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Abstract
Network inference is a valuable approach for gaining mechanistic insight from high-dimensional biological data. Existing

methods for network inference focus on ranking all possible relations (edges) among all measured quantities such as genes,

proteins, metabolites (features) observed, which yields a dense network that is challenging to interpret. Identifying a sparse,

interpretable network using these methods thus requires an error-prone thresholding step which compromises their per-

formance. In this article we propose a new method, DEKER-NET, that addresses this limitation by directly identifying a

sparse, interpretable network without thresholding, improving real-world performance. DEKER-NET uses a novel machine

learning method for feature selection in an iterative framework for network inference. DEKER-NET is extremely flexible,

handling linear and nonlinear relations while making no assumptions about the underlying distribution of data, and is

suitable for categorical or continuous variables. We test our method on the Dialogue for Reverse Engineering Assessments

and Methods (DREAM) challenge data, demonstrating that it can directly identify sparse, interpretable networks without

thresholding while maintaining performance comparable to the hypothetical best-case thresholded network of other

methods.
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Introduction

In recent years the availability of high-dimensional bio-

logical data has rapidly outpaced the tools available to

understand it. Here, we describe an algorithm for analyzing

such data using an embedded feature selection method to

infer networks of mechanistic biological relationships.

These networks summarize the totality of the information

available in the data, and can be used to help answer many

of the critical questions across drug discovery and devel-

opment: which biomarkers and targets to select, what dif-

ferences in biology between pre-clinical species exist, what

is a drug’s mechanism of action, and how do we identify

the best combinations of treatments?

The best performing network inference methods have a

significant liability, however, which we address with our

new approach. These methods, such as GENIE3 (the best

performing method in the ‘Dialogue for Reverse Engi-

neering Assessments and Methods’ initiative’s challenges),

do not explicitly infer networks but rather rank all possible

relationships. We refer to these methods as ‘weight-fo-

cused.’ To define a network from the ranked lists produced

by these weight-focused methods, the user must identify

subjectively an unknown threshold to exclude some num-

ber of lowest ranked edges to define a final network. A

common approach in the literature is to take the top million

relationships, which depending on the number of features

in the dataset represents anywhere from the top 0.2 to 2%

of ranked relationships [8, 14, 27, 34]. The basis for

selecting these thresholding values has not been well

established or evaluated in benchmarking exercises such as

DREAM, but has a dramatic effect on the outcome of the

analysis. A high threshold risks omitting informative

relationships in the data, a low threshold risks including too

many errors and making meaningful interpretation impos-

sible, and little to no information exists defining what is a

‘high’ or ‘low’ threshold for any given data type or
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application. Our method uses a different approach to fea-

ture selection and network inference to avoid this hand-

tuned thresholding step, instead identifying the subset of

relationships to form a network directly.

The network inference algorithm we describe here fol-

lows the iterative feature selection approach used by other

high-performing network inference methods [10, 16],

which is a natural extension of the general feature selection

approach often used to analyze high-dimensional data. All

feature selection approaches answer a common question:

which features are meaningful predictors of a specified

response? This is particularly critical for high-dimensional

data, such as multi-omics datasets which combine mea-

surements from many biological domains and analytical

technologies (’omes). These datasets commonly measure

thousands to hundreds of thousands of independent bio-

logical features, introducing the ‘curse of dimensionality’

[18] and violating the assumption that there are many more

samples than measured quantities: this is central to many

common statistical approaches [17]. Feature selection

enables interpretation of high-dimensional data by identi-

fying a subset of features which is most useful for pre-

dicting the response (predictors), thereby reducing the

dimensions of the data to a scale that can be handled more

easily.

Network inference can be done by reapplying this gen-

eral approach of feature selection targeting each feature of

the dataset separately as a response to be predicted.

Through this process not only are the meaningful predic-

tors of a response identified, but the meaningful predictors

of meaningful predictors, and so on. The results of this

iterative feature selection process are visualized as a net-

work, with a predictive relationship between a selected

feature and response represented as a connection (edge)

between features (vertices). The network approach thus

provides the same answers as a general feature selection

approach focused on a specific response of interest would,

but also provides additional information critical to under-

standing the wider biological context.

To illustrate the utility that network inference adds,

consider an analysis in which a single protein is found to

predict an important clinical endpoint. This information

alone suggests the protein might be a good target to

modulate the clinical endpoint. However, this analysis does

not describe what biological features may be acting upon

the prospective protein target. Homeostatic control mech-

anisms are a central feature of biology, and without iden-

tifying and inhibiting these control mechanisms the single

protein target might be impossible to influence. If a net-

work inference approach is used instead, all the upstream

control mechanisms can be considered when making the

choice of target or biomarker, avoiding costly mistakes due

to unknown biology. This wider context also provides

additional choices of target or biomarker, which may be

easier to drug or measure, or may identify a combination of

targets necessary to achieve the best efficacy. This

approach can also resolve challenges in translation by

inferring networks for different species and comparing

differences in biology. Fundamentally, network inference

enables a holistic view of the wealth of information in high

dimensional data to provide a deeper understanding of

biology.

Though network inference is a promising approach in

principle, realizing this promise in practice depends upon

the methods used. Reviews of benchmarking challenges

using real and realistic simulated data [20] have shown that

iterative feature selection methods outperform the alter-

natives, excluding methods using time series or knock-

up/knock-down experiment data unavailable in clinical

settings. One reason iterative feature selection methods are

able to better identify true relationships is that, in com-

parison to simpler pair-wise or univariate methods such as

correlation or mutual information scores, these methods

model the multivariate effect of all predictors on a given

response and thus capture interactions between predictors.

Among iterative feature selection methods, GENIE3, a

random forest based method [16], has shown the best

individual performance overall particularly when tested on

real data. This high performance can be understood from

the strengths of random forest [3] as a tool for feature

selection: it is able to identify nonlinear relationships and

does not make assumptions about the distribution of the

data.

The method we propose here is intended to retain the

strengths shown by the GENIE3 algorithm (iterative fea-

ture selection with a nonlinear, nonparametric method)

while addressing the threshold-dependence of these meth-

ods, as discussed above. Our method addresses this limi-

tation by using a bespoke machine learning method for

nonlinear, nonparametric feature selection [31] to identify

sparse subsets of meaningful features. Rather than ranking

all features as candidate predictors for a given response,

this method excludes any features which do not improve

prediction of the response. As a result, the method identi-

fies a network with no additional need for thresholding.

Additionally, we use this ‘subset-focused’ method in par-

allel with the weight-focused GENIE3 method to both

identify a specific network from the data and accurately

rank relationships within the network based on confidence.

