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Coronavirus disease, first detected in late 2019 (COVID-19), has spread fast throughout

the world, leading to high mortality. This condition can be diagnosed using RT-PCR

technique on nasopharyngeal and throat swabs with sensitivity values ranging from 30 to

70%. However, chest CT scans and X-ray images have been reported to have sensitivity

values of 98 and 69%, respectively. The application of machine learning methods on CT

and X-ray images has facilitated the accurate diagnosis of COVID-19. In this study, we

reviewed studies which usedmachine and deep learning methods on chest X-ray images

and CT scans for COVID-19 diagnosis and compared their performance. The accuracy

of these methods ranged from 76% to more than 99%, indicating the applicability of

machine and deep learning methods in the clinical diagnosis of COVID-19.

Keywords: COVID-19, machine learning, detection, biomarker, X-ray image

INTRODUCTION

First identified in Wuhan, China, severe pneumonia caused by Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2) quickly spread all over the world. The resultant
disorder was named coronavirus disease (COVID-19) (1, 2). COVID-19 has various clinical
symptoms, including fever, cough, dyspnea, fatigue, myalgia, headache, and gastrointestinal
complications (3–5). Diagnosis of COVID-19 infection through RT-PCR on nasopharyngeal
and throat swab samples has been reported to yield positive results in 30–70% of cases
(6, 7). On the other hand, chest CT scans and X-ray images have been reported to have
sensitivity values of 98 and 69%, respectively (7–9). The most typical radiological signs in these
patients include multifocal and bilateral ground-glass opacities and consolidations, particularly
in the peripheral and basal sites (10). However, interpretation of the results of these imaging
techniques by expert radiologists might encounter some problems leading to reduced sensitivity
(11). Artificial intelligence has recently gained the attention of both clinicians and researchers
for the appropriate management of the COVID-19 pandemic (12). As an accurate method,
artificial intelligence is able to identify abnormal patterns of CT and X-ray images. Using
this method, it is possible to assess certain segment regions and take precise structures in
chest CT images facilitating diagnostic purposes. Artificial intelligence methods have been
shown to detect COVID-19 and distinguish this condition from other pulmonary disorders
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and community-acquired pneumonia (13). Both deep learning
and machine learning approaches have been used to predict
different aspects of the COVID-19 outbreak. Support vector and
random forest are among the most applied machine learning
methods, while Convolutional Neural Network (CNN), Long
Short-Term Memory (LSTM), Generative Adversarial Networks
(GAN), and Residual Neural network are among the deep
learning methods used in this regard (14). In this study, we
reviewed studies which used machine and deep learning methods
on chest X-ray images and CT scans for the purpose of COVID-
19 diagnosis and compared their performance.

METHODS

Search Strategy
The research question was: “What are the applications of
machine learning techniques and their performances in COVID-
19 diagnosis using X-ray images?”. The search of the present
review was based on the PICO elements, which were as follows:

• P (Problem/Patient/Population): Patients’ CT scans and
Chest X-rays.

• I (Intervention/Indicator): Machine/deep learning models
for diagnosis of Covid-19 patients

• C (Comparison): Ground truth or reference standards
• O (Outcome): Performance measurements including

accuracy, AUC score, sensitivity, and specificity.

In other words, we were looking for publications that
evaluated the performance of any machine learning or deep
learning approaches based on inclusion and exclusion criteria.
Studies that used other types of medical image modalities
(e.g., ultrasound images) were excluded. An electronic search
was conducted on PubMed, Google Scholar, Scopus, Embase,
arXiv, and medRxiv for finding the relevant literature. Duplicate
studies were removed. Studies that were cited within the
retrieved papers were reviewed for finding missing studies. For
identifying proper journal papers and conference proceedings,
investigators screened the title and abstracts based on inclusion
and exclusion criteria independently. Finally, considering the
inclusion and exclusion criteria, investigators identified the
eligible publications in this stage independently.

Inclusion Criteria
The following inclusion criteria were used in the selection of
the articles: (1) Studies that applied machine learning or deep
learning algorithms, (2) Studies that evaluated the measurement
of model outcomes in comparison with ground truth or gold
standards, and (3) Studies that used algorithms to analyze
radiographic images (CT scan, Chest X-ray, etc.).

Exclusion Criteria
The following studies were excluded: (1) Studies that used any
machine learning or deep learning approaches for problems
not directly related to the COVID-19 imaging, (2) Studies that
used other artificial intelligence techniques or classic computer
vision approaches, (3) Studies that did not provide a clear
explanation of the machine learning or deep learning model

that was used to solve their problem, and (4) Review studies.
The latter were excluded as we did not aim to review the data
on an original level without any second-hand interpretations
(summation, inferences, etc.).

Figure 1 shows the flowchart of the study design.

RESULTS

We obtained 105 studies that used machine or deep learning
methods to assess chest images of COVID-19 patients. These
studies have used different analytical methods. For instance,
Ardakani et al. (15) have assessed radiological features of
CT images obtained from patients with COVID-19 and non-
COVID-19 pneumonia. They used decision tree, K-nearest
neighbor, naïve Bayes, support vector machine, and ensemble
classifiers to find the computer-aided diagnosis system with
the best performance in distinguishing COVID-19 patients
from non-COVID-19 pneumonia. They reported that site and
distribution of pulmonary involvement, the quantity of the
pulmonary lesions, ground-glass opacity, and crazy-paving as
the most important characteristics for differentiation of these
two sets of patients. Their computer-aided diagnosis method
yielded the accuracy of 91.94%, using an ensemble (COVIDiag)
classifier. Alazab et al. (16) have developed an artificial-
intelligence method based on a deep CNN to evaluate chest X-
ray images and detection of COVID-19 patients. Their method
yielded an F-measure ranging from 95 to 99%. Notably, three
predicting strategies could forecast the numbers of COVID-19
confirmations, recoveries, and mortalities over the upcoming
week. The average accuracy of the prediction models were 94.80
and 88.43% in two different countries. Albahli has applied deep
learning-based models on CT images of COVID-19 patients.
He has demonstrated a high performance of a Deep Neural
Network model in detecting COVID-19 patients and has offered
an efficient assessment of chest-related disorders according to
age and sex. His proposed model has yielded 89% accuracy in
terms of GAN-based synthetic data (17). Automatic detection of
COVID-19 based on X-ray images has been executed through the
application of three deep learning models, including Inception
ResNetV2, InceptionNetV3, and NASNetLarge. The best results
have been obtained from InceptionNetV3, which yielded the
accuracy levels of 98.63 and 99.02% with and without application
of data augmentation in model training, respectively (18).
Alsharman et al. (19) have used the CNN method to detect
COVID-19 based on chest CT images in the early stages of disease
course. Authors have reported high accuracy of GoogleNet
CNN architecture for diagnosis of COVID-19. Altan et al. (20)
have used a hybrid model comprising two-dimensional curvelet
transformation, chaotic salp swarm algorithm, and deep learning
methods for distinguishing COVID-19 from other pneumonia
cases. Application of their proposed model on chest X-ray
images has led to accurate diagnosis of COVID-19 patients
(Accuracy = 99.69%, Sensitivity = 99.44% and Specificity =

