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Neratinib has great efficacy in treating HER2+ breast cancer but is associated with significant
gastrointestinal toxicity. The objective of this pilot study was to understand the association of
gut microbiome and neratinib-induced diarrhea. Twenty-five patients (age ≥ 60) were enrolled
in a phase II trial evaluating safety and tolerability of neratinib in older adults with HER2+ breast
cancer (NCT02673398). Fifty stool samples were collected from 11 patients at baseline and
during treatment. 16S rRNA analysis was performed and relative abundance data were
generated. Shannon’s diversity was calculated to examine gut microbiome dysbiosis. An
explainable tree-based approach was utilized to classify patients who might experience
neratinib-related diarrhea (grade ≥ 1) based on pre-treatment baseline microbial relative
abundance data. The hold-out Area Under Receiver Operating Characteristic and Area Under
Precision-Recall Curves of the model were 0.88 and 0.95, respectively. Model explanations
showed that patients with a larger relative abundance of Ruminiclostridium 9 andBacteroides
sp. HPS0048 may have reduced risk of neratinib-related diarrhea and was confirmed by
Kruskal-Wallis test (p ≤ 0.05, uncorrected). Our machine learning model identified microbiota
associated with reduced risk of neratinib-induced diarrhea and the result from this pilot study
will be further verified in a larger study.

Clinical Trial Registration: ClinicalTrials.gov, identifier NCT02673398.

Keywords: gut microbiota, breast cancer, neratinib, diarrhea, artificial intelligence, explainable machine learning
INTRODUCTION

Neratinib is a potent small molecule tyrosine kinase inhibitor (TKI) that inhibits human epidermal
growth factor receptors (HER1, HER2, and HER4). Neratinib has recently been granted FDA
approval as extended therapy for early stage HER2+ breast cancer and in combination with
capecitabine for treatment of HER2+ metastatic breast cancer (1–3). Despite excellent efficacy data,
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neratinib is associated with significant gastrointestinal (GI)
toxicity, with grades 1–4 diarrhea observed in 95% of patients
and grade 3–4 diarrhea in over 40% of patients in earlier trials
(3–5). In nine trials of neratinib alone or in combination with
other therapy, dose reductions due to diarrhea ranged from
20%–53% (1, 3, 6–12). Analysis of the ExteNET trial showed
neratinib-associated diarrhea had a distinct and predictable
clinical course, with 28.6% of patients having grade 3 events
during the first month, then decreasing to ≤ 6% after month 3.
Grade 3 events are generally short-lived and occur within the
first month of treatment, allowing targeted preventive
management with antidiarrheal prophylaxis early in the
treatment course (13).

Older adults with breast cancer undergoing therapy with
neratinib are particularly vulnerable to severe diarrhea due to
potential changes in absorption, drug metabolism and
distribution with increased age. An investigator-initiated
clinical trial was designed to evaluate the safety and tolerability
of neratinib in adults 60 and older with metastatic HER2+ breast
cancer (NCT02673398). A total of 25 patients were enrolled and
here we report gut microbiome analysis using 16S rRNA gene
sequencing of longitudinally collected stool specimen in
11 patients.

The human gut contains a dense microbiome ecosystem that
is essential in maintaining a healthy host physiology, and
disruption of this ecosystem has been linked with increased
risk of toxicities from systemic cancer therapy (14–19). The
bacteriomic profile of the gut microbiome can be an indicator of
general health and disease such as inflammation, digestive
inefficiencies, and the presence of pathogens. The advent of
next-generation sequencing technologies such as 16S rRNA
gene or metagenome sequencing have enabled characterization
of the gut microbiome architecture in an affordable and culture-
free approach (20).

