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Abstract

It has been suggested that specific forms of cognition in older age rely largely on late-life specific mechanisms. Here
instead, we tested using task-fMRI (n = 540, age 6–82 years) whether the functional foundations of successful episodic
memory encoding adhere to a principle of lifespan continuity, shaped by developmental, structural, and evolutionary
influences. We clustered regions of the cerebral cortex according to the shape of the lifespan trajectory of memory activity
in each region so that regions showing the same pattern were clustered together. The results revealed that lifespan
trajectories of memory encoding function showed a continuity through life but no evidence of age-specific mechanisms
such as compensatory patterns. Encoding activity was related to general cognitive abilities and variations of grey matter as
captured by a multi-modal independent component analysis, variables reflecting core aspects of cognitive and structural
change throughout the lifespan. Furthermore, memory encoding activity aligned to fundamental aspects of brain
organization, such as large-scale connectivity and evolutionary cortical expansion gradients. Altogether, we provide novel
support for a perspective on memory aging in which maintenance and decay of episodic memory in older age needs to be
understood from a comprehensive life-long perspective rather than as a late-life phenomenon only.
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Introduction
Over the last few years, research has demonstrated that the
structural foundations of general cognitive abilities are largely
constant throughout life (Karama et al. 2014; Walhovd et al.
2016), being embedded into fundamental aspects of brain
organization as captured by evolutionary expansion patterns or
connectivity gradients (Margulies et al. 2016; Sneve et al. 2019).
However, it is unknown whether the functional foundations

supporting specific forms of cognition are equally stable or
rather dynamic through life. In supporting signature aspects
of human cognition like autonoetic consciousness and future
thinking (Tulving 1983; Schacter et al. 2012), episodic memory
represents a crucial ability in everyday function. Its vulnerability,
particularly in old age, has thus attracted much research
effort, leading researchers to postulate distinct age-specific
mechanisms to explain brain-behavior correlates at different
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Figure 1. Experimental scheme. (a) Experimental design; adapted from Roe et al. (2020). (b) Source memory performance across the lifespan sample (proportional,
corrected for guessing). (c) Subsequent memory contrast (BOLDS > i : source vs. item memory encoding) for the entire sample (n = 540). See Supplementary Methods
and Results. Green and purple regions denote positive and negative subsequent memory effects, respectively. (d–g) Lifespan Parcellation pipeline. Brain clusters
characterized by different ‘canonical’ trajectories were established from subsequent source memory encoding effects across life. (d) 416 ROIs were selected

corresponding to the “Schaefer” (Schaefer Local–Global parcellation) and “fsaseg” cortical and subcortical atlases. (e) For each ROI, we fitted a lifespan trajectory
to encoding activity and computed its derivative. (f ) A dissimilarity matrix, based on pairwise distance of derivatives, was computed to group regions with similar age
trajectories. The matrix was based on a least-squared sum (416 ROIs; 100 equispaced age points). (g) The similarity matrix was fed into a k-medoids algorithm and the
optimal partition (k = 5) was established by the silhouette width coefficients.

periods in life (Cabeza et al. 2018; Stern et al. 2020). Yet,
lifespan researchers have emphasized integrative accounts of
lifelong changes in cognitive abilities—and episodic memory
in particular—in which development and decay of brain
structure often represent a key fundament for brain function
and cognitive change (Schulz and Heckhausen 1996; Craik
and Bialystok 2006; Shing et al. 2010; Nyberg et al. 2012;
Walhovd et al. 2018). Using a novel and multifaceted analytic
approach, we looked for evidence of continuous and age-
specific functional mechanisms supporting episodic memory
and how these are related to fundamental variations in brain
structure and cognition throughout the lifespan. As the main
goal, we aimed to assess whether episodic memory function
represents fundamental aspects of life-long brain organization
and continuity, similar to what has been established for general
cognitive abilities.

Despite ample evidence of age differences in associative
encoding function, lifespan approaches are still rare (c.f. Shing
et al. 2016). Yet, there are recurrent findings shared by both child
development and aging research. Common findings include
decreased activity in the prefrontal cortex and default-network
regions; the latter typified as reduced activity associated with
memory failure; that is, “negative” memory effects (Miller et al.
2008; Güler and Thomas 2012; Shing et al. 2016; Amlien et al.
2018; Vidal-Piñeiro et al. 2019). Age-related changes of encoding
activity in the medial temporal lobe and in posterior perceptual
regions—except for the dorsal visual pathway—are less clear
(see Shing et al. 2010; Wang and Cabeza 2016 for reviews). Age-
related changes in neural function are thought to mediate gains
and losses of memory performance through life. The brain
organization is constrained by ontogenic development and

determined by several factors such as the distance from
primary sensorimotor regions or the genetic profiles. Cognition
is embedded into such aspects of brain organization as are
a region’s flexibility, maturation, and vulnerability profiles
(Goldman-Rakic 1988; Mesulam 1998). An alternative view
suggests old age individuals invoke additional mechanisms to
maintain cognitive performance. These mechanisms appear as
a “reaction” to the deleterious effects of age, brain pathology,
or other brain insults and may involve over-recruitment
of existing networks, recruitment of new networks due to
reorganization or strategy selection, and more efficient use of
existing resources (Cabeza et al. 2018; Stern et al. 2020). These
age-specific mechanisms are either unavailable or unused in
young adulthood.