99.81%). Apostolopoulos et al. (21) have used a certain CNN
strategy, namely MobileNet on X-Ray images of COVID-19
patients. This method has yielded more than 99% accuracy
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FIGURE 1 | PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) chart showing the process of systematic identification, screening, and

selection of articles.

in the diagnosis of COVID-19. In another study, Ardakani
et al. (22) used 10 CNN strategies, namely AlexNet, VGG-
16, VGG-19, SqueezeNet, GoogleNet, MobileNet-V2, ResNet-
18, ResNet-50, ResNet-101, and Xception, to differentiate
COVID-19 cases from non-COVID-19 patients. They have
demonstrated the best diagnostic values for ResNet-101 and
Xception, both of them having area under curve (AUC) values
higher than 0.99 which is superior to the performance of the

radiologist. Das et al. (23) have used the CNN model Truncated
InceptionNet to diagnose COVID-19 from other non-COVID
and/or healthy cases based on chest X-ray. Their suggested
model yielded AUC of 1.0 in distinguishing COVID-19 patients
from combined Pneumonia and healthy subjects. Tables 1, 2
summarize the features of studies which adopted machine
learning methods in CT images and chest X-ray of COVID-19
patients, respectively.
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TABLE 1 | Characteristics of papers that used CT images or a combination of X-ray and CT images.

Author, year Data source Data structure and

size

Data preprocessing Best model

structure(s)

Performance measurements (on the best model) References

Accuracy AUC score Sensitivity Specificity

Abbasian et al.

(2020)

Iran University of

Medical Sciences

(IUMS)

306 COVID-19

patients;

306 COVID-19

pneumonia (CT images)

Extracting 20 features of CT

images

Ensemble 91.94% 0.965 93.54% 90.32% (15)

Alsharman et al.

(2020)

“COVID-CT-dataset” CT images Binarization (the separation of

the object and background is

known as Binarization);

Converting input image from 2D

Grayscale to 3D Color

GoogleNet CNN 82.14% (19)

Ardakani et al.

(2020)

Private dataset 108 COVID-19

patients;

86 viral pneumonia

diseases (CT images)

Converted to the gray-scale

Cropped and resized to 60 * 60

pixels

ResNet-101

Xception

Resnet:

99.51%

Xception:

99.02%

(compared to

86.7%

in human)

Resnet: 0.994

Xception:

0.994%

(compared to

0.873

in human)

Resnet:

100%

Xception:

98.04%

(compared to

89.21%

in human)

Resnet:

99.02%

Xception:

100%

(compared to

83.33%

in human)

(22)

Aswathy et al.

(2020)

“National Cancer

Institute and the

Cancer Image Archive”

1,763 normal patients;

63 pneumonia patients

Thresholding;

Texture-based feature

extractionwith a wrapper

CNN 99% – – – (24)

Bai et al. (2020) Private dataset
521 COVID-19

patients;

665 other pulmonary

diseases (CT images)

Lung segmentation;

Generate an 8-bit image for each

axial slice by applying Lung

windowing to the

Hounsfield units

EfficientNet B4 96%

(compared to

85% in

human)

0.95 95%

(compared to

79% in

human)

96%

(compared to

88% in

human)

(11)

Bridge et al. (2020)
“Toy dataset;”

“Italian Society of

Radiology;”

“Shenzhen Hospital

X-Ray dataset;”

“ChestX-Ray8;”

“COVID-CT-Dataset”

129 COVID-19

patients;

62,267 normal

patients;

5,689 pneumonia

patients (X-ray images)

30 COVID-19 patients;

1,919 normal patients

(CT images)

Using the GEV activation

function for unbalanced data

Inception V3 100% – 100% 100% (25)

Butt et al. (2020) Not mentioned
219 images from 110

COVID-19 patients;

399 normal patients

(CT images)

Image processing method base

on HU values

3D CNN – 0.996 98.2% 92.2% (26)

(Continued)
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TABLE 1 | Continued

Author, year Data source Data structure and

size

Data preprocessing Best model

structure(s)

Performance measurements (on the best model) References

Accuracy AUC score Sensitivity Specificity

Dey et al. (2020) “COVID-19 CT

segmentation dataset;”

“Chest

X-rays (Radiopaedia)”

200 COVID-19

patients;

200 normal patients

(grayscale lung

CTI images)

Segmenting lung area related to

pneumonia infection;

Extracting CWT, DWT, EWT

features from original image and

Haralick, Hu moments from

binary segmented area

Feature selection based on

statistical tests

KNN 87.75% – 89.00% 86.50% (27)

El Asnaoui et al.