The objective of this study was to understand the association
of host gut microbiome and neratinib-induced diarrhea.
Utilizing 16S rRNA gene sequencing data, a machine learning
model was built for prediction of diarrhea from baseline
intestinal microbiota data in breast cancer patients.
MATERIALS AND METHODS

Patients
A phase II, single arm, open label study was conducted between
09/2015 and 12/2019 (NCT02673398). Eligibility criteria were
histologically proven metastatic breast cancer; HER2+ defined by
ASCO/CAP guideline; age ≥ 60; Eastern Cooperative Oncology
Group (ECOG) performance status (PS) 0–2. Patients were
started with a neratinib dose of 240 mg oral daily in a 28-day
cycle. Diarrhea prophylaxis with loperamide was mandatory
during the first cycle of treatment and was used as needed
beyond the first cycle. Adverse events (AEs) were assessed by
NCI Common Terminology Criteria for Adverse Events
(CTCAE) 4.0. This study was approved by City of Hope’s
regulatory and ethics committees and was conducted in
accordance with the Declaration of Helsinki and the principles
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of Good Clinical Practice. All participants provided written
informed consent.

Sample Collection
Stool samples were collected at baseline, Cycle 1 Day 15, Cycle 2
Day 1, Cycle 2 Day 15, and Cycle 3 Day 1. Fifty samples from 11
patients were collected using Zymo DNA/RNA Shield Fecal
Collection tubes. For the machine learning model, stool
samples and patient adverse event of diarrhea at any time over
the course of treatment were analyzed.

Microbiome Analysis
DNA was extracted using the MagMax Microbiome Ultra
Extraction Kit (AA2358, Thermo-Fisher, Waltham, MA), with
prior bead beating on a TissueLyser (Qiagen), using the
KingFisher Magnetic Extraction Instrument (ThermoFisher).
DNAs were quantitated by the BactQuant assay (21). 16S
rRNA libraries were created as described by Kozich et al. (22),
using modified primers described by Walters et al. (23), that
amplify the 16s rRNA variable region 4 (V4) of the rRNA gene of
bacteria and archaea. More than 16,000 reads per sample were
produced. Reads were quality filtered, trimmed and chimeras
removed then taxonomically classified using the Silva database
using QIIME2 (24, 25). The relative abundance of 26 taxa present
at ≥ 5% in any one sample within this cohort was reported to the
genus level or above. Shannon’s diversity index was also
calculated to examine gut microbiome dysbiosis.

Explainable Tree-Based
Predictive Modeling
To classify which patients would have neratinib-related diarrhea,
microbial relative abundance data from the 11 patients (50
specimens) were utilized for predictive modeling. Input
features were fed into machine learning models to classify
which patients would have diarrhea. A non-parametric and
non-linear gradient-boosted tree approach [xgboost package
(26)] was utilized for classification. For model performance
assessment, a leave-one-patient-out approach was chosen. In
each iteration, input data from one patient was held out while
data from the rest of the patients were used for training a model.
Default set of regularization and hyperparameters were used to
fit the model. The fitted model was then applied only on the pre-
treatment baseline data from the hold-out patient. Receiver
Operating Characteristic (ROC) and Precision-Recall Curves
(PRC) were used for model assessment. Subsequently, the
entire dataset was used to fit a final model. A tree-explainer
was used to compute local explanations [probabilistic SHAP
value, shap package (27, 28)] based on the associated exact
shapley values generated for each feature from individual
patient’s data. The overall feature importance was obtained by
calculating the mean absolute SHAP values of individual
features. Post-hoc analyses were then performed on the most
important features using Kruskal-Wallis tests to assess the
differences of the most important microbiota relative
abundance between patients without and without neratinib-
induced diarrhea. Python 3.7.6, scikit-learn 0.22.1, xgboost
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1.0.1, shap 0.35.0, and scipy 1.4.1 were used for machine learning
modeling and statistical analysis.
RESULTS

Patients
A total of 11/25 patients who were accrued between December
2016 and March 2019 provided 50 longitudinal stool samples.
Patient and disease characteristics are summarized in
Supplementary Table 1. The median age was 66 years old
(60–78). Sixty-four percent were Caucasian and 36% were
Asian, with 27% of Hispanic ethnicity. Eighty-two percent
were hormone receptor positive HER2+ metastatic breast
cancer. Seventy-three percent developed grade ≥ 1 diarrhea
attributed to neratinib over the course of treatment.

