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Review
A key hurdle in understanding the spread and control of
infectious diseases is to capture appropriately the
dynamics of pathogen transmission. As people and
goods travel increasingly rapidly around the world, so
do pathogens; we must be prepared to understand their
spread, in terms of the contact network between hosts,
viral life history and within-host dynamics. This will
require collaborative work that takes into account viral
life history, strategy and evolution, and host genetics,
demographics and immunodynamics. Mathematical
models are a useful tool for integrating the data and
analyses from diverse fields that contribute to our un-
derstanding of viral transmission dynamics in hetero-
geneous host populations.

Decoupling disease from transmission
Microbiological and molecular research has revolutionized
our understanding of the causes and mechanisms of infec-
tious disease; however the quantitative dynamics of
pathogen transmission, a key process that drives the like-
lihood and extent of epidemic outbreaks and pathogen
evolution, is still not well understood. It is crucial to
recognize that severity of disease is not necessarily corre-
lated with transmission. For example, subacute sclerosing
panencephalitis, caused by the measles virus years after
the original symptoms occur [1], is a severe and often fatal
disease, but has little impact on population level dynamics
because there is no transmission of the virus. And the
converse can be true – someone can be highly infectious
yet show few disease symptoms, as in ‘superspreading’
events during the SARS (severe acute respiratory syn-
drome) epidemic [2,3]. SARS is a rare example of a
pathogen where many of the transmission events in an
emergent epidemic were recreated from contact tracing [4].
Molecular techniques are now also used to trace a chain of
transmission based on sequence similarities [5]. However,
large-scale transmission experiments, such as those car-
ried out with influenza virus in ferrets [6,7], are the ideal
way to gain insight into biological processes that drive the
transmission process. Unfortunately, for economic and
ethical reasons, they are difficult to conduct on a suffi-
ciently large scale to fully quantify transmission for the
range of important pathogens.
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In most cases, therefore, we need to assess the
implications of individual host-level variables for popu-
lation-level transmission more indirectly. Mathematical
models are a powerful tool here, allowing the researcher
to integrate the many disciplines, including virology,
immunology, viral and host genetics and behavioral
sciences, that contribute to our knowledge of viral trans-
mission. Epidemiological modeling and analysis is one way
to assess correlation between data from these various
fields. For example, the probability and rate ratios of
transmission per contact event during different stages of
HIV infection were estimated using Poisson regression.
Statistical models were then used to identify co-variates
that were associated with higher transmission. These
included high viral load, genital ulcers and young age
[8]. Population-level ecological modeling of disease
dynamics has also influenced disease control policy for
human and animal infections, such as identifying the
proportion of a population that needs to be vaccinated
against a diverse range of infections [9,10].

Mathematical models with parameters that account for
pathogen characteristics (replication strategy and evol-
ution) and host characteristics (genetics, behavior,
duration and strength of immunity, population mixing
and variability) are a means to integrate available data
to unravel viral transmission dynamics. This review will
cover basic tenets of disease ecology and examine recent
advances in ecological disease modeling that begin to bring
all these parameters together in biologically relevant
models of viral spread. The techniques addressed in this
review aid in identifying which aspects of virus–host sys-
tems determine how a virus spreads in a population and
help public health professionals create effective prevention
and treatment strategies.

The basic model
The most basic population-level epidemic model for viral
infections is the compartmental, ordinary differential
equation, the SEIR model, which tracks the proportion
of a population in four classes – susceptible, exposed,
infected and infectious, and recovered and immune – over
time (Figures 1a, 2a; Box 1). The SEIR model captures the
epidemic dynamics of measles well [11]. Measles is an
acute infection, and virus shedding occurs for a defined
and relatively constant period in most infected persons, so
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Figure 1. Model simulations of ten years of epidemic with a variety of parameters. Each graph plots the output of a simulated epidemic over ten years. A transient period of