(2020)

COVID-19 X-ray image

database developed by

Cohen JP;

Kermany et al. (28)

2,780 Bacterial

pneumonia patients;

1,493 Coronavirus

patients;

231 COVID-19

patients;

1,583 normal patients

(X-ray and CT images)

Intensity Normalization;

Contrast Limited Adaptive

Histogram Equalization

Inception

ResNetV2;

Densnet201

Inception-

ResNetV2:

92.18%

Densnet201:

88.09%

Inception-

ResNetV2:

0.920

Densnet201:

0.879

Inception-

ResNetV2:

92.11%

Densnet201:

87.99%

Inception-

ResNetV2:

96.6%

Densnet201:

94.00%

(29)

Han et al. (2020) “COVID-19 hospitals in

Shandong Province”

79 COVID-19 patients;

100 pneumonia

patients;

130 normal patients

(CT images)

Data augmentation AD3D-MIL 97.9% 0.99 97.9% 97.9% (30)

Harmon et al.

(2020)

Private dataset
386 COVID-19

patients;

1,011 negative

COVID-19 patients

(CT images)

Lung segmentation; clipping

images to HU range (−1,000,

500);

Data augmentation (flipping,

rotation, image intensity and

contrast adjustment, adding

random Gaussian noise);

Hybrid 3D based

on Densnet-121

90.8% – 84% 93% (31)

Hasan et al. (2020) “Radiopaedia and the

cancer imaging archive

websites”

118 COVID-19

patients; 96 pneumonia

patients;

107 normal patients

(CT images)

Histogram

Thresholding;

Dilation;

Hole Filling

LSTM 99.68% – 100% – (32)

(Continued)
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TABLE 1 | Continued

Author, year Data source Data structure and

size

Data preprocessing Best model

structure(s)

Performance measurements (on the best model) References

Accuracy AUC score Sensitivity Specificity

Hu et al. (2020) “Hospital of Wuhan

Red Cross Society;”

“Shenzhen Hospital;”

“TCIA dataset;”

“Cancer Centre Archive

(TCIA) Public Access;”

“MD Anderson Cancer

Centre;”

“Memorial

Sloan-Kettering Cancer

Center;”

“MAASTRO clinic”

150 COVID-19

patients;

150 pneumonia

patients;

150 normal patients

(CT images)

Data augmentation CNN 96.2% 0.970 94.5% 95.3% (33)

Jaiswal et al.

(2020)

“The SARS-CoV-2 CT

scan dataset”

1,262 COVID-19

patients; 1,230

non-COVID-19 patients

(CT images)

Data augmentation (rotation up

to 15, slant-angle of 0.2,

horizontal flipping, filling new

pixels as “nearest” for better

robustness)

DenseNet201 96.25% 0.97 96.29% 96.21% (34)

Kang et al. (2020) “Tongji Hospital of

Huazhong University of

Science

and Technology;”

“China-Japan Union

Hospital of Jilin

University;”

“Ruijin Hospital

ofShanghai Jiao

Tong University”

1,495 COVID-19

patients;

1,027

community-acquired

pneumonia (CAP)

patients (CT images)

Normalization;

Standardization

NN 93.90% – 94.60% 91.70% (35)

Lessmann et al.

(2020)

“Emergency wards of

an Academic center

and teaching hospital in

the Netherlands in

March and April 2020”

237 COVID-19

patients;

606 normal patients

(CT images)

Resampling;

Normalization

CORADS-AI – 0.95 85.7% 89.8% (36)

Li et al. (2020) Private 1,296 COVID-19

patients;

1,325—patients;

1,735

community-acquired

(CT images)

Segmenting lung area with U-net COVNet

(ResNet-50)

– 0.96 90% 96% (13)

(Continued)
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TABLE 1 | Continued

Author, year Data source Data structure and

size

Data preprocessing Best model

structure(s)

Performance measurements (on the best model) References

Accuracy AUC score Sensitivity Specificity

Li et al. (2020) More than 10 medical

centers between Nov.

11th, 2010 and Feb.

9th, 2020

305 images from 251

COVID-19 patients;

872 images from 869

pneumonia patients;

1,498 images from

1,475 non-pneumonia

patients (CT images)

DL-based algorithm

Image processing method base

on HU values;

Data augmentation

3D ResNet-18 Recall = 88% Precision = 89.6% F1 score = 87.8% (37)

Liu et al. (2020) Private 73 COVID-19 patients;

27 general pneumonia

patients (CT images)

ROI delineation based on

ground-glass opacities (GGOs);

13 gray level co-occurrence

matrix (GLCM) features, 15 gray

level-gradient co-occurrence

matrix (GLGCM) features, and six

histogram features were

extracted;

Feature selection by ReliefF;

An ensemble of

bagged tree (EBT)

94.16% 0.99 88.62% 100% (38)

Mei et al. (2020) Private 419 COVID-19 patients

486 non-COVID-19

patients (CT images)

Selecting pertinent slices by

image segmentation to detect

parenchymal tissue;

Segmenting lung in CT images;

ResNet-18 79.6% 0.86 83.6% 75.9% (39)

Panwar et al.

(2020)

“COVID-chest X-ray;”

“SARS-COV-2

CT-scan;”

“Chest X-Ray

Images (Pneumonia);”

206 COVID-19

patients;

364 Pneumonia

patients (X-ray and

CT images)

– VGG-19 95.61%

(COVID-19

vs.

Pneumonia)

– 96.55%

(COVID-19

vs.

Pneumonia)

95.29%

(COVID-19

vs.

Pneumonia)

(40)

Pathak et al.

(2020)

2 different COVID-19

datasets of chest-CT

images

CT images – Deep bidirectional

long short-term

memory network

with mixture

density network

(DBM)

96.19%

(multi-class)

0.96

(multi-class)

96.22%

(multi-class)

96.16%

(multi-class)

(41)

Pathak et al.

(2020)

“COVID-19 open

datasets of chest CT

images”

413 COVID-19

patients;

439 normal or

pneumonia infected

patients (CT images)

– ResNet-50 93.01% – 91.45% 94.77% (41)

Peng et al. (2020) Collected from PMC 606 COVID-19

patients;

222 Influenza;

397 Normal or other

disease patients

(CT images)

– DenseNet121 – 0.87 72.3% 85.2% (42)

(Continued)
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TABLE 1 | Continued

Author, year Data source Data structure and

size

Data preprocessing Best model

structure(s)

Performance measurements (on the best model) References

Accuracy AUC score Sensitivity Specificity

Pu et al. (2020) Private 498 COVID-19

patients;

497

community-acquired

pneumonia (CAP)

(CT images)

Data augmentation [rotation,

translation, vertical/horizontal

flips, Hounsfield Unit (HU) shift,

smoothing (blurring) operation,

Gaussian noise]

3D CNNs 99% 0.7 – – (43)

Raajan et al.