Microbiome Analysis
16S rRNA gene analysis was performed and the relative
abundance of 26 taxa present at ≥ 5% in any one sample
within this cohort was reported to the genus level or higher as
classified by QIIME2 (25) (Figure 1A). Bacteroides (green) is a
common anaerobic gut inhabitant that comprises a large
proportion of the human gut microbiome, is responsible for
fermentation of long chain carbohydrates, produces butyrate,
and dominates in populations who eat a Western diet.
Bacteroides sp. were present in most patients in this study (9/
11, 82%), and were predominant at baseline and throughout
treatment. Prevotella 9 (pink/violet) is a member of the same
family as Bacteroides, but is more prevalent in non-Westernized
populations. Two out of 11 (18%) patients had Prevotella during
treatment. Akkermansia (orange) is associated with a healthy gut,
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and has anti-inflammatory effects. Five out of 11 (45%) patients
had Akkermansia during treatment.

Shannon’s alpha diversity (29) measures the evenness in the
fecal communities. Shannon diversity was calculated to examine
gut microbiome dysbiosis (Figure 1B). A normal healthy gut
microbiome usually has a Shannon diversity index of 3.5 or
greater. Several samples fell below this threshold; however, no
clear association of Shannon alpha diversity index and diarrhea
was identified.

Explainable Prediction Model for Diarrhea
Due to Neratinib
The cohort for machine learning modeling included patients 1, 2,
5, 7–11 with at least one occurrence of diarrhea (n = 8), and
patients 3, 4, 6 with no diarrhea (n = 3). The Area Under ROC
(AUROC) and Area Under PRC (AUPRC) of the classification
model were 0.88 and 0.95, respectively (Figures 2A, B).

The bar plot of mean absolute SHAP values of individual
features associated with the final optimal model suggests
Ruminiclostridium 9 and Bacteroides sp. HPS0048 are the two
most impactful features overall for predicting risk for treatment-
related diarrhea (Figure 3A). A beeswarm plot (27) shows each
row corresponding to one feature and each dot corresponding to
one patient in the full dataset (Figure 3B). The color of each dot
corresponds to normalized feature value (qualitative: blue for low
values, red for high values) whereas its position along the x-axis
depicts the SHAP value describing the impact on the model
prediction. Using the beeswarm plot, the directionality of the
relation between individual features and outcome can be
observed, along with the magnitude of the relation. Specifically,
patients with larger relative abundance of Ruminiclostridium 9
and Bacteroides sp. HPS0048 may have reduced risk of
A

B

FIGURE 1 | 16S rRNA gene sequencing analysis. (A) Relative abundance of top 26 taxa by patient and cycle; (B) Shannon’s alpha diversity by patient and cycle.
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treatment-related diarrhea. A heatmap displays the relative
abundance of Ruminiclostridium 9 and Bacteroides sp.
HPS0048 in log10 scale (Figure 4). Using Kruskal-Wallis tests,
statistically significant differences between patients with and
without diarrhea for Ruminiclostridium 9 (p = 0.04,
uncorrected) and Bacteroides sp. HPS0048 (p = 0.05,
uncorrected) were identified. No statistically significant
difference was observed for the next three important features
(D_5__Subdoligranulum: p = 0.21; D_4__Lachnospiraceae_d:
p = 0.21, D_5__Tyzzerella 4: p = 0.24, uncorrected).
DISCUSSION

Using the relative abundance of microbiome taxa data, we have
developed an explainable tree-based predictive model to estimate
the risk of diarrhea associated with neratinib treatment in
patients ≥ 60 with HER2+ metastatic breast cancer. Utilizing a
Frontiers in Oncology | www.frontiersin.org 4
nested cross-validation approach, we achieved a promising 0.88
AUROC and 0.95 AUPRC for model performance. We also
identified the most important features that could predict
diarrhea and the risk with the associated directionality: patients
with higher relative abundance of Ruminiclostridium 9 and
Bacteroides sp. HPS0048 may have a reduced risk of
treatment-related diarrhea. The findings were confirmed by
Kruskal-Wallis tests (p ≤ 0.05, uncorrected). Both species
produce short chain fatty acids (SCFAs) including acetate,
propionate, and butyrate, which are important metabolites for
maintaining intestinal homeostasis. In addition, butyrate also has
important immunomodulatory functions and may activate
signaling cascades that control immune functions (30).