Here, we delineated the lifespan trajectories associated with
episodic encoding success, using fMRI data from 540 healthy
individuals from 6 to 82 years during an incidental source-item
encoding task (Fig. 1a–c). Region-wise encoding activity through-
out the entire brain was fit to age using generalized additive
models (GAM) and the most characteristic lifespan trajectories
were established based on a clustering approach (Fig. 1d–g).
Encoding was indexed using a source versus item memory con-
trast that isolates the binding aspects of episodic memory and is
highly sensitive to age. We reasoned that support for an account
of lifelong continuity in the brain foundations of episodic encod-
ing would require that: 1) The lifespan trajectories of encoding
activity cluster into known networks with a meaningful function
and topology. We expected the lifespan clustering procedure
to reveal different systems that are characterized by specific
maturation and vulnerability profiles. 2) The clusters of activ-
ity trajectories are embedded in fundamental aspects of brain
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organization as quantified by the degree of cortical expansion
through evolution, the capacity for integration of information,
and the principal functional gradient which reflects the differ-
entiation between unimodal and transmodal cortex (Van Essen
and Dierker 2007; Yeo et al. 2015; Margulies et al. 2016). The
clusters more affected by age should be characterized by aspects
of brain organization that permit more flexible, unconstrained
computations. 3) The trajectories are not determined by age-
specific profiles of activity at middle or older age, that is, defined
by increased/decreased activity in late-life only 4) Interindivid-
ual variations of activity in developmentally sensitive clusters
are related to core cognitive abilities and structural features
that govern brain and cognitive variability in childhood and
older age. Evidence for age-specific mechanisms in older age
would require one of the following 1) trajectories defined by
lack of activity during childhood and young adulthood and
increased activity in middle or older age, 2) trajectories defined
by higher activity in older versus younger age or 3) trajectories
characterized by less activity in old adulthood and a negative
activity-performance relationship.

Material and Methods
Participants

The final sample included 540 individuals (females = 366,
age = 39.1 [SD = 18.5] years, age range = 6–82 years). The study was
approved by the Regional Ethical Committee of South Norway.
All participants ≥12 years gave written informed consent, all
participants <12 years gave oral informed consent and, for all
participants <18 years, written informed consent was obtained
from their legal guardians. All participants were screened
through health and neuropsychological interviews. See Supple-
mentary Methods for additional sample and exclusion criteria
details. Participants’ data were discarded due to technical errors,
faulty acquisitions or a low number of trials in a condition of
interest (<6 trials; n = 14).

Experimental Design and Behavioral Analysis

The experiment consisted of an incidental encoding task and a
memory test after approximately 90 min. Both tasks took place
inside the scanner. Only the fMRI data for the encoding session is
used in the current study. The experimental design is thoroughly
described elsewhere (Sneve et al. 2015; Vidal-Piñeiro et al. 2019).
See Figure 1a and Supplementary Methods for further details.

Briefly, the encoding and the retrieval tasks consisted of
two and four runs, respectively, that included 50 trials each. All
runs started and ended with an 11 s baseline recording period
in which a central fixation cross was present. An additional
baseline period was also presented once in the middle of each
run. The trials started with a voice asking either “Can you eat
it? “or “Can you lift it?” (in Norwegian) (25 times each). After
1 s, a picture of an item appeared on the screen together with a
“Yes/No” response indicator. Note that responses contained an
objective component and thus were neither correct nor incorrect
(e.g., Can you lift a crocodile?). Participants were instructed to
link the item with the action self-referentially. The subject had
2 s to produce a response before the object was replaced by a
central fixation cross (intertrial interval [ITI] = 2.98 [SD 2.49] s;
range = 1–7 s [exponential distribution over four discrete it is].
During retrieval, test trials started with the following question
(Q1): “Have you seen this item before”. Then, a picture of an item

appeared, and the participant was instructed to indicate “Yes or
No”. In each run, 25 old and 25 new items were presented in a
pseudorandomized order. Each object stayed on the screen for
2 s; if the participant responded that the item was new or did not
respond, the trial ended. If the participant remembered seeing
the item, a new question followed (Q2): “Can you remember
what you were supposed to do with the item?”. A “No” response
ended the trial, whereas a “Yes” response was followed by a final
question (Q3): “Were you supposed to eat it or lift it?”. Here, the
participant had to choose between the two actions “Eat” or “Lift”
associated with the item encoding (“I imaged eating/lifting the
item during the encoding phase”).

For behavioral analysis, test trial responses to old items
were classified as follows: source memory (Yes response to Q1
and Q2 and correct response to Q3); item memory (correct Yes
response to Q1 and either a No response to Q2, or incorrect
response to Q3); or miss (incorrect No response to Q1). Memory
performance in the task was assessed with a corrected source
memory performance index (source memory—incorrect source
memories [Yes response to Q1 and Q2 and correct response to
Q3]). This correction tentatively accounts for the probability of
correct source memories at chance (0.5 given Yes response to
Q1 and Q2) and controls for processes such as false memories,
threshold criteria in Q2 or guessing behavior that affects the
raw estimates of source memory performance (Vidal-Piñeiro
et al. 2017, 2019). The correlation between the corrected and the
uncorrected source memory index was r = 0.93.

MRI Acquisition and Preprocessing

Imaging data were collected using a 20-channel head coil
on a 3T MRI (Skyra, Siemens Medical Solutions, Ge) at
Rikshospitalet (Oslo). Each encoding run consisted of 134
volumes with the following functional imaging parameters:
43 transversally oriented slices were measured using a BOLD-
sensitive T2∗-weighted EPI sequence (TR = 2390 ms, TE = 30 ms,
flip angle = 90◦; voxel size = 3 × 3 × 3 mm; FOV = 224 × 224 mm;
interleaved acquisition; generalized autocalibrating partially
parallel acquisitions acceleration [GRAPPA] factor = 2). Three
dummy volumes were collected at the start of each fMRI run
to avoid T1 saturation effects in the analyzed data. Anatomical
T1-weighted (T1w) magnetization-prepared rapid gradient echo
(MPRAGE) images consisted of 176 sagittally oriented slices
and were obtained using the following turbo field echo pulse
sequence: TR = 2300 ms, TE = 2.98 ms, flip angle = 8◦, voxel
size = 1 × 1 × 1 mm, FOV = 256 × 256 mm. Additionally, a standard
double-echo gradient-echo field map sequence was acquired
for distortion correction of the echo-planar images. Visual
stimuli were displayed in the scanner with an NNL 32-inch
LCD monitor (NordicNeuroLab). Participants responded using
the ResponseGrip system (NordicNeuroLab).