(2020)

X-ray images on public

medical Github

repositories;

Kaggle chest

X-ray database

349 images from 216

COVID-19 patients;

1,341 Normal patients

(CT images)

Normalization ResNet-16 95.09% – 100% 81.89% (44)

Rajaraman et al.

(2020)

“Pediatric CXR

dataset;”

“RSNA CXR dataset;”

“Twitter COVID-19 CXR

dataset;”

“Montreal COVID-19

CXR dataset”

313 COVID-19

patients;

7,595 pneumonia of

unknown type patients;

2,780 bacterial

pneumonia;

7,595 Normal patients

(X-ray images)

Median filtering;

Normalization;

Standardization

Inception-V3 99.01% 0.997 98.4% – (45)

Sakagianni et al.

(2020)

COVID-19 articles on

medRxiv and bioRxiv

349 COVID-19

patients;

397 non-COVID-19

patients (CT images)

– AutoML Cloud

Vision

– 0.94 88.31% – (46)

Sharma (2020) Dataset from Italian

Society of Medical and

Interventional Radiology;

COVID-CT available in

GitHub;

Dataset from hospitals

in Moscow, Russia;

Dataset from SAL

Hospital,

Ahmedabad, India;

800 COVID-19

patients;

600 Viral Pneumonia;

800 normal patients

(CT images)

Ground-glass opacities (GGO),

consolidation and pleural

effusion are the features

ResNet 91% – 92.1% 90.29% (47)

Singh et al. (2020) Not mentioned CT images – Multi-objective

differential

evolution (MODE)

based CNN

90.22% – 91.17% 89.23% (48)

Song et al. (2020) Private (two hospitals in

China);

98 COVID-19 patients;

103 non-COVID-19

pneumonia (CT images)

– BigBiGAN – 0.972 92% 91% (49)

(Continued)
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TABLE 1 | Continued

Author, year Data source Data structure and

size

Data preprocessing Best model

structure(s)

Performance measurements (on the best model) References

Accuracy AUC score Sensitivity Specificity

Wang et al. (2020) Private 1,315 COVID-19

patients;

2,406 ILD patients;

936 Normal patients

(CT images)

Lobe Segmentation by 3D-Unet;

Converting CT numbers

to grayscale

PA-66 model 93.3% 0.973 97.6% – (50)

Wang et al. (2020) COVID-19 dataset

(private);

CT-epidermal growth

factor receptor

(CT-EGFR)

dataset (private);

754 COVID-19

patients;

271 bacterial

pneumonia

29 viral pneumonia;

42 Other pneumonia

(CT images)

*The CT-EGFR dataset

was used for auxiliary

training of the

DL system

Lung segmentation;

Using a fully automatic DL model

(DenseNet121-FPN);

suppress the intensities of

non-lung areas inside the

lung ROI;

COVID-19Net

(DenseNet-like

architecture)

Test-set1:

78.32%

Test-

set2: 80.12%

Test-set1:

0.87

Test-

set2: 0.88

Test-set1:

80.39%

Test-

set2: 79.35%

Test-set1:

76.61%

Test-

set2: 81.16%

(51)

Warman et al.

(2020)

“Public sources” 606 COVID-19

patients;

224 viral pneumonias

patients;

74 Normal patients

(CT images)

Data augmentation YOLOv3 model 96.80% 0.966 98.33% 94.95% (52)

Wu et al. (2020) Private 368 COVID-19

patients;

127 other pneumonia

(CT images)

Lung region in each axial,

coronal and sagittal CT slices

were segmented using threshold

segmentation and morphological

optimization algorithms;

The slice with the most pixels in

the segmented lung area from

each of the axial, coronal and

sagittal views was selected as

the inputs of the deep

learning network;

Multi-view fusion

ResNet50

architecture

76% 0.819 81.1% 61.5% (53)

Xu et al. (2020) Private “Hospitals in

Zhejiang Province,

China.”

219 images from 110

COVID-19 patients;

224 Influenza-A viral

pneumonia patients;

175 Normal patients

(CT images)

Image processing method base

on HU values

3D CNN

segmentation

model

86.7% – 86.7% – (54)

(Continued)
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TABLE 1 | Continued

Author, year Data source Data structure and

size

Data preprocessing Best model

structure(s)

Performance measurements (on the best model) References

Accuracy AUC score Sensitivity Specificity

Xu et al. (2020) Private 432 COVID-19

patients;

76 other viral

pneumonia;

350 bacterial

pneumonia; 418

normal patients

(CT images)

Sampling 5 subsets of CT slices

from all sequential images of one

CT case to picture the infected

lung regions.

3D-Densenet – 0.98 97.5%

(differentiating

COVID-19

from three

types of non-

COVID-19

cases)

(compared to

79% in

human)

89.4%

(differentiating

COVID-19

from three

types of non-

COVID-19

cases)

(compared to

90% in

human)

(55)

Yan et al. (2020) Private 416 images from 206

COVID-19 patients;

412 common

pneumonia patients

(CT images)

Transferring image slices to JPG;

Normalization

MSCNN 97.7% 0.962 99.5% 95.6% (56)

Yang et al. (2020) Private 146 COVID-19

patients;

149 normal patients

(CT images)

For patients, images containing

round-glasses opacity (GGO),

GGO with consolidation was

selected; for healthy control,

every 3 slices containing

pulmonary parenchyma were

selected;

Lung windowing is performed

over all image slices;

DenseNet 92%

(compared to

95% in

human)

0.98 97%

(compared to

94% in

human)

87%

(compared to

96% in

human)

(57)

Yu et al. (2020) Private 202 COVID-19 patients

(CT images)

– DenseNet-201

with the cubic

SVM model

95.2% 0.99 91.87% 96.87% (58)

Al-Karawi et al.