190 years, not plotted here, was run to move the dynamics onto a stable limit cycle. The proportion of the population infected is plotted as a function of time in years. All

simulations were run according to variants of the SEIR (susceptible, exposed, infectious, and recovered) model (Box 1). The model was seasonally forced using a sinusoidal

function with a period of one year for more realistic dynamics by varying the transmission coefficient according to b(t). Seasonal forcing is a common phenomenon in

childhood infections for which the dynamics are dependent on annual school term cycles. The transmission coefficient, b0, and the infectious period, g�1, were adjusted for

each model to maintain approximately constant R0, as calculated assuming the sinusoidal term in b(t) = 0. The parameters, unless otherwise specified were: N = 1, g = 73,

s = 45.625, m = 1/45, b0 = 1250, b1 = 0.1, r = 1. See Table 1 for units and biological interpretations of the parameters. (a) A standard SEIR model for an acute infection with

seasonal forcing. The acute, SEIR epidemic model is shown in red in (b), (c) and (d) to highlight the differences. (b) A standard chronic infection with g = 1, b0 = 17.12329. (c)

The carrier model divides the infected class into two groups, those who carry and those who clear the infection. This graph shows the effect of having 1% of the population

as carriers, maintaining the infection chronically with b0 = 150.7841 and g2 = 0.1 or an infectious period of ten years. This has two noticeable effects on the epidemic curve.

First, the number of infected individuals at any time is increased. Second, the depth of the troughs (difference between the maximum and minimum number of infected

individuals) is smaller in the model with carriers than a homogeneously acute infection (trough depth 0.000202 and 0.00119, respectively). The minimum population size to

maintain the expected number of infecteds > 1 is 1004 with carriers, versus 22 975 for the homogeneous acute system. (d) The SEIRS model incorporates a loss of immunity

and return to the susceptible class. Loss of immunity in an acute infection results in no longer having biannual cycles, just seasonally forced yearly fluctuations and an

overall increase in disease prevalence compared with the acute infection model.
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estimating the rate at which individuals leave the infected
and infectious class is possible. Further, the characteristic
clinical manifestations of measles also make historical
epidemic patterns based on disease notification relatively
reliable. Measles also induces lifetime immunity, consist-
ent with the assumption that once individuals recover,
they never return to the susceptible class. Furthermore,
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the measles virus does not evolve quickly to escape
immunity in previously infected hosts [12]. Thus, there
is no return of individuals from the recovered class to
the susceptible pool. The basic SEIR model goes a long
way in explaining measles and other childhood disease
dynamics [13–15]. The SEIR assumptions do not fit most
other viral infections, however. Different viral strategies



Figure 2. Flow diagrams of viral transmission mathematical models. Each parameter, shown as a Greek letter next to an arrow, defines the rate of movement from one class

to the next. m, birth and death rates; b, transmission coefficient; s, rate at which infected individuals become infectious; g, rate at which infectious individuals lose their

ability to transmit; r, rate of loss of immunity. (a) A schematic of the SEIR model for acute (see Figure 1a) and chronic infections (see Figure 1b) in a homogeneous

population with no loss of immunity. (b) The carrier model with a variable infectious period (see Figure 1c). One percent of the population leaves the infectious class at rate

g2, and the other 99% leave at rate g1. (c) A diagram of the SEIRS model (see Figure 1d). The long arrow from the recovered class to the susceptible class indicates

individuals who have recovered from an infection and lose their acquired immunity at rate r.
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interact with behavioral and genetic heterogeneities in
host populations to create transmission dynamics that
are not as well explained with a simple SEIRmodel. Before
exploring important features of hosts and pathogen biology
that drive epidemic dynamics, we review the biological
underpinnings of key parameters of the basic model.

The central parameters: transmission coefficient and
infectious period
The transmission coefficient (b) is a measure of trans-
mission that allows for contact frequency and probability
of infection given a close contact. It can be converted to a
point estimate for the probability that a susceptible indi-
vidual becomes infected after risky contact with an infec-
tious individual. This parameter is defined by a
combination of viral and host characteristics. For example,
a large value of b could come from a highly susceptible
naı̈ve host, a highly infectious host, or a highly infectious
virus. It is dependent on viral strain, amount of virus being
released from the infected host, and the susceptible host’s
tissue of entry and genotype.