We name our implementation of the feature selection

approach ‘DEKER’ for decomposed kernel regression, the

core principle of the original method, and the network

inference approach ‘DEKER-NET.’ We describe the

methodology briefly in Methods and in complete detail in

the ‘Appendix’, and illustrate the performance of DEKER-

NET on the benchmarking dataset from the DREAM4
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challenge [7] in ‘Results’. A C?? library implementation

of the complete method is available at github.com/Merck/

deker.

Methods

DEKER-NET incorporates several novel improvements to

enable subset-focused network inference. The core of the

methodology is the feature selection method, which was

originally described by Sun et al. [31]. This method is

described briefly in ‘Nonlinear feature selection’, below.

To best leverage this method for network inference, we

implement a version with a novel strategy for selecting

hyperparameters, DEKER, described in the ‘Appendix’.

Additionally, in the process of assembling the features

inferred by DEKER for network inference in DEKER-

NET, we use GENIE3’s approach to weight edges. The

complementarity between DEKER-NET and GENIE3

improves on both subset selection by DEKER and edge

weighting by random forest in GENIE3. This process is

described in ‘Network inference using DEKER-NET’, with

a complete algorithm in the ‘Appendix’.

Nonlinear feature selection

The feature selection method originally described by Sun

et al. [31] was chosen for DEKER-NET based on the

characteristics of high-performing methods in the

DREAM4 challenge [20]. Specifically, the method models

nonlinear, multivariate relationships without assumptions

about the underlying distribution of data. Additionally, the

method selects a sparse subset of features, which as dis-

cussed above differentiates it from the weight-focused

methods used in other network inference approaches.

Sun et al.’s feature selection method is based on the

principles of kernel regression which uses the nearest

neighbors of each sample or observation to predict

response. The influence of each neighbor and the size of

the neighborhood are defined by a kernel function. To

illustrate, take a dataset D ¼ fðxi; yiÞgNs , with paired

samples xi and responses yi, where Ns is the number of

samples. Each sample xi is a vector of length Nj, the

number of features, where xi 2 RNj and yi 2 R. A held-out

response y� is predicted using its sample x� and the other

samples and responses in the dataset using the kernel

function f.

ŷ� ¼
PNs

i¼1 f ðx�; xiÞyiPNs

i¼1 f ðx�; xiÞ
ð1Þ

A common choice of kernel function f is the squared

exponential kernel, which introduces a characteristic

lengthscale hyperparameter lf that controls the size of the

neighborhood used for predicting each sample.

f ðx�; xiÞ ¼ exp �kx� � xik2
2l2f

 !

ð2Þ

Kernel regression can be used for feature selection by

adding weights w 2 RNj which scale each feature in xi;j,

adjusting the relative contribution of each feature to the

prediction or removing the feature entirely when wj ¼ 0,

ŷ� ¼
PNs

i¼1 f ðw � x�;w � xiÞyiPNs

i¼1 f ðw � x�;w � xiÞ
ð3Þ

where � is the Hadamard operator for element-wise mul-

tiplication between vectors. With the weights introduced,

the feature selection problem can be stated as finding the

weights that minimize the prediction error between the true

held-out response y� and the prediction ŷ�. For example the

RGS algorithm [24], a specific implementation of kernel

regression for feature selection, uses sum of squares for

prediction error and holds out each response in the dataset

(leave one out cross-validation, LOOCV).

min
w

XNs

j¼1

1

2
yj �

P
i2f1...Nsnjg f ðw � xi;w � xjÞyiP
i2f1...Nsnjg f ðw � xi;w � xjÞ

 !2

s.t. w� 0

ð4Þ

Sun et al. observe however that this formulation of the

feature selection problem is very difficult to solve numer-

ically as the minimization problem has many local minima

and as a result the ideal performance of the algorithm

cannot be realized.

As an alternative, Sun et al. decompose the kernel

regression problem into a series of classification problems

with a quasi-convex objective function which can be reli-

ably solved for the global minimum. The core idea is that

any regression problem can be re-interpreted as a joint set

of classification problems. Specifically, a set of thresholds

t 2 RNt is defined to divide the samples of the dataset D

into two sets. Sun et al. use every response in the dataset as

a threshold, as will we, though it is worth noting that fewer

thresholds (ex. every other response, every third, etc.)

could be used to speed computation at the cost of some

performance. For a given threshold value tk, samples are

divided into subsets T\tk and T� tk based on their

responses yi.

T\tk ¼ fijyi\tk; i 2 f1. . .NSgg

T� tk ¼ fijyi� tk; i 2 f1. . .NSgg
ð5Þ

Samples can then be classified in the same way response

values are predicted in kernel regression: using the kernel-

weighted distance of each sample’s predictors to the
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predictors in each subset. The performance of the classifier

is then assessed based on the difference between the ker-

nel-weighted distance to the correct subset and the incor-

rect subset based on the sample’s true response, which is

called the margin m.

mði; kÞ ¼ yci;k
X

j2T\tk

"
f ðw � xi;w � xjÞP

i2T\tk
f ðw � xi;w � xjÞ

0

@

� jw � ðxi � xjÞj
#

�
X

j2T� tk

"
f ðw � xi;w � xjÞP

i2T� tm
f ðw � xi;w � xjÞ

� jw � ðxi � xjÞj
#!

yci;k ¼
�1 yi\tk

1 yi� tk

(

ð6Þ

This formulation can be used to construct a minimization

problem equivalent to Eq. (4). Sun et al. specifically use L1

distance to simplify the calculation of derivatives for

minimization. Additionally, Sun et al. include a penalty

based on feature weights w, as is done in LASSO regres-

sion [32] to impose sparsity. This penalty ensures that only

a subset of predictive features with unique predictive

power is selected, excluding uninformative features or

features that are correlated to true predictors and not

uniquely informative. The penalty also adds another

hyperparameter k, which controls the strength of the pen-

alty. The resulting objective function to be minimized is

min
w

XNs

i¼1

XNt

k¼1
mði; kÞ þ k

XNJ

j¼1
wj

s.t. w� 0

ð7Þ

In their original description of the method [31], Sun et al.

demonstrate superior performance to many other modern

machine learning methods, including RGS [31].

When implementing this method, Sun et al. do not

suggest an approach for selecting values of the two intro-

duced hyperparameters, the characteristic lengthscale in

the kernel function lf and penalty weight k. Hyperparam-

eters are distinguished from ordinary parameters learned

from data, such as the weights w, as they control the

learning process itself and must be determined separately

to prevent overfitting. Sun et al. test a range of hyperpa-

rameter values in their benchmarking exercise and con-

clude that the influence of the values on the features

selected is relatively minor, recommending that values are

fixed a priori. However we found while benchmarking

using the DREAM4 challenge data [7] the features selected

by the algorithm are strongly influenced by the values of

the hyperparameters and fixing the values a priori can lead

to very poor performance. The DREAM4 challenge data

represent a larger and more varied set of test cases com-

pared to Sun et al.’s original benchmarking, including

many relationships between predictor and response that are

weak relative to noise. An appropriate strategy for selecting

hyperparameters thus appears critical to the method’s

performance on realistic data for network inference.