(2020)

“COVID-CT-Dataset” 275 COVID-19

patients;

195 normal patients

(CT images)

Adaptive winner filter followed by

inversion;

Feature extraction by

the FFT-spectrum

SVM 95.37% – 95.99% 94.76% (59)

Alom et al. (2020) Publicly available

datasets;

“Kaggle repository”

3,875 pneumonia

patients;

1,341 normal patients

(X-Ray images)

178 COVID-19

patients;

247 normal patients

(CT images)

Data augmentation;

Adaptive Thresholding Approach

IRRCNN model;

NABLA-3

network model

X-ray images:

84.67%

CT

images: 98.78%

0.93 – – (60)

Barstugan et al.

(2020)

From the Italian Society

of Medical and

Interventional

Radiology

150 COVID-19 patients

(CT images)

13 features were extracted by

Gray Level Size Zone Matrix

(GLSZM)

SVM 98.77% – 97.72% 99.67% (61)

(Continued)
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TABLE 1 | Continued

Author, year Data source Data structure and

size

Data preprocessing Best model

structure(s)

Performance measurements (on the best model) References

Accuracy AUC score Sensitivity Specificity

Chen et al. (2020) Private dataset 25,989 images from 51

COVID-19 patients;

20,107 images from 55

normal patients

(retrospective dataset);

13,911 images from 27

consecutive patients

(prospective dataset)

(CT images)

Filtering Deep learning

model

Retrospective

dataset:

95.24%;

Prospective

dataset:

92.59%

(per patient)

– Retrospective

dataset:

100%;

Prospective

dataset:

100%

(per patient)

Retrospective

dataset:93.55%;

Prospective

dataset:

81.82%

(per patient)

(62)

Farid et al. (2020) Kaggle database 51 COVID-19 patients

(CT images)

Feature extraction (MPEG7

Histogram Filter, Gabor Image

Filter, Pyramid of

Rotation-Invariant Local Binary

Pattern, Fuzzy 64-bin Histogram

Image Filter);

Feature selection by composite

hybrid feature selection

CHFS-Stacked

(jrip, RF) with Naïve

Bayes classifier

96.07% – – – (63)

Gozes et al. (2020) Dataset1:ChainZ;

Dataset2: Private;

Dataset3: ChainZ;

50 suspicious

COVID-19 patients

from dataset1 used for

training;

56 COVID-19 patients;

51 normal patients (CT

images) used

for testing

Data augmentation (rotation,

horizontal flips and cropping)

Resnet-50-2D – 0.996 98.2% 92.2% (64)

Jin et al. (2020) Three centers in China;

“LIDC-IDRI;”

“Tianchi-Alibaba;”

“CC-CCII”

2,529 images from

1,502 COVID-19

patients;

1,338 images from

1,334 CAP patients;

135 images from 83

influenza-A/B patients;

258 images from 258

normal patients

(CT images)

– CNN – 0.977 90.19% 95.76% (65)

Jin et al. (2020) Data from three

different centers in

Wuhan;

Data from three publicly

available databases,

LIDC-IDRI26,

Tianchi-Alibaba27,

and CC-CCII18;

1,502 COVID-19

patients;

83 influenza-A/B

patients; 1,334 CAP

patients except for

influenza;

258 healthy subjects

(CT images)

Segmenting lung area with U-net ResNet152 – 0.971 90.19% 95.76% (66)

(Continued)
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TABLE 1 | Continued

Author, year Data source Data structure and

size

Data preprocessing Best model

structure(s)

Performance measurements (on the best model) References

Accuracy AUC score Sensitivity Specificity

Hosseinzadeh

Kassani et al.

(2020)

COVID-19 X-ray image

database developed by

Cohen JP;

“Kaggle chest X-ray

database;”

“Kaggle RSNA

Pneumonia

Detection dataset”

117 COVID-19

patients;

117 normal patients

(X-Ray images);

20 COVID-19 patients;

20 normal patients

(CT images)

Normalization DenseNet121 with

Bagging tree

classifier

99% – 96% – (67)

Ozkaya et al.

(2020)

From the Italian Society

of Medical and

Interventional

Radiology

53 COVID-19 patients

(CT images)

Feature vectors obtained from

Pre-trained VGG-16, GoogleNet

and ResNet-50 networks and

fusion method;

Feature ranking by t-test method

SVM 98.27% – 98.93% 97.60% (68)

Shi et al. (2020) From Tongji Hospital,

Shanghai Public Health

Clinical Center, and

China-Japan Union

Hospital (all in China)

183 COVID-19

patients; 5,521

Pneumonia patients

(CT images)

Segmentation by a deep learning

network (VB-Net)

Infection

size-aware

random forest

87.9% 0.942 90.7% 83.3% (69)

Song et al. (2020) From the Renmin

Hospital of Wuhan

University

88 COVID-19 patients

(CT images)

We extracted the main regions of

lungs and filled the blank of lung

segmentation with the lung itself

Details Relation

Extraction neural

network

86% 0.96 96% – (3)

Wang et al. (2020) Private dataset 44 COVID-19 patients;

55 Pneumonia patients

(CT images)

Random selection of ROI;

Feature extraction using Transfer

Learning

Fully connected

network and

combination of

Decision tree and

Adaboost

82.9% 0.90 81% 84% (6)

Zheng et al. (2020) Private dataset 313 COVID-19

patients; 229

non-COVID-19 patients

(CT images)

Data augmentation; Producing

lung masks by a trained UNet

3D deep

convolutional

neural network

90.8% 0.959 – – (70)

Data Source: The source(s) that images were acquired from, Data Structure and Size: Number of images, image modalities, sample groups, Data Preprocessing: cleaning, Instance selection, normalization, transformation, feature

extraction, selection, etc. The product of data preprocessing is the final training set, Best Model Structure(s): Best machine algorithm or deep learning model reported in the selected paper based on its performance, Performance

Measurements (on the best model): The measurement of the model’s output performance based on accuracy, sensitivity, specificity, and AUC score.
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TABLE 2 | Characteristics of papers that used X-ray images.