The MRI dataset was converted to Brain Imaging Data
Structure format (BIDS) (Gorgolewski et al. 2016) while cortical
reconstruction and volumetric segmentation of the T1-weighted
scans were performed with the FreeSurfer v.6.0 pipeline (http://
surfer.nmr.mgh.harvard.edu/fswiki) (Fischl and Dale 2000). The
fMRI analyses were constrained to a set of 416 ROIs covering the
entire cortical and subcortical space. Subcortical ROIs regions
were defined in native space based on the FreeSurfer automatic
subcortical segmentation “aseg” with the additional division of
the hippocampi along the anterior–posterior axis (Poppenk et al.
2013). Cerebellum was not included due to partial acquisition for
this region in several participants. For the cortical surface, 200
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ROIs were defined per hemisphere on each participants’ native
reconstructed surface based on the Local–Global Parcellation of
the Human Cerebral Cortex (Fig. 1d; Schaefer et al. 2018; Schae
ferLocal-Globalparcellation).

fMRI data were processed using the “fMRIPrep” preprocessing
pipeline (Esteban et al. 2019). See Supplementary Methods for
a detailed description. The pipeline included skull-stripping,
susceptibility distortions correction, motion correction, co-
registration with the anatomical reference using boundary-
based registration, and slice-timing correction. Post-“fMRIPrep”
nuisance regression removed effects of estimated motion
confounds (3 translations, 3 rotations, framewise displacement),
and six “aCompCor” principal components derived from an
eroded WM/CSF-mask. Data were high-pass filtered (128 s
cut-off) using a discrete cosine filter. Volume resampling was
performed in a single interpolation step and was then sampled
to each participants’ cortical surface space.

fMRI Analysis

First-level general linear models (GLM) were carried out with
FSFAST (https://surfer.nmr.mgh.harvard.edu/fswiki/FsFast). For
each participant and encoding run, we set up a first-level
GLM consisting of the conditions of interest, with onsets
and durations corresponding to the experimental trial period
(i.e., 2 s epochs that comprised the entire period of picture
presentation—and hence the response time-window—as well
as their temporal derivatives. The temporal derivatives were
included for first-level analyses purposes and orthogonalized
(Pernet 2014). The contrasts were used to account for any
age-related hemodynamic changes that could confound the
results. GLMs were estimated both in the cortical surfaces
and in the subcortical structures of interest in each subject’s
native space. Events were assigned to a given condition
based on the participant’s response during the subsequent
memory test. The regressors were convolved with a double-
gamma canonical hemodynamic response function (HRF). The
conditions of interest were source and item memory conditions
as defined in the behavioral analysis based on the subsequent
memory judgments (Source = subsequent item-source asso-
ciation [Yes response to Q1 and Q2 and correct response to
Q3]; Item = subsequent item memory without memory for the
association [correct Yes response to Q1 and either a No response
to Q2, or incorrect response to Q3]). Two additional regressors
were included to soak up BOLD variance associated with miss
memory trials and with trials with no response. Finally, for
each participant, percent signal change during source and item
memory encoding was estimated and contrasted to produce
estimates of episodic memory encoding, which were then
averaged over voxels/vertices within ROIs. All between-subjects
analyses were performed in R-environment (https://www.
r-project.org/; v.3.5.2). Significance values were corrected using
false discovery rate (pFDR) as implemented by Benjamini and
Yekutieli (2001) which controls for positive dependency amongst
variables across all families of tests. We used “ggplot2”, “ggseg”,
and “freesurfer” software for visualization (Wickham 2016;
Mowinckel and Vidal-Piñeiro 2019).

Clustering of Lifespan Trajectories of Encoding Activity

We used a clustering approach to group the different regions
according to their lifespan trajectories of encoding activity so
that regions with a similar age profile would be assigned to the
same cluster (i.e., inverted-U shape vs. monotonic change). See

clustering pipeline in Figure 1d–g. Brain clusters characterized
by different ‘canonical’ trajectories were established from sub-
sequent source memory encoding effects across life. In each
ROI (n = 416), we fitted age on the episodic memory contrast
using GAM models as implemented in the “vows” package (Reiss
et al. 2014). GAM is a flexible, nonparametric fitting routine with
relaxed assumptions about the relationship between variables
(Wood 2017). The technique is capable of fitting nonlinear rela-
tionships through local smoothing effects, is independent of
any predefined model, and robust to selection range (i.e., age
range) and non-normally distributed variables (Fjell et al. 2013).
In each GAM, we fitted the activity values using age as the
smoothing term (knots = 10) and sex as a covariate. The GAM
models were re-run after excluding outlier values, defined as
observations where residuals were >4 SD above or below the fit-
ting (1.39 outliers were removed per model). For each fitting, we
saved mean activity (Intercept), age effects, and edf (estimated
degrees of freedom). Next, we computed the derivative of each
lifespan trajectory based on a numerical approximation with
the “numDeriv” package (Fig. 1e; Gilbert and Varadhan 2019). To
group regions with similar age trajectories of encoding function,
we obtained a dissimilarity matrix by computing the distance
between each pair of ROIs’ derivatives—based on a least square
sum (Fig. 1f ; we draw 100 equispaced samples along the age-
range continuum). We used the derivatives instead of the “raw”
trajectories as the former removes the effects of the intercept
(mean activity). Pairwise comparison of “raw” trajectories would
lead to cluster solutions based to a large degree on the inter-
cept as age tends to exert a modulatory (and thus, compara-
tively minor) influence on activity. Regions without evidence
of subsequent memory activity (n = 74) were removed from
the dissimilarity matrix. Regions showing subsequent memory
activity were fed into a k-medoids algorithm and the optimal
partition (k = 5; k representing the number of different clusters)
was established by the silhouette width coefficients (Fig. 1g). The
average silhouette coefficient estimates how well, on average,
each object lies withing its cluster and is regarded as a proxy
of clustering quality. See Supplementary Figure 1 for a solution
at k = 8, an alternative solution based on the silhouette coeffi-
cients. To test the stability of the cluster solution, we repeated
the analysis using half-split replication (Supplementary Fig. 2).
For both half-split samples, an optimal partition was found at
k = 5 based on the silhouette width coefficients; one half-split
sample also had k = 7 as an alternative solution. A GAM analysis
showed that in-scanner motion, quantified as mean DVARS, was
associated with age (F = 7.7, P < 0.001, edf = 6.0) exhibiting a
U-shape trajectory with a steeper slope during childhood and
adolescence than in older age). To explore possible effects of
motion to the clustering solution, we repeated the clustering
analysis after the removal of 10% of the participants with higher
mean DVARS (Supplementary Fig. 3).