A standard approach to selecting hyperparameter values

would be to use nested cross-validation in which data are

held out from the learning process and used to estimate

how well selected features would predict response values

on new data, repeated for combinations of hyperparameter

values until an optimum value is found [6]. We found

however that the feature selection is fairly unstable in this

case. For example, using ten-fold cross validation in which

a unique tenth of the dataset is held out and the algorithm

selects features on the ten overlapping but unique datasets

for a given value of lf and k, five folds may select one

feature, three folds may select two features, and two folds

may select five features. Worse still, we observed that the

features selected on each fold with 90% of the total data

often do not reflect the features selected when the algo-

rithm is run with all of the data. These liabilities substan-

tially reduced the performance of Sun et al.’s feature

selection in our tests.

To address these liabilities, we use another approach to

estimate the performance of selected features on new data

and identify optimum values of hyperparameters. Specifi-

cally, we calculate Bayesian Information Criterion (BIC)

[30] values for prediction performance by estimating the

degrees of freedom of a trained model of selected features

[9] and using Platt scaling [19, 26] to condition margin

values into probabilities suitable for calculating the log-

likelihood of the predictions (details in ‘Appendix’).

Additionally, we define a null BIC value to compare per-

formance against. If a model’s BIC is higher than the null

value, the features selected are uninformative and are

excluded from the inferred network.

A complete description of the methodology is provided

in the ‘Appendix’, including additional notes on practical

considerations for our implementation of Sun et al.’s

methodology, DEKER. Our implementation of DEKER is

available at github.com/Merck/deker and can be used as

either a stand-alone executable intended for use in a high-

performance computing environment, or as a header-only

C?? library for development.
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Network inference using DEKER-NET

In network inference by iterative feature selection, an

iteration of feature selection is done to identify the pre-

dictors of each unique feature in the dataset. The results of

a single iteration of feature selection can be visualized as a

simple network: the response and each identified predictor

is represented by a vertex, and edges are directed from each

predictor to the response. The combined output of all

feature selection iterations is the union of each of these

simple networks: each feature in the dataset is represented

by a vertex, which are connected by edges indicating other

features which a given feature was either found to predict

or found to be predicted by using feature selection. A

simple example of this assembly is illustrated in Fig. 1.

This network can also be represented as an adjacency

matrix, A, where each element Ai;j indicates whether fea-

ture j is a predictor of feature i (Ai;j [ 0) or not (Ai;j ¼ 0).

Weight-focused network inference methods such as

GENIE3 [16] output a network where all vertices are

connected, or Ai;j [ 0 for all i, j. A sparse network can only

by identified from this weighting by excluding edges with

weights below an unknown threshold. When the true net-

work structure is known the performance of these methods

is assessed based on the error rates of the range of networks

constructed by eliminating edges from the lowest to highest

weight. In particular, the precision, or ratio of true positive

to total inferred edges, and recall, or ratio of true positive to

total edges in the true network, are used to capture the trade

off between including the most true edges and excluding

the most false edges. For a weight-focused method, ideal

performance is realized if there exists a weight threshold

which separates all true edges from all false edges. Even in

this ideal case however, there is no method for identifying

the optimal threshold in the practical case where the true

network structure is unknown.

By contrast, iteratively applying Sun et al.’s feature

selection outputs a single sparse network, where only a

minority of possible edges Ai;j are weighted. In practice,

while weight-focused methods are concerned with a rank-

ing of possible networks, a subset-focused method is con-

cerned with identifying a single network structure for

analysis and interpretation. There is a trade off, however. It

is still desirable to rank edges within the network inferred

by DEKER-NET, however the non-zero weights produced

by Sun et al.’s feature selection are not comparable across

models. As the network is constructed by combining all

models, these weights cannot be used to rank edges.

Fortunately, weight-focused and subset-focused meth-

ods are complementary. For DEKER-NET, we use DEKER

to select the sparse network while taking the edge weights

from GENIE3. Compared to using GENIE3 alone,

DEKER-NET explicitly determines which edges to

exclude, including the majority of GENIE3’s low weighted

edges as well as some highly weighted false-positive edges.

Additionally, DEKER sometimes includes edges which are

ranked very low by GENIE3. These edges are also exclu-

ded from the final network, further capitalizing on the

complementarity between DEKER’s sparse feature selec-

tion and GENIE3’s weighting. As a result, DEKER-NET

can often realize the best performance of GENIE3 while

identifying a sparse, interpretable network. An algorithm

detailing the combination of methods and network con-

struction is provided in the ‘Appendix’.

Fig. 1 Illustrating network assembly. On the left, iterations of feature

selection for responses a–d are visualized as networks. On the right is

the network obtained by combining the relationships identified in the

iterations of feature selection. Networks are illustrated without edge

directionality for consistency; see ‘Results’ main text regarding

directed vs. undirected network inference
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Results

To illustrate the performance of DEKER-NET, we use a

common benchmarking approach on simulated multifac-

torial data. In multifactorial data, each sample is simulated

from a network with multiple unknown perturbations rel-

ative to a baseline. These data imitate the available clinical

data: each sampled patient has multiple unique, unknown

differences in underlying biology relative to the others.

Inferring networks from this type of data is much more

challenging compared to precisely controlled gene knock-

up or knock-down data, or time-series data with multiple

observations from the same patient. Nevertheless, this type

of data is easiest to acquire from real patients and best

represents the real use-case of this methodology.

Alongside DEKER-NET, we test ‘Correlation’ network

inference, which uses the absolute value of the Pearson

correlation coefficient to weight edges, and two of the

highest performing network inference methods, TIGRESS

[10] and GENIE3 [16]. The Correlation approach is pre-

sented to illustrate worst-case performance, as this is the

simplest to implement and most prone to errors. Results for

TIGRESS and GENIE3 were generated using the R pack-

ages with default values for each [15, 33], with the

exception of the K parameter for GENIE3 which was

changed to ‘all’ as the authors suggest in [16].

While all methods (except Correlation) are able to infer

the directionality of edges, in practice the results are rela-

tively poor when applied to multifactorial data compared to

undirected inference [16]. Therefore in these tests we

consider only performance on identifying undirected

structure. For example, if the underlying true network has

the relationship a! b, we accept either the edge a b or

a! b as true edges, using highest weight each directional

edge to define the undirected edge a$ b.