In the basic SEIR model, the infectious period, (g�1),
determines how long an individual spends in the infectious
class before moving into the recovered class. The recovered
class comprises individuals who can no longer transmit the
pathogen, although they might still have disease symp-
toms. It is also possible tomodel death caused by disease by
incorporating a case fatality rate, usually denoted a; how-
ever, we do not include this in the models in Figure 1. Not
all infected individuals are in the infectious class. People
who have been infected but cannot yet transmit are in the
‘exposed’ class. The rate of movement out of that class
defines the latent period, (s�1). The SEIR model accounts
for this latent period, whereas the simpler SIR (suscept-
ible, infectious and recovered) version does not. Viral
replication rate, tissue tropism, host behavior, genetics
and immune response all affect the potential to transmit.
The transmission coefficient and the infectious period in
combination with demographic parameters, such as birth
and death rates, help capture the dynamic patterns of an
epidemic. See Table 1 for a summary of model parameters.

The basic reproductive number (R0)
A key concept for understanding disease transmission is
R0, the basic reproductive number. R0 is the expected
number of secondary infections resulting from the intro-
duction of one infected individual into a completely
susceptible population during the lifetime of the primary
infection. A pathogen with an R0 >1 is expected to spread
throughout a population; with R0 <1, it is expected to
become extinct. At its simplest, R0 can be characterized
as b/g [16–18].

R0 has been used to predict and compare the expected
performance of epidemic control strategies such as vacci-
nation [9]. It can also be useful for thinking about different
evolutionary strategies of viral fitness. For example, two
viruses could have the sameR0, but one has a low value of b

and long infectious period, whereas the other has the
opposite. Although the viruses exhibit different dynamics
and ‘strategies’ for establishment and persistence, they are
equally fit when at equilibrium in the host population [19–
21]. We maintain the same estimate for R0 in all of the
models in Figure 1. Although R0 can be useful for designing
control strategies and assessing viral fitness, recent stu-
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Table 1. Definition of model parameters

Parameter Units Biological significance

t Time in years

N Total population size, s

S Proportion of the popu

E Proportion of the popu

I Infectious proportion o

R Recovered and immune

b0 Base transmission coef

b1 Additional seasonally d

m yr�1 Life expectancy (inverse

s yr�1 Latent period (inverse),

g yr�1 Infectious period (inver

r yr�1 Length of immunity (in

Table 2. Effects of molecules and mechanisms on model paramet

Molecule or mechanism Example of virus it impacts

IL-10 Lymphocytic Choriomeningitis Virus

IFN-g

Population level immune

escape

Influenza Virus

Loss of immunity Respiratory Syncytial Virus

Within host immune escape Hepatitis C Virus

Carriers Nucleopolyhedroviruses, Varicella–Zoster

Virus

Host heterogeneity All

Box 1. The equations behind the SEIR model

The basic SEIR model is a deterministic, ordinary differential

equation model that tracks the progression of individuals through

four classes – susceptible, exposed, infected and recovered – over

time. The rates of change in the sizes of each class are functions of

rate parameters (m, b, s and g) (see Table 1 in main text) and the

current sizes of each class, as expressed by the following system of

equations:

dS=dt ¼ mðN-SÞ � bðtÞSI=N (1)

dE=dt ¼ bðtÞSI=N� ðmþ sÞE (2)

dI=dt ¼ sE� ðmþ gÞI (3)

dR=dt ¼ gI� mI (4)

bðtÞ ¼ b0ð1þ b1 cosð2ptÞÞ (5)