Relationship between Encoding Activity, Cognition, and
Grey Matter Variation

For each cluster, the first PCA component across ROIs was used
as a participant’s episodic encoding measure. Cognition was
assessed using: memory performance in the task, California
Verbal Learning Test (CVLT) total learning score, and vocabulary
and matrix reasoning raw scores. CVLT total learning score
is used as a measure of episodic memory encoding capacity.
Matrices and vocabulary tests were used as indices for fluid and
crystallized abilities. We considered both factors of interest in
line with existing frameworks for cognitive change throughout
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the lifespan (Baltes et al. 2006; Craik and Bialystok 2006). We used
a linked Independent Component Analysis (ICA; Groves et al.
2011, 2012) to derive modes of grey matter (GM) variation using
three different modalities: cortical thickness and area based
on cortical surface reconstructions (Fischl and Dale 2000), and
volume from a voxel-based morphometry (VBM) protocol (Good
et al. 2001). The modes of GM variation (n = 70 components) were
obtained as implemented by FLICA and following the pipeline
described in Douaud et al. (2014) (http://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/FLICA; Supplementary Methods and Results). We then
selected those components which showed a practical signifi-
cance with age (r2 > 0.15). For each cluster, we fitted activity
using GAM models with age and cognition/GM variation as
smoothing terms and sex as a covariate. Note that age is also
a covariate; age was modeled as a smoothed term to capture
non-linear relationships between age and activity. Note also that
these GAM analyses were run as implemented in the “mgcv”
package (Wood 2017) as it allows for multiple smoothing terms
and user-defined penalties to curve wiggliness (gamma = 2).

Relationship between Regional Solution and
Topological Organization

We assessed the topological relationship between cluster
assignment and fundamental aspects of brain organiza-
tion, namely the first component of functional connectivity
(Margulies et al. 2016), flexibility (Yeo et al. 2015), and macaque-
human cortical expansion maps (Van Essen and Dierker 2007;
Hill et al. 2010). Flexibility quantifies the capacity of a region to
support multiple tasks and thus to integrate specialized brain
networks (Yeo et al. 2015). Macaque-human cortical expansion
maps estimate the expansion of the cortical surface throughout
primate evolution. Amongst others, this measure relates to the
hierarchical organization of the human cortex, the dendritic and
synaptic architecture, and the degree of postnatal expansion
(Hill et al. 2010; Buckner and Krienen 2013). The first component
of functional connectivity closely reflects the distance from
primary sensory and motor areas and is a good proxy of a
representational hierarchy (Margulies et al. 2016). All maps
were available as open resources. For each map, values were
averaged within ROIs. Surface maps were used for cortical
data. Subcortical information—in volume-based format—was
only available for the flexibility index. We ran a right-to-left
registration for the evolutionary expansion map as this was
available only for the right hemisphere. For the evolutionary
expansion map, we used ranked-values due to the exponential
distribution of evolutionary expansion. Permutation testing was
used to establish the significance of topological relationships
(n = 10 000 permutations). We generated a random distribution
by randomly assigning ROIs to clusters. Only differences
amongst clusters greater than those established by the random
distribution (FDR-corrected) were considered significant.

Results
Delineation of Lifespan Trajectories of Encoding
Activity

As expected, age was related to memory performance (F = 37.4,
P < 0.001, edf [estimated degrees of freedom; index of curve
complexity] = 4.5; Fig. 1c), revealing an inversed U-shape lifespan
trajectory. See complete behavioral results in Supplementary
Figure 4 and Supplementary Table 1.

Figure 2. Cluster solution based on the derivatives of the lifespan trajectories

of encoding activity. Upper panel: Lifespan trajectories and the derivatives of
encoding activity grouped by cluster. Lower panel: ROI assignment by cluster.
BOLDS > i = Subsequent source versus Item memory fMRI contrast. Note that
cluster 0 was defined prior to the clustering analysis as regions not showing

subsequent memory effects. (|N| = number of ROIs in a cluster).

We reduced the number of regions in a data-driven manner
by clustering the brain based on the pairwise similarity of
the lifespan trajectories (derivatives) of episodic encoding
function. We used a k-means clustering algorithm, which
yielded an optimal partition at k = 5 with an average silhouette
coefficient of 0.59. Figure 2 displays the resulting 5-partition
arrangement of cortical and subcortical regions based on the
canonical trajectories of encoding activity during the lifespan.
For each cluster, a canonical trajectory refers to the mean
lifespan trajectory against which the other trajectories are
compared and adhere to. See in Figure 3 the effects of age,
edf, and mean activity per ROI grouped by cluster; see stats in
Supplementary Appendix 1. Note that by using a distance matrix
based on the derivatives, we partitioned the brain solely from
the lifespan trajectories, disregarding the intercept (i.e., mean
activity). Thus, regions are grouped together if their episodic
encoding activity shows the same age-relationships (e.g., two
regions with similar lifelong trajectories will group together
regardless of whether they show positive or negative memory
effects).