As discussed in ‘Methods’, a common approach to

assessing performance of network inference methods uses

precision (ratio of true edges inferred to total edges infer-

red) and recall (ratio of true edges inferred to total edges in

true network). In particular, each point on a precision-recall

curve is generated by iteratively removing the lowest-

ranked edge and recalculating the precision and recall

values of the resulting network for any given network

inference method. The most common error we observe

during benchmarking is an indirect relationship inferred as

a direct relationship. To illustrate such an indirect effect

error, take a triplet such as a$ b$ c. If the network

inference method infers a relationship between a$ c, it is

an indirect effect error. These errors have relatively little

effect on the structure of the inferred network, however:

a and c are closely related in the true network structure, and

an erroneous edge has a minor effect on network topology

and the resulting interpretation. By contrast, an error con-

necting two features which are very distant in the true

network has a much more serious effect both on the

topology of the inferred network and the biological inter-

pretation. Equating indirect effect errors and more serious

errors therefore gives an overly pessimistic view of the

performance of these methods. A more optimistic version

of the standard precision-recall curve can be identified by

excluding these indirect effect errors: for a given point,

recall values remains the same while precision may

improve. We visualize this by plotting our precision-recall

curves as an area bounded by an upper curve corresponding

to the precision and recall values calculated omitting

indirect effect errors and a lower curve corresponding to

precision and recall values including indirect effect errors.

In the first subsection, we apply DEKER-NET to the

‘Dialogue for Reverse Engineering Assessments and

Methods’ initiative’s fourth (DREAM4) challenge on in

silico multifactorial data [7]. DREAM4 challenge data

have previously been used to assess the performance of a

number of a variety of different network inference methods

and provides a common reference point for comparison. In

the second subsection, we perform the same tests on

datasets with an increasing numbers of samples simulated

from the DREAM4 challenge networks [29] to illustrate

the sensitivity of our method to data availability and set

expectations for performance on datasets of different sizes.

Benchmarking with DREAM4 challenge data

In Fig. 2 we show the precision-recall curves for each of

the five networks in the DREAM4 in silico multifactorial

dataset with 100 features and 100 samples per network. We

plot both the curve for the raw precision values and pre-

cision ignoring indirect effect errors. Note that while the

weight-focused Correlation, GENIE3, and TIGRESS

methods have curves spanning the full range of recall

values, the curve for our subset-focused DEKER-NET

method ends abruptly with precision values at or greater

than 70%. As discussed in ‘Methods’, this is by design as

the goal of DEKER-NET is to identify a sparse network,

while the weight-focused methods rank all possible rela-

tionships. DEKER-NET generally shows a minor

improvement over other methods in terms of precision and

recall, including GENIE3.

In Fig. 3 we show the distribution of edge weights

among true edges, indirect error edges, and other error

edges. This figure illustrates how effectively each method

separates true edges from error edges by edge weight. For

DEKER-NET, GENIE3, and TIGRESS, the majority of

errors are indirect, and other errors separate fairly well

from true or indirect error edges by weight. Overall,

DEKER-NET offers a marginal improvement in separating
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errors from true edges by weight over GENIE3 by elimi-

nating a few incorrect edges that would otherwise be highly

weighted by GENIE3 while otherwise retaining the same

weights and edge ranking.

To illustrate real-world performance we plot the net-

work inferred by DEKER-NET alongside the networks

inferred by GENIE3 in Fig. 4. For GENIE3 network con-

struction we use a range of thresholds also used in the

literature [8, 14, 27, 34] ranging from the top 0.2% to top

2% of edges. The 0.2% threshold was omitted from our

figures, as this threshold universally resulted in too few

edges to be considered. Additional figures for comparison

to TIGRESS and correlation, both of whigh perform gen-

erally worse than GENIE3, are available in Supplemental

Figures. To compare networks we use net edge count (true

positive edges minus false positive edges) as a heuristic,

which we will refer to as ‘net’ performance. This heuristic

captures the dual criteria of increasing network size and

reducing the number of errors, where adding a true positive

has the same weight as removing a false positive. For

ranking purposes this heuristic is equivalent to a reweigh-

ted mean of precision and recall, such that adding true

positives and removing false positives have an equal effect

on that mean.

Comparing the networks in Fig. 4 based on net positive

edges, DEKER-NET generally performs as well as or

better than GENIE3’s best thresholding scenario. DEKER-

NET also performs better over all across datasets than any

single threshold, as the performance for specific thresholds

for GENIE3 is inconsistent based on dataset. Specifically,

DEKER-NET has a higher net performance than GENIE3

for networks 1 and 5 for all thresholds, nearly equal net

performance to GENIE3’s best threshold for networks 2

and 4, and equal net performance to GENIE3’s second best

threshold for network 3 as illustrated by the shading in

Fig. 4. Additionally, net performance across thresholding

scenarios for GENIE3 illustrates the difficulty in selecting

a threshold: for network 1, the top 0.4% of edges was best,

for networks 2 and 3 the top 1% of edges was best, and for

networks 4 and 5 the top 0.8% of edges was best. Con-

sidering that there is no way to gauge error rates to select

the best threshold when the underlying network is

unknown, this variance in performance across thresholds

makes inference of novel networks unreliable for GENIE3.

By contrast, we have demonstrated that DEKER-NET is

able to reliably achieve equivalent or better performance

without thresholding, enabling more effective inference of

novel networks.

Benchmarking with increasing sample size

To understand how the performance of DEKER-NET

depends on the amount of data used we use the Gene-

NetWeaver [21, 29] program to simulate additional data

sets equivalent to the 100-sample DREAM4 in silico

multifactorial datasets tested in the previous section. We

used the settings provided in the program that were used to

generate the original DREAM4 data. The same five net-

works used in the DREAM4 challenge were used to sim-

ulate the dynamics for our test datasets. Using

GeneNetWeaver, we generated 400 additional samples per

network, and tested the algorithms as in the previous

Fig. 2 Precision-recall curves for DREAM4 in silico multifactorial

challenge data show DEKER-NET is generally nearly equal to or

better than GENIE3 performance. Precision-recall curves are con-

structed from the series of networks generated by iteratively removing

the lowest-weighted edge of each network and calculating precision

(ratio of true inferred edges to total inferred eges) and recall (ratio of

true inferred edges to total edges in the true network). Each method is

plotted as an area bounded by an upper curve corresponding to the

precision and recall values calculated omitting indirect effect errors

and a lower curve corresponding to precision and recall values

including indirect effect errors; see ‘Results’ main text for details on

indirect effect errors. An ideal precision-recall curve would maintain

a values of 1 for precision accross all values of recall. One curve

(method) is considered superior to another if its curve has a higher

precision across a relevant range of recall values (Color figure online)
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section using draws of 100, 200, and 400 samples from

those generated in each network. We do note generally

worse performance for all methods on the DREAM4-like

data compared to the DREAM4 benchmarks, which may be

due to small differences in software version or variance in

the simulated data from run to run.