The model can be expressed in absolute numbers of individuals in

each class, in which case N is the population size. Alternatively, it

can be expressed as proportions of the total population in each

class, in which case N is 1. When N = 1, as was used in the simulated

epidemics shown in Figure 1 (of main text), the mixing term b(t)SI

represents pseudo-mass action. The minimum population size

necessary to maintain the expected number of infections >1 is

equal to the inverse of the infected proportion at the bottom of a

trough. R0 was kept approximately constant by maintaining b0/

g = 17.123, a value that illustrates epidemic cycles well and is

realistic for some infections. The basic equations can be changed to

emphasize other aspects of disease transmission. Two modifica-

tions shown in Figure 1 (of main text) are the carrier and SEIRS

models. The carrier model allows for two infectious classes that

have different infectious periods, g and g2. The b0 for this model is

chosen such that 0.99(b0/g) + 0.01(b0/g2) = 17.123. Mathematically,

dI/dt is replaced by the following two equations:

dI1=dt ¼ 0:99sE� ðmþ gÞI (6)

dI2=dt ¼ 0:01sE� ðmþ g2ÞI:b0 ¼ 150:7841 (7)

In the SEIRS model, individuals can lose immunity and return to

the susceptible class at rate r. The modifications to the basic model

involve replacing dS/dt and dR/dt with the following:

dS=dt ¼ mðN-SÞ � bðtÞSI=Nþ rR (8)

dR=dt ¼ gI� ðmþ rÞI (9)
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dies indicate the pitfalls of using R0 as a predictive statistic
for pathogen emergence or extinction owing to viral and
host heterogeneities [2]. These heterogeneities will be
explored later in this review.

SEIR parameters reflect host and viral characteristics
Each of the parameters in the basic SEIR model reflects
both viral and host characteristics that affect trans-
mission. For the rest of the paper, we will divide our
discussion into host and viral characteristics that affect
spread in a population by tuning the transmission coeffi-
cient, b, and/or the infectious period. We will explore how
host genetic and viral characteristics sometimes necessi-
tate other epidemiologically significant modifications to
the basic SEIRmodel. Thesemodifications will incorporate
loss of immune memory or immune escape, the presence of
a varied host population in which there are carriers who
transmit a virus for longer than the usual range and spread
on a social contact network (Figures 1, 2; Table 2).

Viral effects
Viral life strategy significantly affects the infectious
period, thereby altering the course of infection in an indi-
vidual and spread in a population. Viruses that elicit a
productive host immune response and are cleared quickly
occur as, sometimes dramatic, epidemic cycles in a popu-
lation (Figure 1a). These viruses include measles, influ-
enza and rhinoviruses [22], among others. Many viruses
are not cleared by the host immune system, however, and
can persist in the host for an indeterminate amount of
time, often leading to endemic population dynamics.

There are a variety of viral strategies for establishing
persistent infection in the host. The papillomaviruses,
which can cause warts, have evolved a unique ability to
replicate in squamous epithelial cells, which are not under
et to 1 in these models

lation that has no immunity to the virus

lation that have been exposed to the virus, but are not yet infectious

f the population

proportion of the population

ficient reflecting viral, immunological and social factors

ependent transmission coefficient

), birth and death rate

rate of movement from ‘exposed’ to ‘infectious’

se), rate of movement from ‘infectious’ to ‘recovered’

verse), rate of movement from ‘recovered’ to ‘susceptible’

ers and technique

Affect on model Refs

g�1 (infectious period) [22]

g�1 (infectious period) [23]

Incorporate phylodynamics [38–41]

SIRS (susceptible, infected, recovered, susceptible) [36,37]

g�1 (infectious period) [21]

Division into two infectious classes [32,33]

Network models, heterogeneous compartmental

models

[2,8,43,45]
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active immune surveillance [23]. Virus production is
minimized until cells differentiate, at which time trans-
mission is achieved. Retroviruses use a different strategy
to achieve a persistent infection; they integrate into the
host genome. These RNA viruses are maintained as repli-
cation-competent DNA proviruses for the lifetime of the
cell. Both strategies for persistence have similar popu-
lation level dynamic consequences. They produce a long
infectious period, which in turn results in an infected
population at close to dynamic equilibrium, although sea-
sonal or stochastic effects might drive fluctuations around
this steady state in practice (Figure 1b).