Author, year Data source Data structure and size Data preprocessing Best model

structure(s)

Performance measurements (on the best model) References

Accuracy AUC score Sensitivity Specificity

Alazab et al.

(2020)

Kaggle database 70 COVID-19 patients

28 normal patients (X-ray images)

Augmented to 1,000 images VGG-16 F1 Score: 0.99 (16)

Albahli et al.

(2020)

“ChestX-ray8” combined

with the few samples of rare

classes from the Kaggle

challenge

108,948 X-ray images of 32,717 unique

patients. Including 15 kinds of chest

disease

Data augmentation (rotation,

height shift, zoom, horizontal flip)

ResNet 89% – – – (17)

Albahli et al.

(2020)

Open source COVIDx

dataset

850 COVID-19 patients;

500 non-COVID-19 pneumonia cases;

915 normal patients (X-ray images)

Data augmentation InceptionNetV3 99.02% – – – (18)

Altan et al.

(2020)

Not mentioned 7,980 chest X-ray image (2,905 real raw

5,075 synthetic chests X-ray images)

Data augmentation;

The feature matrix is formed by

2D Curvelet transformation

Coefficients;

Optimizing the coefficients in the

feature matrix with the CSSA

Hybrid model 99.69% – 99.44% 99.81% (20)

Apostolopoulos

et al. (2020)

COVID-19 X-ray image

database developed by

Cohen JP;

Common Bacterial and Viral

Pneumonia X-ray Images by

Kermany et al.;

Public datasets

(Radiological Society of

North America,

Radiopaedia, and the Italian

Society of Medical and

Interventional Radiology);

“NIH Chest X-ray Dataset”

455 COVID-19 patients;

910 viral pneumonia;

2,540 other pulmonary diseases

(X-ray images)

Data augmentation (randomly

rotated by a maximum of 10◦

and randomly shifted horizontally

or vertically by a maximum of 20

pixels toward any direction)

MobileNet v2 99.18% – 97.36% 99.42% (21)

Apostolopoulos

et al. (2020)

X-ray images on public

medical Github repositories;

“Radiological Society of

North America;”

“Radiopaedia, and Italian

Society of Medicine and

Interventional Radiology”

Dataset 1:

224 COVID-19 patients;

700 bacterial pneumonia patients;

504 normal patients (X-ray images)

Dataset 2:

224 Covid-19 patients;

714 bacterial and viral pneumonia

patients;

504 normal patients (X-ray images)

- MobileNet v2 96.78% – 98.66% 96.46% (71)

Brunese et al.

(2020)

COVID-19 image data

collection;

COVID-19 X-ray image

database developed by

Cohen JP;

“ChestX-ray8;”

“NIH Chest X-ray Dataset”

250 COVID-19 patients;

2,753 other pulmonary diseases;

3,520 normal patients (X-Ray images)

Data augmentation (15 degrees

rotation clockwise or

counterclockwise)

VGG-16 96%

(comparison

between

COVID-19

and other

pulmonary

diseases)

– 87%

96%

94%

98%

(72)

(Continued)
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TABLE 2 | Continued

Author, year Data source Data structure and size Data preprocessing Best model

structure(s)

Performance measurements (on the best model) References

Accuracy AUC score Sensitivity Specificity

Chowdhury

et al. (2020)

Kaggle chest X-ray

database;

“Italian Society of Medical

and Interventional Radiology

COVID-19 database;”

“Novel Corona Virus 2019

Dataset;”

GitHub database;

“COVID-19 Chest imaging

at thread reader;”

“RSNA-Pneumonia-

Detection-Challenge”

423 COVID-19 patients;

1,485 viral pneumonia patients;

1,579 normal patients (X-ray images)

Data augmentation CNN 99.7% – 99.7% 99.55% (73)

Civit-Masot

et al. (2020)

COVID-19 and Pneumonia

Scans Dataset

132 COVID-19 patients;

132 normal patients;

132 Pneumonia patients (X-ray images)

Histogram equalization VGG16 85% – 85% 92% (74)

Das et al.

(2020)

COVID-19 collection;

“Kaggle CXR collection;”

“Tuberculosis collections;”

“U.S. National Library of

Medicine;”

“National Institutes of

Health;”

Pneumonia collections

162 COVID-19 patients;

1,583 normal patients

Histogram matching Truncated

Inception Net

100%

(Pneumonia

collections)

1.0 100% 100% (23)

Elaziz et al.

(2020)

COVID-19 X-ray image

database developed by

Cohen JP;

“Chest X-Ray Images

Pneumonia;” Italian Society

of Medical and

Interventional Radiology

COVID-19 DATABASE;

219 COVID-19 patients;

1,341 negative COVID-19 patients

(X-ray images)

Feature extraction by Fractional

Multichannel Exponent Moments

(FrMEMs);

Feature selection by modified

Manta-Ray

Foraging Optimization based on

differential evolution

KNN 98.09 – 98.91 – (75)

Hassantabar

et al. (2020)

“COVID-CT-Dataset” 315 COVID-19 patients; 367

non-COVID-19 patients (X-ray images)

– CNN 93.2% – 96.1% 99.71% (76)

Islam et al.

(2020)

“GitHub;”

“Radiopaedia;”

“Cancer Imaging Archive;”

“Italian Society of

Radiology;”

“Kaggle repository;”

NIH dataset

1,525 COVID-19 patients;

1,525 pneumonia patients;

1,525 normal patients (X-ray images)

Normalization CNN-LSTM 99.4% 0.999 99.3% 99.2% (77)

Khan et al.

(2020)

“Covid-chestxray-dataset”

“Chest X-Ray

Images (Pneumonia)”

284 COVID-19 patients;

330 Pneumonia Bacterial

327 Pneumonia Viral;

310 normal patients (X-ray images)

Random under-sampling (to

overcome the unbalanced data

problem)

CoroNet (based

on Xception)

89.6% – 89.92% 96.4% (78)

(Continued)
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TABLE 2 | Continued

Author, year Data source Data structure and size Data preprocessing Best model

structure(s)

Performance measurements (on the best model) References

Accuracy AUC score Sensitivity Specificity

Khuzani et al.