Precision-recall curves for inference with increasing

sample size, shown in Fig. 5, demonstrate a modest

increase in the maximum recall that each method achieves

for given level of precision as sample size increases. The

results suggest that, for the DREAM4 and DREAM4-like

data, the majority of relationships that can realistically be

inferred are found with a relatively modest amount of data.

This is likely due to the inherent difficulty of network

inference on multifactorial data. We also note that the

precision of the full subset of edges identified by DEKER-

NET is generally consistent at � 60%, worse than

observed on the DREAM4 data, though non-indirect errors

occurred at a very low rate. Figure 6 further illustrates that

each doubling of sample size has a less than proportional

effect on the network subset that DEKER-NET infers; four

Fig. 3 DEKER-NET shows nearly equal or better separation between

true and false edges by relative edge weight compared to other

methods for DREAM4 in silico multifactorial challenge data. For

DEKER, GENEI3, and TIGRESS the majority of false edges are

indirect false edges which have a lower impact on network structure

than other false edges. Edge weights are rescaled to [0, 1] to enable

comparison between methods with differing intrinsic scales. Distri-

bution of edge weights for each edge type are illustrated as box-and-

whiskers, with the whiskers corresponding to the minimum (left) and

maximum (right), the edges of the box corresponding to the first

quartile (left) and third quartile (right), the central line indicating the

median value, and extreme values plotted as individual points
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times the data generally yields less than twice the number

of true edges, with comparable precision.

Overall, the performance of DEKER-NET as sample

size increases suggests that for datatypes and biological

networks similar to the gene regulatory network data that

GeneNetWeaver emulates, there are diminishing returns in

increasing sample size and that 100–200 samples may be

an ideal target depending on cost constraints in generating

data. Sampling from different populations may be more

impactful than increasing sample size in a given popula-

tion, however this was not possible to test in the given

benchmarking framework. Additionally, it is unknown how

the size and complexity of the true network to be inferred

may affect the number of samples needed for inference.

Discussion

Prior to DEKER-NET, network inference methods were

primarily limited by their focus on weighting and ranking

all possible relationships, which produces a dense, unin-

terpretable network structure. Interpretation of these dense

networks requires heuristic tuning of a weight threshold to

produce a sparse network, a process which is error-prone

and not well-defined in the literature. DEKER-NET

addresses this limitation by identifying a sparse, inter-

pretable network directly. Furthermore, DEKER-NET

incorporates the best-performing weight-focused method,

GENIE3 [16] enabling both selection of a sparse network

and effective ranking of edges within that network.

Through the synergy between feature selection approaches,

DEKER-NET maintains the lowest error rates while

selecting an interpretable sparse network, addressing an

important limitation of earlier methods.

The tests in ‘Results’ focus on realistic scenarios in

terms of data quality and quantity, setting expectations for

real-world performance of DEKER-NET. These tests use

multifactorial data, which best imitates the type of data

received from patients with many unknown sources of

variation in biology, simulated using a framework intended

to imitate a range of realistic network structure and levels

of noise [29]. As a result, the networks inferred are

incomplete, typically capturing only 20% of the true

structure of the biological network used to simulate the

data. Regardless, the information gained about this portion

of network structure is useful: for networks inferred by

DEKER-NET in our tests, 7 of every 10 identified rela-

tionships is a true, mechanistic biological relationship.

Additionally, the incorrectly inferred relationships are

primarily indirect effect errors, which link closely related

features that share a common relationship. These indirect

effect errors have minimal impact on the overall structure

of the network in comparison with more serious errors

linking features more distant in the true network topology.

Given the challenges presented by multifactorial data,

we believe DEKER-NET is most useful as a hypothesis

generating tool. The identified network structure is a reli-

able, albeit incomplete, description of biological pathways

present in the dataset. These pathways can also be con-

sidered a focused set of mechanistic hypotheses best sup-

ported by the available data, and can direct experimental

follow-up to the most relevant biology.

Another important consideration for the application of

network inference methods are the range of types of bio-

logical data (’omes) to be analyzed, and particularly the

fusion of data from distinct domains and technologies into

multi-omic datasets. The DREAM4 benchmarking data are

intended to imitate gene expression or transcriptomic data,

and further work is needed to understand how methods

perform on different data types or combinations thereof. In

principle, the machine learning methods upon which

DEKER-NET is built are robust to different data types, as

it does not rely on any assumptions about the underlying

distribution of data or the relationships between features,

and works with continuous and categorical data. Similarly,

biologically plausible results have been shown from

applying GENIE3 to real multi-omic data [11, 12]. It

remains important to further test performance across data

types.

The applications of network inference are broad. In

general, the DEKER-NET network inference methodology

is a tool for gaining insight into biology. It can be used to

identify targets or biomarkers when applied to data with

specific endpoints of interest, or to understand translation

when applied to data from multiple different species. Most

importantly, it supports these critical questions with clear,

precise hypotheses and anchors efforts in drug discovery

and development to biology in a repeatable and objective

way.

Appendix

Here we first review the original implementation of the

feature selection method proposed by Sun et al. [31]. In

addition we propose a simple practical improvement for

solving the fixed-point iteration problem that arises, and

discuss considerations for optimizing hyperparameters

using Akaike or Bayesian Information Criterion (AIC,

BIC). Additionally, we detail the use of a null model and

the resulting AIC or BIC value to identify cases in which

no features should be selected. The algorithm implemen-

tation details for both the feature selection method and the

overall network inference method are summarized at the

end.
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Decomposed kernel regression

As discussed in ‘Methods’, Sun et al. decompose the kernel

regression problem into a series of classification problems

which creates a quasi-convex optimization problem which

can be reliably solved for the global minimum by refor-

mulating the kernel regression problem into a series of

classification problems. A range of classification thresholds

t 2 RNt are defined to divide the samples of the dataset D

into subsets T\tm and T� tm based on their responses yi. An

unknown response y� can then be classified based on the

distance function d of the unknown sample’s predictors x�
to its nearest neighbor in each subset:

T\tm ¼ fijyi\tm; i 2 f1. . .NSgg
T� tm ¼ fijyi� tm; i 2 f1. . .NSgg

y�\tm , min
i2T\tm

dðw � x�;w � xiÞ

\ min
i2T� tm

dðw � x�;w � xiÞ

y� � tm , min
i2T\tm

dðw � x�;w � xiÞ

[ min
i2T� tm

dðw � x�;w � xiÞ

ð8Þ

With this formulation of the problem, the goal is to find the

weights w which maximize correct prediction of response

y� classification labels, yc�;m, for all thresholds tm in t.