An initial group of regions (cluster 0) was obtained prior to the
partition algorithm (|N| = 74) (|N| = number of ROIs in a cluster),
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Figure 3. Mean BOLD activity for the source-v-item memory contrast (BOLDS > I), age effects (−log10(p)), and estimated degrees of freedom (range = 3–9) for each ROI
grouped by cluster.

which included regions that did not show evidence of activity
associated with encoding success throughout the lifespan. Most
other regions were assigned to cluster 1 (|N| = 212), which encom-
passed large parts of cortex and subcortex including the poste-
rior hippocampi. The trajectories of cluster 1 tended to exhibit
weak monotonic increments of activity throughout the lifespan.
Cluster 2 consisted of |N| = 50 regions, which were located almost
entirely in the posteromedial and in the inferior parietal lateral
cortices. Cluster 2 showed a canonical U-shape lifespan trajec-
tory and consisted of regions that showed negative memory
effects during young adulthood. Cluster 3 consisted of |N| = 47
regions from bilateral prefrontal and subcortical regions, includ-
ing the anterior hippocampi, that mapped onto a weak inverted-
U shape trajectory. Most of the regions exhibited positive sub-
sequent memory effects during young and middle adulthood.
Most of the |N| = 20 regions of cluster 4 mapped to the inferior
frontal gyrus, bilaterally, extending also to the left superior
frontal cortex and the right parahippocampal gyrus. Episodic
encoding activity in cluster 4 showed a steep inverted U-shaped
trajectory over the lifespan. All these regions exhibited positive
subsequent memory effects during young and middle adult-
hood and were significantly related to age (all ROIs P < 0.05).
Finally, cluster 5 consisted of |N| = 13 regions and exhibited a
canonical childhood and adolescent “developmental” trajectory
with activity increasing in childhood before reaching a plateau
that lasted throughout adulthood. Cluster 5 included anterior
temporal, pars orbitalis regions bilaterally as well as parts of the
right temporoparietal and parahippocampal cortices. Overall,
the results showed a continuity of the canonical trajectories
throughout the lifespan as 1) patterns of activity developed and
decayed at younger and older age, respectively (clusters 2–4); 2)
developed at younger age and later stabilized (cluster 5) or, 3)
showed a monotonical pattern through the entire life (cluster 1).
Critically, none of the trajectories exhibited late-life profiles of
activity with distinct patterns emerging at middle or older age.
A half-split sample replication showed the solution was largely
stable (Supplementary Fig. 2). The clustering solution remained
stable after the removal of participants with high movement
as quantified by mean DVARS (Supplementary Fig. 3). See the
relation between cluster assignment and the Yeo 17 Network
solution in Supplementary Appendix 1.

Relationship of Lifespan Encoding Clusters with
Cognitive Function

We next tested whether variations of activity in the encoding
clusters related to interindividual differences in core cognitive
functions, as indexed by Matrices Reasoning and Vocabulary
scores (Wechsler 1999). Further, we tested the relationship
between cluster activity and memory performance as indexed
both by task performance in the fMRI task as well as by an
external verbal recall task (CVLT learning) (Delis 2000). CVLT
learning, Matrices Reasoning, and Vocabulary scores were
related to memory performance in the task (both adjusted
and unadjusted for age). See Supplementary Results and
Supplementary Figure 5. We ran parallel GAM models with
age and the cognitive tests as smoothing terms, principal
component analysis (PCA)-based cluster activity as outcome,
and sex as a covariate. See Figure 4 for a visual representation of
the relationship between BOLD activity and cognitive function.
Activity in cluster 4 was significantly associated with better
performance on the fMRI task (F = 7.8, pFDR [n = 24] = 0.006,
edf = 2.2) and matrix scores (F = 10.0, pFDR = 0.04, edf = 1.1)
while CVLT learning scores were close to significance (F = 4.1,
pFDR = 0.05, edf = 2.2). Activity in clusters 5 and 3 was associated
with better vocabulary and matrix scores), respectively (F = 6.6,
pFDR = 0.01, edf = 2.7; F = 11.4, pFDR = 0.03, edf = 1.3. The
remaining comparisons did not pass the significance threshold.
Note that the relationship with vocabulary scores in cluster 5
flattens with higher cognitive performance suggesting that the
observed non-linear association is mostly driven by the younger
participants. See complete stats in Supplementary Table 2.
The results indicate that activity in developmentally sensitive
clusters is linked to performance in established core functions
known to drive cognitive change throughout the lifespan.

Relationship of Lifespan Encoding Clusters with
Large-scale Modes of GM Variation

Next, we assessed whether interindividual differences in
activity in developmentally sensitive clusters were associated
with core features of structural brain variability throughout
the lifespan. We obtained modes of GM variation based on
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Figure 4. Episodic encoding activity—cognitive function relationships. (a) Topography for cluster 3, 4, 5 (green, orange, purple; left hemisphere only). (b) Lifespan
trajectories of CVLT learning, matrices, and vocabulary scores. (c) Significant (FDR-corrected) relationships between cluster activity and cognitive function, controlling

for age and sex. x-axis represents test scores and y-axis represents (source-v-item) encoding activity. Ribbons represent 95% confidence intervals. Note that activity
(y-axis) values are derived from a PCA (within cluster), and thus demeaned. For clusters 3–5, higher values represent stronger positive memory effects (see Fig. 2).
BOLDS > i = Subsequent source versus item memory fMRI contrast.

cortical thickness, cortical area and, VBM-based volume. As
described in Douaud et al. (2014), we identified two GM
components that showed a strong relationship with age. The
first, ICGM1, represented a dominant whole-brain mode of
variation, explaining ∼25% of the structural variance across
individuals. This component showed a monotonic decrease
in GM across the lifespan. Age explained ∼86% of the ICGM1
variance as assessed post-hoc with GAM. The second, ICGM2,
explained ∼5% of the total GM variance and loaded heavily on
prefrontal and parietal heteromodal areas. ICGM2 exhibited an
inverse U-shape trajectory with age, which explained 46% of the
component’s variance. See additional details in Supplementary
Methods, Supplementary Results, and Supplementary Figures 6
and 7.