(2020)

“GitHub” 140 COVID-19 patients;

140 non-COVID-19 pneumonia

patients;

140 normal patients (X-ray images)

PCA method;

Min-Max Normalization;

Adaptive Histogram Equalization

ML 94% 0.91 100% – (79)

Ko et al. (2020) Private;

Italian Society of Medical

and Interventional Radiology

COVID-19 DATABASE;

1,194 COVID-19 patients;

1,442 non-pneumonia patients;

1,357 Pneumonia patients

(X-ray images)

Data augmentation (rotation,

zoom)

FCONet

(ResNet-50)

99.58% – 99.58% 100% (80)

Loey et al.

(2020)

COVID-19 X-ray image

database developed by

Cohen JP

69 COVID-19 patients;

79 pneumonia bacterial patients;

79

Data augmentation Googlenet 80.56% (Four

classes)

– 80.56% – (81)

Mahmud et al.

(2020)

Private 1,583 normal patients;

1,493 non-COVID viral pneumonia;

2,780 bacterial pneumonia; 305

COVID-19 patients (X-ray images)

– CovXNet (CNN

based

architecture)

90.2%

(multi-class)

0.911

(multi-class)

89.9%

(multi-class)

89.1%

(multi-class)

(82)

Martínez et al.

(2020)

COVID-19 X-ray image

database developed by

Cohen JP

120 COVID-19 patients;

120 normal patients (X-ray images)

Data augmentation;

Normalization

NASNet-type

convolutional

97% – 97% 97% (83)

Minaee et al.

(2020)

COVID-19 X-ray image

database developed by

Cohen JP;

“ChexPert dataset”

40 COVID-19 patients;

3,000 normal patients (X-ray images)

Regularization SqueezeNet 97% – 97.5% 97.8% (84)

Narayan Das

et al. (2020)

COVID-19 X-ray image

database developed by

Cohen JP;

“ChestX-ray8”

125 COVID-19 patients;

500 pneumonia patients;

500 normal patients (X-ray images)

– Xception 97.4% 0.986 97.09% 97.29% (85)

Nour et al.

(2020)

“Public COVID-19 radiology

database;”

“Italian Society of Medical

and Interventional

Radiology;”

“COVID-19 Database;”

“Novel Corona Virus 2019

Dataset;”

“COVID-19 positive chest

X-ray images from

different articles;”

219 COVID-19 patients;

1,345 Viral Pneumonia patients;

1,341 Normal patients (X-ray images)

Data augmentation CNN 97.14% 0.995 94.61% 98.29% (86)

Novitasari et al.

(2020)

GitHub and Kaggle 102 COVID-19 patients;

204 Pneumonia and Normal patients

(X-ray images)

Feature extraction by Googlenet,

Resnet18, Resnet50,

Resnet101;

Feature selection by PCA, Relief;

SVM 97.33% (multi

class)

– 96% 98% (87)

(Continued)
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TABLE 2 | Continued

Author, year Data source Data structure and size Data preprocessing Best model

structure(s)

Performance measurements (on the best model) References

Accuracy AUC score Sensitivity Specificity

Oh et al. (2020) “Japanese Society of

Radiological Technology;”

“SCR database;”

“U.S. National Library

of Medicine”

180 COVID-19 patients;

20 Viral Pneumonia patients;

54 pneumonia bacterial patients;

57 Tuberculosis patients;

191 Normal patients (X-ray images)

Data normalization;

Data type casting;

Histogram equalization;

Gamma correction

(FC)-

DenseNet103

88.9% – 85.9% 96.4% (88)

Ozturk et al.

(2020)

COVID-19 X-ray image

database developed by

Cohen JP;

“ChestX-ray8;”

(X-ray images) DarkCovidNet

inspired by the

DarkNet

architecture

87.02% – 85.35% 92.18% (89)

Pandit et al.

(2020)

COVID-19 X-ray image

database developed by

Cohen JP;

Kaggle chest

X-ray database

224 COVID-19 patients;

700 pneumonia bacterial patients;

504 Normal patients (X-ray images)

Data augmentation VGG-16 92.53%

(Three class

output)

– 86.7% 95.1% (90)

Panwar et al.

(2020)

COVID-19 X-ray image

database developed by

Cohen JP;

Radiopedia.org website;

Kaggle chest

X-ray database

142 COVID-19 patients;

142 other (“Normal” “Bacterial

Pneumonia” and “Viral Pneumonia”)

(X-ray images)

Data augmentation nCOVnet 88.10% 0.880 97.62% 78.57% (40)

Pereira et al.

(2020)

“RYDLS-20;”

Radiopedia Encyclopedia

“Chest X-ray14”

90 COVID-19 patients;

1,000 Normal patients;

10 MERS patients;

11 SARS patients;

10 Varicella patients;

12 Streptococcus patients;

11 Pneumocystis patients

(X-ray images)

Resampling algorithms;

Fusion techniques;

Pre-trained CNN F1 score = 89% (91)

Rahaman et al.

(2020)

COVID-19 X-ray image

database developed by

Cohen JP; “Chest X-Ray

Images (pneumonia)”

260 COVID-19 patients;

300 Pneumonia;

300 Normal patients (X-ray images)

Data augmentation (rotate, shift,

shear, zoom, horizontal and

vertical flip)

VGG19 89.3% – 89% – (92)

Rahimzadeh

et al. (2020)

“Covid chestxray dataset;”

“RSNA pneumonia

detection challenge”

180 COVID-19 patients;

6,054 Pneumocystis patients;

8,851 Normal patients (X-ray images)

Data augmentation Xception

ResNet50V2

concatenated

91.4% – 80.53% 99.56% (93)

Rajaraman

et al. (2020)

Pediatric CXR dataset;

RSNA CXR dataset;

CheXpert CXR dataset;

NIH CXR-14 dataset;

Twitter COVID-19 CXR

dataset;

Montreal COVID-19

CXR dataset;

4,683 Bacterial Pneumonia;

3,883 Viral Pneumonia (X-Ray images)