Response classification labels are represented as

yc�;m ¼
�1 y�\tm

1 y� � tm

�

ð9Þ

Given the basis of this classification on the distance

between nearest neighbors, classification performance can

be best achieved by maximizing the distance to the wrong

subset and minimizing the distance to the correct subset, or

maximizing the margin Dd:

Dd�;m ¼ yc�;m min
i2T\tm

dðw � x�;
�

w � xiÞ

� min
i2T� tm

dðw � x�;w � xiÞ
� ð10Þ

Unfortunately, when solving with respect to the weights w,

the nearest neighbor xi in each subset is unknown and

needs to be approximated and updated. Sun et al. use a

kernel function f in a manner analogous to kernel regres-

sion, giving an estimate of the margin Dd̂, with fixed

weights u equal to the intial weights w at each step of the

iterative updating process:

Dd̂�;m ¼ yc�;m
X

i2T\tm

 "
f ðu � x�; u � xiÞP

i2T\tm
f ðu � x�; u � xiÞ

� dðw � x�;w � xiÞ
#

�
X

i2T� tm

"
f ðu � x�; u � xiÞP

i2T� tm
f ðu � x�; u � xiÞ

� dðw � x�;w � xiÞ
#!

ð11Þ

Many choices of kernel function are possible, and we will

use the commonly employed squared exponential or radial

basis function kernel,

f ðx�; xiÞ ¼ exp �kx� � xik2
2l2f

 !

ð12Þ

where lf is the characteristic length scale, a hyperparameter

controlling the rate of exponential decay with distance

between each point. Next, by choosing the L1 distance for

the distance function d, the effects of each individual

predictor feature are now separated and the margin repre-

sented as a linear function of the weights w:

bFig. 4 DEKER-NET performs network inference nearly equal to or

better than GENIE3’s best performing edge weight threshold for all

DREAM4 in silico multifactorial challenge datasets. GENIE3’s

performance depends on the threshold value selected, which is not

known in practice and varies substantially even between the similar

DREAM4 networks. Threshold values used in this figure are based on

commonly used literature values (see text): the top 2%, 1%, 0.8%, and

0.4% of edges. Inferred networks are shaded based on performance

relative to the best performing inferred network for each dataset,

where the best performing network has the darkest background

shading. Networks with less than or equal to 66% of the best

performing network’s performance are unshaded. Edge width corre-

sponds to edge weight, with wider edges ranked more highly and

assigned higher confidence by inference methods. Edges present in

the true network structure but not identified by any inference method

are false negatives shown in the true network (top row), while

correctly identified edges in the true structure (by at least one method)

are true positives shown in both the true network and corresponding

inference method network. Edges not present in the true network

structure but inferred by a given method are false positives shown in

the corresponding inference method network. The total number of

true positives (TP), false positives (FP), and net positive edges (TP-

FP) are given for each inferred network (Color figure online)
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Dd̂�;m¼
XNj

j¼1
wjy

c
�;m

X

i2T\tm

f ðu�x�;u�xiÞP
i2T\tm

f ðu�x�;u�xiÞ
jx�;j�xi;jj

 

�
X

i2T�tm

f ðu�x�;u�xiÞP
i2T�tm f ðu�x�;u�xiÞ

jx�;j�xi;jj
!

¼D
XNJ

j¼1
wjz�;m;j

ð13Þ

To ensure that the smallest set of predictor features are

selected, sparsity is imposed on the solutions in two ways.

First, rather than use the raw margin Dd̂ we use a loss

function based on hinge loss, which constrains maximum

performance such that increases in the classification margin

stop improving the loss function once a critical threshold is

reached. This helps to reduce the number of features

selected by preventing extraneous or correlated features

from improving the margin Dd̂ after the classifier has

reached a sufficiently high performance. The specific loss

function we use is a differentiable approximation of hinge

loss based on Huber loss [4], which has a quadratically

smoothed elbow to enable differentiation of the function at

the elbow,

Fig. 5 Precision-recall values improve as the number of samples

increase for DREAM4-like datasets. Precision-recall curves are

constructed from the series of networks generated by iteratively

removing the lowest-weighted edge of each network and calculating

precision (ratio of true inferred edges to total inferred edges) and

recall (ratio of true inferred edges to total edges in the true network).

Each method is plotted as an area, with the upper curve corresponding

to the precision and recall values calculated omitting indirect effect

errors and the lower curve corresponding to precision and recall

values including indirect effect errors. See ‘Results’ main text for

details on indirect effect errors (Color figure online)
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HðDd̂Þ ¼

0 Dd̂[ 1þ h

ð1þ h� Dd̂Þ2

4h
1� h�Dd̂� 1þ h

1� Dd̂ Dd̂\1þ h

8
>>>><

>>>>:

dH

dDd̂
Dd̂
� �

¼

0 Dd̂[ 1þ h

Dd̂ � h� 1

2h
1� h�Dd̂� 1þ h

�1 Dd̂\1þ h

8
>>>><

>>>>:

ð14Þ

where h is a parameter controlling the size of the elbow of

the hinge loss function. In this formulation, increases in the

margin Dd̂ have no effect on the loss function above a

value of 1, which is set arbitrarily: changing this value will

only change the absolute, but not relative, values of the

weights w. The number of features selected is further

constrained using regularization, specifically an L1 penalty

as in LASSO regression [32], is also used to limit the

number of features selected. This penalty, k
PNj

j¼1 wj,

introduces a hyperparameter k which controls the trade-off

Fig. 6 DEKER-NET identifies larger networks with generally

increasing performance as the number of samples increase for

DREAM4-like datasets. Inferred networks are shaded based on

performance relative to the best performing inferred network for each

dataset, where the best performing network has the darkest shading.

Networks with less than or equal to 66% of the best performing

network’s performance are unshaded. Edge width corresponds to edge

weight, with wider edges ranked more highly and assigned higher

confidence by inference methods. Edges present in the true network

structure but not identified by any inference method are false

negatives shown in the true network (top row), while correctly

identified edges in the true structure are true positives shown in both

the true network and corresponding inference method network. Edges

not present in the true network structure but inferred by a given

method are false positives shown in the corresponding inference

method network. The total number of true positives (TP), false

positives (FP), and net positive edges (TP-FP) are given for each

inference method network (Color figure online)
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between predictive performance and the number of features

selected.