GAM analysis—using age and GM variation as smoothing
terms and sex as covariate—revealed that interindividual differ-
ences in GM captured by ICGM2 related to higher encoding activ-
ity in clusters 4 and 5 (F = 11.3, pFDR [n = 12] = 0.01, edf = 1; F = 23.9,
pFDR < 0.001, edf = 1, respectively). ICGM2 network mapped onto
areas susceptible to normal and abnormal childhood and ado-
lescent developmental and aging changes (Douaud et al. 2014).
In addition, encoding activity in cluster 5 was associated with
GM loadings in ICGM1 (F = 5.7, pFDR = 0.01, edf = 2.5) (Fig. 5). See
full stats in Supplementary Table 3. Note that during child devel-
opment, the relationship between GM indices such as cortical
thinning and cognition is typically negative (Squeglia et al. 2013),
which can explain the negative relationship between ICGM1 vari-
ation and activity, which exists only for high GM loads. Thus, the
results suggest that cluster activity is constrained and supported
by the development and decay of large modes of GM variation
throughout the lifespan.

Topological Relationship of Lifespan Partitions with
Functional and Evolutionary Hierarchies

Finally, we tested whether the lifespan trajectories of encoding
activity were embedded in fundamental aspects of brain orga-
nization as indexed by flexibility, the principal gradient of func-
tional connectivity, and cortical expansion through evolution.
Flexibility indexes the degree to which a region participates in
multiple cognitive components, likely by binding and integrat-
ing specialized brain networks (Yeo et al. 2015). The principal
gradient of functional connectivity represents an overarching
organization of large-scale connectivity that reflects a func-
tional hierarchy from perception/action (in sensorimotor areas)
to abstract cognitive functions (in the default mode network)
(Margulies et al. 2016). The expansion index reflects the degree
to which a region has grown in size between macaque and
humans (Van Essen and Dierker 2007; Hill et al. 2010). These
three measures reflect different fundamental aspects of brain
organization in which higher values reflect diminished con-
straints of sensory and structural input and increased capacity
to support a wider array of different tasks such as higher-
order cognition (Buckner and Krienen 2013; Sneve et al. 2019;
Baum et al. 2020). Figure 6 presents the topological relation-
ship between clusters—based on lifespan trajectories of encod-
ing function—and the functional and evolutionary hierarchical
maps. Results showed that cluster 4 encompassed regions char-
acterized by high flexibility (pFDR [n = 18] = 0.002), high macaque
to human expansion (pFDR = 0.04), and aligned at the apex
of the functional connectivity hierarchy (pFDR < 0.001) while
cluster 3 was characterized by regions aligned at the apex of the
functional connectivity hierarchy (pFDR < 0.001). See complete
stats in Supplementary Table 4.
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Figure 5. Activity—GM variation. (a, b) Modes of GM variation with
practical (r2 > 0.15) age significance. Area loadings not displayed; see
Supplementary Fig. 7. (c) Relationship between age and modes of GM variation.
(d) Relationship between GM variation and cluster activity (sex, age-corrected).

Only significant relationships after FDR-correction are shown. x-axis represents
GM loadings and y-axis represents activity. Ribbons represent 95% confidence
intervals. Note that activity (y-axis) values are derived from a PCA and thus

centered to 0. For clusters 3–5, higher values represent stronger positive memory
effects. See Figure 2.

Discussion
The results suggest that episodic encoding activity exhibits
a continuity from childhood to older age, supported by age-
sensitive features of brain structure and general cognitive
functions. Existing evidence suggests that differences in late-
life general cognitive function and brain structure are shaped
by early-life influences (Karama et al. 2014; Walhovd et al.
2016). Here we show that this principle also applies to the
brain activity underlying episodic encoding success and that
some episodic memory trajectories are also determined by

fundamental aspects of brain organization such as cognitive
flexibility, functional connectivity, and evolutionary cortical
expansion. Critically, we did not find evidence of age-specific
profiles of activity emerging at middle or older age. Rather,
memory encoding trajectories were always influenced by
developmental profiles. While some cortical regions showed
higher encoding-related activity in older age, they invariably
corresponded to monotone increments originating in childhood,
suggesting that these patterns did not reflect compensatory
responses or dedifferentiation processes appearing at old age.
Thus, the results suggest that episodic memory encoding is
related to fundamental brain characteristics in much the same
way as general cognitive function, and that successful episodic
memory encoding in higher age should be understood in a
lifespan perspective. The specific results are discussed below.

Identification of Canonical Lifespan Trajectories of
Episodic Encoding Activity

In the present study, the brain was parcellated based solely
on the shape of the lifespan trajectories of encoding activ-
ity. This novel, data-driven approach revealed several clusters
characterized by unique lifespan trajectories that mapped to
well-characterized functional and evolutionary patterns in the
brain. This observation is illustrated by the inverted U-shaped
trajectory of cluster 4 that mostly included bilateral inferior and
superior prefrontal regions. Prefrontal cortex activity is thought
to reflect a set of cognitive control operations that support the
encoding of discrete memory traces (Simons and Spiers 2003).
The inverse U-shape trajectory of encoding success through life
was closely aligned with those of fluid cognitive abilities and
prefrontal brain structure integrity (Raz 2000; McArdle et al. 2002)
and fits well with the proposition that strategic components of
episodic memory undergo a protracted maturation in childhood
and a pronounced decline in old adulthood (Shing et al. 2010).
Indeed, we found that cluster 4 activity corresponded to higher
fluid intelligence (matrix reasoning performance) and higher
GM loadings in a frontoparietal heteromodal network. Cluster
4 regions map to a network characterized by protracted child
and adolescent development, that is, prefrontal cortex, and is
characterized by marked changes in neurobiology including
myelination, synaptic pruning and dendritic remodeling (Paus
et al. 2008). This prefrontal activity captured by cluster 4 may,
in part, reflect the maturation and decline of cognitive control
components of encoding function, thus representing an impor-
tant mechanism for both general and domain-specific cognitive
change throughout life (Craik and Bialystok 2006).