Multiple studies have shown that the gut microbiota has the
potential to influence the efficacy of cancer therapy (31, 32).
There are several potential mechanisms of action for TKI induced
diarrhea, including direct target inhibition, chloride secretion,
intestinal inflammation, and a dysbiotic microbiome (31).
A B

FIGURE 3 | Feature importance and local explanation of final model. (A) Bar plot of mean absolute SHAP values of individual features; and (B) Beeswarm plot
showing feature values and impact on the model prediction.
A B

FIGURE 2 | Model assessment. (A) Area Under Receiver Operating Characteristic (ROC) Curve; (B) Area Under Precision-Recall Curve (PRC).
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Both preclinical and clinical studies have demonstrated
decreased total bacterial abundance and diversity, as well
as decreases in commensals such as Lactobacillus and
Bifidobacteria, with increases in Bacteroidetes and Escherichia
coli contributing to TKI-induced diarrhea (32). The
translocation, immunomodulation, metabolism, enzymatic
degradation, reduced diversity (TIMER) model proposed by
Alexander and colleagues has outlined how the functions of the
microbiome may have a central role in determining the extent
and intensity of diarrhea induced by systemic therapy (33).
Heshiki et al. investigated the contribution of the intestinal
microbiome on treatment outcomes in a heterogeneous cohort
that included multiple cancer types to identify microbes with a
global impact on immune response (34). This human gut
metagenomic analysis revealed that responders had significantly
higher microbial diversity and different microbiota compositions
compared to non-responders, and species such as Bacteroides
ovatus and Bacteroides xylanisolvens were positively correlated
with treatment outcomes. In the current study, no clear
association of Shannon alpha diversity index and diarrhea was
identified. This likely reflects the relatively small sample size.

Machine learning and deep learning models are being
widely used for precision oncology research (35). Although the
predictive models often have impressive predictive performance,
they are typically difficult to explain. Explaining predictive
models is one of the key factors driving their use in a
clinical setting (36, 37). To correlate model prediction accuracy
and explainability, various approaches have been proposed
to generate intuitive interpretations on predictive models (27,
28, 38, 39). Using a concept in game theory, Lungberg et al.
proposed a unified framework called SHAP (SHapley Additive
exPlanations) that works for essentially all predictive models
including tree-based and deep learning models (38). In SHAP,
each feature is assigned an importance value (SHAP value) and
the addition of all SHAP values leads to the actual prediction. A
model prediction can be decomposed into a unique set of SHAP
values associated with the features, allowing clinicians and
scientists to utilize contributions of individual feature SHAP
values and their interactions to draw insight from the dataset.

The current pilot study is limited by its small sample size.
Longitudinal samples were collected from 11 patients with 50
specimens. To reduce potential bias due to training a predictive
Frontiers in Oncology | www.frontiersin.org 5
model with limited sample size, we have adopted a robust train-
test split approach where the test dataset in each leave-one-
patient-out loop was kept entirely independent of the train
dataset (40). Increased cohort size and an external dataset
would boost the utility of this model. Nevertheless, the high
model performance (AUROC and AUPRC) with meaningful
feature explanation offers a foundation for future studies. Our
study also contributes to the new field of gut microbiome in
oncology by providing a novel predictive model associating host
gut microbiota with treatment-induced diarrhea. TKIs have been
broadly used in current oncology practice and diarrhea is a
common and challenging side effect. Modulation of the
microbiota may support cancer therapy and improve patient’s
quality of life in the future (34).
CONCLUSION

Our machine learning model identified microbiota associated
with reduced risk of neratinib-induced diarrhea and the result
from this pilot study will be further verified in a larger study.
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