The final optimization problem is then constructed as in

Eq.(4) by leave one out cross validation: each sample is

held out and predicted from all other samples in the dataset,

and the loss function is minimized with the regularization

penalty across all classification thresholds t

min
w

LðwÞ ¼
XNs

k¼1

XNt

m¼1
H
XNJ

j¼1
wjzk;m;j

 !

þ k
XNj

j¼1
wj

s.t. w� 0

ð15Þ

where zk;m;j is calculated as in Eq. (13), with sample k held

out

zk;m;j ¼ yck;m
X

i2T\tmnk

f ðu � xk; u � xiÞP
i2T\tmnk f ðu � xk; u � xiÞ

jxk;j � xi;jj

0

@

�
X

i2T� tmnk

f ðu � xk; u � xiÞP
i2T� tmnk f ðu � xk; u � xiÞ

jxk;j � xi;jj

1

A

ð16Þ

Sun et al. convert the constrained optimization problem

(15) to an unconstrained optimization problem by substi-

tuting v2j ¼ wj for all i 2 1. . .Nj,

min
v

LðvÞ ¼
XNs

k¼1

XNt

m¼1
H
XNJ

j¼1
v2j zk;m;j

 !

þ k
XNj

j¼1
v2j

ð17Þ

where the derivative for each vi 2 v is

dL=dvi ¼ 2vi
XNs

k¼1

XNt

m¼1

dH

dDd̂

XNj

j¼1
v2j zk;m;j

 !

zk;m;i þ k

" #

ð18Þ

allowing the minima to be easily found by unconstrained

optimization techniques such as LBFGS, rprop, or similar

[28, 35]. As noted previously, the problem must be solved

by iteratively updating the initial weights u,

uðnþ 1Þ¼D v2ðnÞ ð19Þ

where n is the fixed point iteration number. Convergence

thus occurs when uðnþ 1Þ ¼ v2ðnÞ (to within a specified

numerical tolerance). Having described the original method

as proposed by Sun et al., we now explain a number of

modifications which we have used to improve the perfor-

mance of the method and increase interpretability in the

following sections.

Accelerating fixed-point iteration

We observe that the fixed point iteration between weights u

and w is often unnecessarily slow and vulnerable to cycles.

To remedy this, we use Steffensen’s method generalized

for systems [13]. In practice this method uses three con-

secutive iterations of weights uðnþ 1Þ, uðnþ 2Þ, uðnþ 3Þ
to produce an accelerated update, u�ðnþ 1Þ,

u�ðnþ 1Þ¼DuðnÞ � DUðnÞ

� D2UðnÞ
� ��1

uðnþ 1Þ � uðnÞð Þ
ð20Þ

where DUðnÞ and D2UðnÞ are matrices of the change in

weights u accross updates,

DUðnÞ ¼ uðnþ 1Þ � uðnÞ;ð

uðnþ 2Þ � uðnþ 1ÞÞ

D2UðnÞ ¼ uðnþ 2Þ � uðnþ 1Þ;ð

uðnþ 3Þ � uðnþ 2ÞÞ

ð21Þ

While the generalized Steffen’s method requires additional

computational effort for each update u�ðnþ 1Þ, in practice

we found that the acceleration to the fixed point solution

and ability to avoid cycles dramatically reduces the overall

effort in solving the feature selection problem.

Optimizing hyperparameters

Finally, a major consideration in the solution of the feature

selection problem in Eq. (17) is the selection of hyperpa-

rameters, specifically the regularization parameter k and

characteristic lengthscale parameter lf in Eq. (12). Hyper-

parameters are distinguished from ordinary parameters as

values which control the process of learning a model from

data, and therefore cannot be identified during the model

fitting process. While Sun et al. found the hyperparameters

to have little influence in their tests, we found substantial

influence of these parameters on the predictor feature

subsets selected in our benchmarking. As discussed in

‘Methods’, this is undesirable due to the computational

burden and the nature of feature selection.

Alternatively, we use an estimate of out-of-sample

prediction error from the subset of predictor features

selected using the entire dataset such as the Akaike or

Bayesian Information Criterion (AIC, BIC) [1, 30] to select

hyperparameters. We will use BIC, as we find it gives

better performance from our benchmarking by tending to

select fewer features, although AIC can be easily substi-

tuted based on the user’s preference. To calculate BIC we

need to determine the model fit in terms of likelihood and

the degrees of freedom of the fit model. We note that for

these calculations we will not be holding samples out as is
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done when training the weights w to estimate out-of-sam-

ple predictor error, as this is handled separately by the

penalty to model complexity.

To determine the likelihood of the model fit for BIC we

use Platt scaling [19, 26]: we fit a logistic regression model

to the raw classifier values to produce calibrated proba-

bility values which can be used to determine the likelihood

of the fit. First, a matrix of classifier values without sam-

ples held-out q is calculated for each sample k (rows) and

classification threshold tm (columns), similar to Eq. (16).

qk;mðlf Þ ¼
XNj

j¼1
wj

 
X

i2T\tm

"
f ðu � xk; u � xiÞP

i2T\tm
f ðu � xk; u � xiÞ

� jxk;j � xi;jj
#

�
X

i2T� tm

"
f ðu � xk; u � xiÞP

i2T� tm
f ðu � xk; u � xiÞ

� jxk;j � xi;jj
#!

ð22Þ

Then, using the true class values yc rescaled to 0, 1 (yp),

ypk;m ¼
yck;m þ 1

2
ð23Þ

the values q are fit to a logistic function by maximizing the

negative log likelihood.

ŷpk;mðlf Þ ¼
1

1þ eAqk;mðlf ÞþB

L̂ðlf Þ ¼ max
A;B

�
XNs;Nt

k;m

ypk;m

�

ln ðŷpk;mðlf ÞÞ

þ ð1� ypk;mÞ ln ð1� ŷpk;mðlf ÞÞ
�

ð24Þ

The maximum value of the negative log likelihood L̂ðlf Þ
can then be used to calculate BIC by adding a penalty

proportional to the degrees of freedom, as described below.