Phenotypic and genotypic viral heterogeneity can affect
virus transmission as well. Many viruses can cause either
acute or persistent infections. For example, some individ-
uals infected with hepatitis C virus (HCV) clear the virus,
or rapidly succumb to the infection, resulting in an acute
infection [24]. However, HCV is an RNA virus with a high
error rate and is capable of generating extensive genetic
diversity. This can lead to immune escape within a host
and, consequently, a potential carrier, exhibiting a persist-
ent infection with a long infectious period [25] (Figures 1c,
2b).

The knowledge gained from virological studies can help
disease ecologists choose appropriate models for the host–
pathogen system they are studying. The resulting mechan-
istic epidemiological models can also be used to estimate
viral infection parameters such as infectious period. These
population level estimates from natural settings can sup-
port in vitro and in vivo laboratory work that estimates the
same quantities.

Host effects

At the population level, rapid and effective host-mediated
clearance results in a short infectious period and epidemic
dynamics (Figure 1a). In a host population in which all
hosts allow the virus to persist, however, there will be a
long infectious period and endemic dynamics will occur,
resembling those caused by viruses that avoid clearance.
Recent immunological studies elucidate specific mechan-
isms by which a host determines whether a virus is cleared
or persists.

Although cellular and humoral components of the host
adaptive immune system are key effectors of virus clear-
ance, cytokines produced soon after exposure also deter-
mine the duration of infection. For example, mice with low
levels of interleukin 10 (IL-10) or those treated with anti-
body to the IL-10 receptor cleared lymphocytic choriome-
ningitis virus (LCMV), whereas those with high levels of
IL-10 sustained persistent infections [26]. The type I and
type II interferons (IFN), which derive their names from
the ability to protect against virus infection, promote both
early virus containment and effective viral clearance by
adaptive immunity. For example, LCMV can persist in the
presence of antigen-specific CD8 (cluster of differentiation
8) T cells, which control viral infection, in IFN-deficient
mice [27]. Not surprisingly, viruses have evolved a variety
of mechanisms to block IFN [28].

Host populations are not homogeneous with regard to
their susceptibility to, and ability to clear, viral infection.
Individuals in a population differ owing to nutrition,
genetics and the presence of concomitant infections. These
heterogeneities affect the dynamics in complex ways that
will be explored in the last section of this review. Popu-
lation genetic studies have identified polymorphisms in the
human population in both regulatory and coding regions
for many of the genes associated with viral clearance,
including IL-10, IL-2, IL-6, TNF-a (tumor necrosis factor
a) and TNF-b [29,30]. Individual hosts are not static in
their susceptibility to infection over time. Malnutrition has
long been linked to susceptibility to infectious disease.
There is an association between decreases in solar radi-
ation or nutritional intake of vitamin D through cod liver
oil and higher incidence of respiratory infections, in
particular influenza [31]. Moreover, an intriguing study
on selenium suggests that its deficiency allows coxsack-
ievirus and influenza to evolve a higher level of virulence in
malnourished hosts [32]. Polymicrobial infections are the
rule, not the exception [33], and it is possible that they
affect susceptibility to a secondary infection and the ability
to clear either infection.

The host’s immune status affects both the infectious
period and the probability of acquiring an infection given
contact, so knowledge of the host populations’ average
immune status can help in calibrating models. In practice,
however, host populations will characteristically be het-
erogeneously immune. Basic SEIR models do not take
these individual and temporal heterogeneities into account
and thereby could miss important consequences for public
health measures. Here, we review how these host hetero-
geneities, and complexities in viral life history, have
prompted refinements of the basic SEIR framework.

