
progression. The results of this work prove that the new
method is a robust solution for outlier detection in a data set
with missing elements. The method is capable of identifying
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both significant and nonsignificant outliers, when the first
value of the data set is not an outlier. Most importantly,
the method is a solution for identifying significant outliers
in a series with outliers in non-Gaussian distribution. In
addition, the outlier detection is nonparametric, has floor and
ceiling values, and does not require standardization. When
the reference elements are unknown, the method can be used
with multiple reference elements to gain optimal output.

If the frequency of the data is sufficient, any nonlinear
relation can be represented as a combination of straight lines.
Therefore, by using a suitable segmentation technique, it is
possible to identify outliers in any data series. This will allow
for detecting outliers in a process-oriented data set.Therefore,
to bring a data series into a form that is suitable for our
method, an intelligent segmentation technique is necessary.
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