Determining the degrees of freedom of the fit model is

more challenging given the structure of the fit model. An

approach that we found effective is to formulate the model

in terms of a hat matrix,

ŷpðlf Þ ¼ Hyp ð25Þ

where the true labels yp and predictions ŷp are each

matrices with number of samples Ns rows and number of

classification thresholds Nt columns, and the hat matrix H

is a matrix with Ns rows and columns which represents the

fit model. Hastie and Tibshirani [9] have shown that the

trace of the hat matrix is an appropriate definition of the

effective degrees of freedom of the fit model. Identifying

this hat matrix from the model is somewhat challenging,

however it can be readily approximated from the true labels

and predictions using

Ĥ ¼ Hypypþ

¼ ŷpðlf Þypþ
ð26Þ

where ypþ is the Moore–Penrose inverse (pseudoinverse)

of the matrix of predicted values, and H ¼ Ĥ if and only if

the right product of the label matrix and its pseudo inverse

is the identity matrix ypypþ ¼ I [2, 23, 25]. Additionally,

this calculation can fail when the matrix of true labels is

not invertible. For the typical case where the value of each

sample (in the rows of the matrix) is used as a classification

threshold (in columns), the threshold dividing the dataset

using the lowest response value should be discarded, as by

definition all response values will be greater than or equal

to this response value and no classification is possible. This

produces a matrix of true labels with linearly independent

columns, and the pseudoinverse can be calculated.

ypþ ¼ ðypTypÞ�1ypT ð27Þ

In this case, the pseudoinverse of the label matrix is the left

inverse of the label matrix, and the product ypypþ is not the

identity matrix. In practice however, particularly when

each sample has a unique response value, it is very nearly

the identity matrix, with the only difference a 0 for the first

diagonal value of the matrix. When multiple samples share

the same response value, the product of ypypþ will have

non-zero off-diagonal values for each element where the

pair of samples corresponding to a given row and column

have the same response value. In these cases, the non-zero

off-diagonal elements and diagonal elements will be 1

divided by the number of samples sharing the response

value, and all rows and columns still sum to 1. To account

for this in our estimate, we use the sum of any value with a

non-zero element in the product of ypypþ rather than the

trace of Ĥ. We find this estimate to give good performance

in our benchmarking results.

Finally, taking the negative log likelihood L̂ðlf Þ from
Eq. (23) together with the degrees of freedom definition,

we can calculate the BIC for each fit of the regularization k
and characteristic lengthscale lf hyperparameters.

BICðlf Þ ¼ ln ðNsÞNttrðŷpðlf ÞypþÞ þ 2L̂ðlf Þ ð28Þ

Note that we multiply the degrees of freedom by the

number of classification thresholds Nt as we are duplicating

the model that many times when calculating L̂. In addition

to this calculation, it is very useful to determine the BIC of
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a null model to compare against. In the context of feature

selection, this is particularly important as it allows us to

determine that no features should be selected when the best

fit model does not perform better than the null. Considering

a null model in the form of a hat matrix, a natural candidate

is a matrix which averages all labels, predicting for each

ŷpk;m the relative frequency of labels ypk;m equal to 1. When

our labels yp are treated as a matrix with each column

predicted independently, an averaging matrix will generate

predictions based on the relative frequency of labels for

each classification problem. We observed during bench-

marking that this null model is too restrictive: many models

identifying true features were found to have higher BIC

values than this null model. An alternative, equivalent

formulation of the null model considers the labels yp and

predictions ŷp as column vectors by concatenating the

columns of all classification threshold problems into one

column vector with length NtNs. In this context, the hat

matrix is likewise a matrix with NtNs rows and columns. In

the case of the fit model, the matrix Ĥ solved in Eq. (26) is

repeated down the diagonal with all other elements set to 0.

In this context we consider another averaging matrix as the

null model, where all elements are equal to 1
NtNs

. This

matrix takes the average of all labels, generating a pre-

diction for all classification problems which is equal to the

relative frequency of (1) valued labels (as labels are either

0 or 1). This allows us to calculate the null BIC value,

Typ ¼
XNs;Nt

k;m

ypk;m

BIC0 ¼ ln ðNsÞ þ 2½lnð Ty
p

NtNs
ÞTyp

þ lnð1� Typ

NtNs
ÞðNtNs � TypÞ�

ð29Þ

given that the degrees of freedom will always equal 1 by

definition for the null hat matrix.

It is now relatively straightforward to optimize the

regularization k and characteristic lengthscale lf hyperpa-

rameters by minimizing the BIC using a derivative-free

global optimization algorithm. In particular we find that a

Bayesian optimization [22] framework such as the limbo

library [5] is a very effective choice, as the tradeoff

between computation time and robust exploration of the

parameter space can be explicitly controlled. Furthermore,

we also observe that the characteristic lengthscale lf
parameter (or other kernel-specific hyperparameters, if a

different function is used) can be optimized during the

fixed point iterations for feature weights v2. When updating

the matrix z (Eq. (16)) with new weights u, we optimize for

the kernel hyperparameters before solving for the next

iteration of weights v2.

l̂f ¼ argmin lf
BICðlf Þ

¼ argmin lf
ln ðNsÞNttrðŷpðlf ÞypþÞ

þ 2L̂ðlf Þ

ð30Þ

The optimal characteristic lengthscale l̂f is then used to

update the z matrix before solving for feature weights in

Eq. (17). Separating the optimization of the parameters in

this way substantially saves on computational effort, as

optimizing in the dimension of kernel parameters only

requires recalculation of the matrix z and BIC value, rather

than optimization of feature weights v2.

In the case of the squared exponential kernel, optimizing

the characteristic lengthscale lf hyperparameter is a convex

problem: increasing lf causes prediction from a larger

neighborhood of points, reducing the degrees of freedom

while increasing the negative log likelihood due to a poorer

fit, while decreasing lf has the opposite effect, with the

lowest BIC value corresponding to the optimal trade-off.

This problem can be readily solved by local gradient-free

optimization algorithms, however long plateaus in the BIC

value when the characteristic lengthscale lf reaches a

critical upper or lower value can cause convergence issues

or waste computation time. Fortunately, these critical val-

ues can be approximated with simple calculations and a

bounded local optimization algorithm used to easily opti-

mize the hyperparameter. The lower critical value occurs

when the response of each sample is predicted from only a

single other point, as reducing the characteristic length-

scale further cannot select fewer points. As each sample

will always be closest to itself in the calculation for BIC

with a distance of 0, we are then concerned with the value

for lf at which the kernel function value for the smallest

non-zero distance is very large. Similarly, the upper critical

value is determined by the point at which the kernel

function value for the largest distance is very small, as at

this point the response of a sample will be predicted from

all other samples. Thus we can easily solve for these

bounds using the equation for the kernel Eq. (12),

dmin ¼min
i;j

ku � ðxi � xjÞk2

s.t.kxi � xjk2 [ 0

lfmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�dmin
2 ln 1=d

s

dmax ¼max
i;j

ku � ðxi � xjÞk2

lfmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�dmax
2 ln d

r

ð31Þ

where d is a sufficiently small value (we use 10�5).
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We outline the complete algorithm for fitting the model

for a given regularization k value in Algorithm 1, and the

network inference procedure in Algorithm 2.
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