Extending the SEIR model: accounting for key
biological complexities
As discussed, the life histories of many viral infections do
not fit neatly into the SEIR assumptions and therefore
necessitatemodifications to this basic framework. Here, we
will discuss two such modifications. In the first, there are
two compartments for infected individuals: those that
maintain the infection and can transmit the infection for
a long time (carriers), and thosewho clear it rapidly. This is
denoted by the additional ‘infectious’ box in Figure 2b and
is accounted formathematically by the incorporation of two
different infectious periods [34] (Box 1). In the second case,
hosts lose their immunity to all circulating genotypes of a
virus. It is then possible for individuals to move from the
recovered class back to the susceptible class [35], as
denoted by the additional long arrow in Figure 2c [9].

Extending the SEIR model to include carriers

Factors that affect the ability of a host to clear a virus, as
mentioned, can result in a few individuals who have a
longer than average infectious period (Figure 1c). These
heterogeneities are complex and hard to measure at a
population level in humans because they arise from inter-
actions of many factors – immunology, genetics, behavior,
age, social structure and nutrition, to name a few.

Mathematical models of insect populations infected
with nucleopolyhedroviruses demonstrate the important
consequences of heterogeneity in the infectious period that
are likely to be applicable to human systems as well.
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Carriers can allow a virus to persist in a population in
which, without carriers, it would run out of susceptible
hosts and become extinct. They can also affect the stability
of the system, altering the likelihood that small pertur-
bations drastically change the population dynamics [36]. A
similar dynamical effect occurs due to the viral life strategy
of latency. The occurrence of mildly infectious shingles
from Varicella–Zoster virus (VZV) infection years after
the initial varicella outbreak could maintain the pathogen
in small populations [37].

These findings on the importance of carriers could apply
to a wide range of acute infections, which often move
rapidly through a population and fade out because of
demographic stochasticity, especially in deep interepi-
demic troughs with at most a few people in a population
infected. Host population size is important in maintaining
a chain of transmission through these troughs; however,
small populations can still allow for disease persistence.
One possible explanation for this is immigration: an
infected host from outside comes into the population and
starts a new round of infections, as seen inmeasles [11,38].
Another explanation is that a different host species can act
as a reservoir for the virus, which could be the case with
Ebola virus [39]. A third explanation is the presence of a
low proportion of carriers, which can allow persistence
even in small populations (Figures 1c, 2b), as might be
the case with foot andmouth disease virus (FMDV) [40]. In
summary, empirical studies identify the mechanisms and
existence of carriers, whereas population dynamic model-
ing indicates their potential importance for a viral strain
avoiding extinction.

Dynamics of immune escape: the SEIRS model

Acute, lifetime immunizing infections such as measles are
either cleared by the host’s immune system or result in
death of the host in a short time period. The recovered
individuals never return to the susceptible population
because they have generated a protective adaptive
immune response. But many viral infections, such as
respiratory syncytial virus (RSV), do not provide lifelong
immunity, and at some point in the future the host can be
re-infected [41]. Evolution of the virus or changes in host
immune status can allow for re-infection. The simplest
model that reflects loss of immunity is the SEIRS formu-
lation, in which the final ‘S’ denotes ‘susceptible’ again. In
SEIR terms, this means that individuals in the recovered
class become susceptible again (Figures 1d, 2c). The
increase in the susceptible class can hinder vaccine de-
velopment [42].

Rapid virus evolution affects transmission. For example,
during an interpandemic influenza outbreak, one strain of
influenza travels through a population and most infected
people become immune; they enter the ‘recovered’ class in
the SEIR model. The virus in the population continues to
evolve, however, and might successfully infect a recovered
host after selection for a different antigenic site to which
recoveredhosts areno longer immune.Anassumption of the
SEIR model is that anyone who had influenza once would
never have it again, whereas a SEIRS model reflects the
possibility of re-infection. Similar population-level patterns
occurwhen host immunitywanes to the existing strain [42],
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as it can with RSV [43,44]. A fundamental question of some
interest is why some agents elicit lifelong immunity and
others do not.