The cluster 5 trajectory was characterized by increasing
episodic encoding activity during childhood and adolescence
and a plateau through adulthood. This pattern can only
be revealed via a lifespan approach, as age-relationships
were limited to childhood/adolescence, and the purely early
developmental nature of the cluster would have been concealed
without mapping across a wider age-rage. This cluster included
parts of the anterior lateral temporal cortex, the temporoparietal
junction, and anterior inferior frontal regions. One can speculate
that cluster 5 reflects a group of regions that are involved in
high-level conceptual processes. The trajectories of this cluster
mimic the lifespan trajectories for representational knowledge
and map well to a network involved in semantic/conceptual
processing (Yeo et al. 2011; Andrews-Hanna et al. 2014; Ngo et al.
2019). Cluster 5 activity may thus be particularly sensitive to
the maturation of conceptual processing mechanisms. Higher
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Figure 6. Topological relationship between encoding clusters and functional and evolutionary hierarchy. (a) Flexibility (Yeo et al. 2015), (b) specialization determined

by the principal gradient of functional connectivity (Margulies et al. 2016), and (c) macaque-human expansion (Van Essen and Dierker 2007; Hill et al. 2010). Y-
label represents the number of recruited components, distance (mm), and normalized (0–1) expansion, respectively. Conn. Gradient = principal gradient of functional
connectivity. ∗Denotes significance after permutation testing.

cluster 5 activity further related to higher vocabulary scores and
lower GM loadings of the first component. This GM component
reflects, to a large extent, cortical thickness, and has a strong
negative correlation with age, due to the steep rate of apparent
cortical thinning during development (Amlien et al. 2016).

The maintenance of cluster 5 activity combined with the
inverse U-shape trajectory of cluster 4 in prefrontal structures
and the lifelong stability of medial temporal lobe structures has
implications at both ends of the lifespan (see Supplementary
Appendix 1 for age effects in each cortical and subcortical
ROI; e.g., the four hippocampal ROIs were unrelated to age
[pFDR > 0.05]). Our findings are in agreement with the notion
that associative encoding during childhood is more dependent
on perceptual and associative systems than semantic knowl-
edge and strategic components (Maril et al. 2011; Ofen and
Shing 2013). Reliance on prefrontal-based mechanisms has
been proposed to increase during childhood and adolescence
(Ofen et al. 2007; Shing et al. 2016) while medial temporal lobe
activity remains more stable throughout child development
(Güler and Thomas 2012; Shing et al. 2016; c.f. Ghetti et al. 2010).
These trajectories of memory function are reminiscent of the
structural maturation profile of the hippocampus and the
prefrontal cortex (Tamnes et al. 2013). In comparison, young
adults benefit from recruiting regions assigned to both clusters
4 and 5. One may speculate that the acquisition of semantic
knowledge, accessible through developed cognitive control
processes, and the interaction with the medial temporal lobe
regions leads to “peak” memory performance (van Kesteren
et al. 2010). Older adults exhibited less prefrontal cortex
activity associated with later associative memory. These
results are compatible with the default-executive hypothesis
of aging, which posits that with increasing age cognitive
processes rely more strongly on semanticized mechanisms
(Spreng and Turner 2019). Semanticitazion of cognition in
old adulthood affects multiple domains, including memory
(Umanath and Marsh 2014). Encoding processes may be less
elaborate and rely more strongly on existing knowledge and
schema in older adults but are also less accessible for efficient
encoding (Craik and Bialystok 2006). While there is ample
evidence for lifespan changes in memory function along these
lines (see Ofen and Shing 2013; Umanath and Marsh 2014;
Spreng and Turner 2019), our study does not provide direct

evidence of engagement in strategies and thus this
interpretation is speculative. If so, the results bear similarity
with the notion of (age-specific) compensation by selection in
which older adults engage in different strategies to achieve the
same goal. Yet, rather than being specific to old adults, younger
peers seem to actively use and benefit from such strategies.
Thus, while the results conform to the brain maintenance
view to the extent that preserved cognition in aging relates
to maintaining youthful brain structure and function (e.g.,
Fig. 5d; Nyberg et al. 2012), one should recognize the relative
contributions the different cognitive systems can have on
memory encoding throughout the lifespan.

Lifespan variations of episodic encoding activity are linked to
variations in GM integrity—likely capturing changes in myelin
and dendritic arbors (Whitaker et al. 2016; Wen et al. 2018;
Natu et al. 2019)—and to major mechanisms of cognitive change
through the lifespan, namely fluid and crystallized abilities
(Craik and Bialystok 2006). Further, regions showing the most
marked changes in episodic encoding activity through life are
located in parts of the cortex characterized by strong expansion
in primate evolution with a function less constrained by brain
structure and sensory input, and hence, able to support a wider
array of different task configurations (Buckner and Krienen
2013; Yeo et al. 2015; Margulies et al. 2016). Previous work has
shown that inter-individual differences in cortical morphometry
in hotspot regions of expansion are related to general cogni-
tive function (Fjell et al. 2015), brain development (Hill et al.
2010), aging and Alzheimer’s Disease (Fjell et al. 2015), and brain
activity both during rest and task execution (Sneve et al. 2019).
The alignment with the different cortical organization maps
suggests that the encoding activity in these regions represents
cognitive elements that are continuously developing throughout
life as well as being either uniquely human or at least dispropor-
tionally developed in humans. In return, these features might
also confer a region with heightened vulnerability to the effects
of age and disease (Mesulam 1998; Fjell et al. 2015).

Two technical issues to consider relate to the clustering
pipeline and the effects of motion on the results (e.g., cluster
solution). The k-medoids algorithm is a data-driven clustering—
and thus descriptive—method. Different parcellations or dissim-
ilarity matrices may yield different clustering solutions. Also,
k-medoids is blind to any predefined lifespan trajectory and
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forces every ROI into a cluster. As such some ROIs might not
fit well within a given cluster, yet it is unadvisable to exclude
them based on this basis as it assesses similarity to the cluster,
not to a predefined trajectory. In any case, these concerns do
not have much influence as the present findings replicate in
a half-split analysis (Supplementary Fig. 2). The interpretabil-
ity of data-driven solutions also needs to be considered. See
above for discussion on Clusters 4 and 5. Cluster 3 resem-
bles a frontoparietal top-down attentional network, while clus-
ter 2 mimicks the posterior default-mode network that influ-
ences memory encoding either through resource reallocation
or by performing internally-directed mnemonic processes (Chai
et al. 2014; Amlien et al. 2018). Cluster 1, however, includes
both regions associated with binding mechanisms and per-
ceptual processes. This heterogeneity may have obscured spe-
cific relationships between more specific sets of regions—for
example, those involved in binding mechanisms—and memory
function. The ability to separate different systems or networks
ultimately depends on the number of partitions and the degree
in which the different systems exhibit different lifespan tra-
jectories. For example, clustering the brain into k = 8 cluster
does (Supplementary Fig. 1) separate cluster 1 into a set of sta-
ble regions and another group characterized by a monotonical
increase of activity. Whether fine-grained solutions are mean-
ingful greatly depends on cluster stability—and thus on the
lifespan stability of the trajectories—requiring bigger samples
in the upper and lower ends of the age span.

Certainly, motion is strongly associated with age and affects
BOLD signal although the impact is minor when using fMRI con-
trasts. Yet, motion correction is a double-edged sword as remov-
ing participants with high motion introduces sample bias while
covarying motion out is also problematic as motion is related to
maturation and decline of brain structure (Geerligs et al. 2017).
Supplementary analyses (Supplementary Fig. 3) showed that the
clustering solution is stable to the removal of participants with
high levels of motion.

The degree of generalization and the lack of age-specific
mechanisms requires further discussion. We found no evidence
of age-specific patterns of activity in old adulthood as defined
by either over-recruitment, recruitment of new brain regions,
or negative activity-performance relationships. The findings
refer to general patterns of activity and thus do not necessarily
preclude the existence of specific mechanisms supporting
successful encoding in older age but limit its extent to small
subsamples of participants or to processes with an unspecific
spatial distribution. For a given area, activity may reflect
different supporting mechanisms of memory encoding during
different periods in life. This issue remains largely hypothetical
and we believe it unlikely given our constrained experimental
setup. Finally, the present study uses a single—though much-
used—index of neural function during memory encoding
as captured by a BOLD signal contrast. These constraints
considered, the findings provide support for a principle of
lifespan continuity and fail to find evidence of “reactive”
age-specific mechanisms in older age.

We do predict the results will extend to other subsequent
memory contrasts able to isolate associative mechanisms of
episodic memory such as face-name pair associates. Indeed,
these studies have repeatedly shown evidence of decreased
lateral prefrontal activity in old adulthood (e.g., Dennis et al.
2008; Miller et al. 2008; Kim and Giovanello 2011) and in child-
hood/adolescence (e.g., Shing et al. 2016) and relative lifelong
stability of medial temporal and perceptual regions (Güler and

Thomas 2012; Park et al. 2013; de Chastelaine et al. 2016; Shing
et al. 2016). It is somewhat more uncertain whether results will
generalize to situations characterized by intentional encoding
and increased environmental support. Including environmental
support or explicit instruction tends to minimize memory per-
formance differences between age groups—especially in chil-
dren—(Brehmer et al. 2007; Kirchhoff et al. 2012). This boost in
performance seems related to the recruitment of frontopari-
etal regions (Logan et al. 2002; Kirchhoff et al. 2012). Simi-
larly, the results may partially depend on the incidental/inten-
tional nature of the encoding task and the availability of prior
knowledge of the different age groups (Schneider et al. 1993;
Wagnon et al. 2019) as it can modulate the lifespan trajectories
of cognition and neural recruitment for certain regions (i.e.,
frontoparietal attentional networks) (Maril et al. 2011; Köster
et al. 2017). Recognition-like contrasts tend to show different
age trajectories (Wang and Cabeza 2016). Recognition procedures
target more easily accessible memory representations but also
can capture attentional or effort-based processes—as miss trials
often capture unattended stimuli. Finally, we expect replica-
tion of trajectories of cluster 5 and cluster 4 across cognitive
domains in congruence with theories of lifespan cognition. The
incidental, associative, and self-referential nature of the encod-
ing task is particularly suited to map processes relevant for
everyday function and reflect vulnerable features of episodic
memory in old adulthood. Altogether the relationships between
the lifespan trajectories of memory activity and cognition, brain
organization, and structural integrity were largely exploratory
and deserve further replication and generalization efforts.

Finally, the present study consists of cross-sectional,
correlational data. Longitudinal studies are needed to charac-
terize intraindividual trajectories of function, reveal lead–lag
relationships, and uncover specific genetic and environmental
influences on memory function trajectories. Ultimately, only
longitudinal data will be capable of revealing the func-
tional determinants of cognitive change throughout life
(Raz and Lindenberger 2011).

Conclusion
The study provides support in favor of stable functional founda-
tions of episodic memory through life, from childhood to older
age, instead of qualitatively different, age-specific, mechanisms.
Variations in episodic memory were related to fundamental
features of brain structure and cognition that characterized
development and aging. Lifespan approaches provide a com-
prehensive framework to better understand brain and cognition
in different life periods. We thus conclude that understanding
memory vulnerability in older age requires a life-long compre-
hensive framework that considers normative cognitive, struc-
tural, and functional aspects of memory function throughout
the lifespan.

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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