In the case of interpandemic influenza, a SEIRS model
such as the one in Figure 1d is an overly simplified
approach to understanding the dynamics. Interpandemic
dynamics are better represented by a compilation of simple
SEIRS models, in which each model represents only one
antigenic variant. These more complex models combine
virological and immunological characterization of anti-
genic sites with viral sequence and epidemiological data
to produce an epidemiological model. These models cap-
ture observed viral dynamics better by reflecting differen-
tial immunity to different strains [45–47]. They are a prime
example of how models can incorporate data and ideas
from a variety of disciplines to better reflect and promote
understanding of the way a virus moves through a human
population.

Extending the SEIR model family: host behavior and
heterogeneities
Simple SEIR models can be useful for elucidating the
central elements of the transmission process and estimat-
ing practically important aspects of viral spread such as
transmission probability and infectious period. With these
two parameters known, the probability of emergence and
relative fitness of different viral strains can be estimated
by calculating R0. As described, however, heterogeneities
in the host population can significantly affect these esti-
mates and the resulting dynamic behavior of epidemics
and response to control. To incorporate these important
heterogeneities, the well-mixed, basic SEIR model family
must be extended to include variability in demographics,
host age structure, genetics and social behavior. Modeling
techniques for incorporating variability are well studied
[9]; however, there is little work that empirically relates
population heterogeneity to variation in transmission.

The behavior of susceptible and infectious hosts affects
both the transmission coefficient and the infectious period.
In the basic SEIR model, a contact event is defined as an
infected and a susceptible individual randomly bumping
into each other. But not all ‘bumps’ are equal or equally
likely. Some contact events are short-lived, whereas some
are constant or intimate. Allowing for the focus of trans-
mission to be in schools in the SEIRmodel created a good fit
for themeasles data in a variety of settings, indicating that
school term forcing is a crucial step in maintaining a
measles epidemic [48]. Some aspects of behavior cannot
be accounted for in a well-mixed SEIR model, however.
Network models that incorporate assortative and disas-
sortative mixing (whether people tend to contact people
similar or dissimilar to them more frequently) have shed
light on the dynamics of the high prevalence of HIV in-
fection in minority populations in the United States [49]
(M. Morris, pers. commun.). Other models involving con-
tact networks have suggested the importance of the struc-
ture of a social network for determining the probability of
an epidemic or the efficacy of a vaccination strategy [50].

There is a growing body of theoretical modeling work on
the population consequences of individual host variation.
These heterogeneities are incorporated into models in a
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variety of ways, but usually affect three aspects: the
susceptibility, infectiousness or infectious period of a host.
The susceptibility and infectiousness of a host have the
potential for affecting the probability of a novel pathogen
emerging in a population, particularly when in concert
with pathogen evolution [2,51]. The presence of a diverse
host population can also increase the stability of a system
[52]. There is substantial theory, but very little empirical
work, on the impacts of host heterogeneities on population
processes.

Concluding remarks and future directions
Recent advances in molecular and theoretical studies of
host–pathogen interactions have led to a better under-
standing of transmission dynamics and the importance
of heterogeneities (Table 2). There are many exciting ques-
tions to explore. How does variability in the host popu-
lation’s genetics, immune response, general health and
behavior affect viral spread? What determines variability
in the host immune response and length of immune mem-
ory? How does a virus’ life cycle and evolution impact
transmission success?

Virology and immunology research has elucidated
mechanisms of viral persistence and clearance, which
affect the infectious period and thereby the population
dynamics. Population genetics, case histories of concomi-
tant infections, nutritional studies and social science
research have provided empirical support for host hetero-
geneities in susceptibility to and clearance of viral infec-
tions. But understanding the population-level effects of
these molecular, cellular within-host and between-host
properties remains a challenge. Modeling studies that
incorporatemore of these fields show promise in answering
these questions. SEIRmodels and their variants can reflect
loss of immunity and carrier states. Social network models
reflect the reality of different levels of contact among
members of a population. More collaborative work among
virology, immunology, social science, nutritional science
and theoretical biology researchers, along with key large-
scale transmission experiments will facilitate a better un-
derstanding of viral transmission dynamics.
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