Segmenting lung area with

dilated dropout U-Net;

Image thresholding to remove

very bright pixels;

In-painting missing pixels using

the surrounding pixel values;

Using median-filter to remove

noise and preserve edges;

VGG-16 94.05% 0.96 98.77% 86.24% (45)

(Continued)
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TABLE 2 | Continued

Author, year Data source Data structure and size Data preprocessing Best model

structure(s)

Performance measurements (on the best model) References

Accuracy AUC score Sensitivity Specificity

Rajaraman

et al. (2020)

“Pediatric CXR dataset;”

“RSNA CXR dataset;”

“Twitter COVID-19 CXR

dataset;”

“Montreal COVID-19

CXR dataset”

313 COVID-19 patients;

7,595 pneumonia of unknown type

patients;

2,780 bacterial pneumonia;

7,595 Normal patients (X-ray images)

Median Filtering;

Normalization;

Standardization

Inception-V3 99.01% 0.997 98.4% – (45)

Sethy et al.

(2020)

X-ray images on public

medical Github repositories;

Kaggle chest

X-ray database

127 COVID-19 patients;

127 Pneumonia patients;

127 Normal patients (X-ray images)

– ResNet50 plus

SVM

98.66% – 95.33% – (94)

Shibly et al.

(2020)

COVID-19 X-ray image

database developed by

Cohen JP;

“RSNA pneumonia

detection challenge

dataset;”

Kaggle chest X-ray

database;

“COVIDx”

183 COVID-19 patients;

5,551 Pneumonia patients;

8,066 Normal patients (X-ray images)

– Faster R-CNN 97.36% – 97.65% – (95)

Togaçar et al.

(2020)

COVID-19 X-ray image

database developed by

Cohen JP;

Kaggle COVID-19 dataset

created by a team of

researchers from Qatar

University, medical doctors

from Bangladesh, and

collaborators from Pakistan

and Malaysia.

295 COVID-19 patients;

98 Pneumonia;

65 normal patients (X-ray images)

Restructuring images using the

Fuzzy Color technique and

stacking them with the original

images;

Feature extracting using deep

learning models (MobileNetV2,

SqueezeNet) using the Social

Mimic optimization method;

SVM 100% – 100% 100% (96)

Toraman et al.

(2020)

COVID-19 X-ray image

database developed by

Cohen JP

231 COVID-19 patients;

1,050 Pneumonia patients;

1,050 Normal patients (X-ray images)

Data augmentation; Convolutional

capsnet

97.24%

(Binary class)

– 97.42% 97.04% (97)

(Continued)
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TABLE 2 | Continued

Author, year Data source Data structure and size Data preprocessing Best model

structure(s)

Performance measurements (on the best model) References

Accuracy AUC score Sensitivity Specificity

Tsiknakis et al.

(2020)

COVID-19 X-ray image

database developed by

Cohen JP;

Dataset originated from the

QUIBIM imagingcovid19

platform database and

various public repositories,

including RSNA, IEEE,

RadioGyan and the British

Society of Thoracic Imaging;

Publicly available

X-ray dataset of patients

with pneumonia;

137 COVID-19 patients;

150 Virus Pneumonia;

150 Bacteria Pneumonia;

150 normal patients (X-ray images)

Data augmentation (rotation,

shear, zoom)

Inception V3 76%

(multi-class)

0.93

(multi-class)

93%

(multi-class)

91.8%

(multi-class)

(98)

Tuncer et al.

(2020)

GitHub website;

Kaggle chest

X-ray database

87 COVID-19 patients;

234 Normal patients (X-ray images)

Converting X-ray image to

grayscale;

ResExLBP and IRF

based method

SVM 100% – 98.29% 100% (99)

Ucar et al.

(2020)

“COVID chest X-ray

dataset;” “Kaggle chest

X-ray pneumonia dataset;”

403 COVID-19 patients;

721 normal patients (X-ray images)

Data augmentation (noise, shear,

brightness increase, brightness

decrease)

Bayes-

SqueezeNet

98.26%

(multi-class)

– – 99.13%

(multi-class)

(100)

Vaid et al.

(2020)

Set of lately published

articles;

NIH dataset

181 COVID-19 patients;

364 Normal patients (X-ray images)

Normalization VGG-19 96.3% – 97.1% – (101)

Waheed et al.

(2020)

“IEEE Covid Chest X-ray

dataset;”

“COVID-19 Radiography

Database”

“COVID-19 Chest

X-ray Dataset;”

403 COVID-19 patients;

721 normal patients (X-ray images)

Data augmentation using

CovidGAN

VGG16 95% – 90% 97% (102)

Yildirim et al.

(2020)

“COVID-19 Chest X-Ray

dataset;”

Kaggle chest

X-ray database

136 COVID-19 patients;

162 Pneumonia patients;

245 Normal patients (X-ray images)

– Hybrid model 96.30% – 96.30% 98.73% (103)

Yoo et al.

(2020)

“COVID-Chest

XrayDataset;”

Eastern Asian Hospital;

Shenzen data;

162 COVID-19 Patients;

162 TB patients;

162 Non-TB patients (X-ray images)

Data augmentation (rotated,

translated, and horizontally

flipped)

ResNet18 95% Average

of (COVID-

19/TB) and

(COVID-

19/non-TB)

0.95 Average

of (COVID-

19/TB) and

(COVID-

19/non-TB)

97% Average

of (COVID-

19/TB) and

(COVID-

19/non-TB)

93% Average

of (COVID-

19/TB) and

(COVID-

19/non-TB)

(104)

Ghoshal et al.

(2020)

COVID-19 X-ray image

database developed by

Cohen JP;

“Kaggle chest

X-ray database”

68 COVID-19 patients;

2,786 Bacterial

Pneumonia patients;

1,504 Viral Pneumonia patients;

1,583 normal patients (X-Ray images)

Standardization;

Data augmentation

Bayesian

ResNet50V2

model

89.82% – – – (105)

(Continued)
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TABLE 2 | Continued

Author, year Data source Data structure and size Data preprocessing Best model

structure(s)

Performance measurements (on the best model) References

Accuracy AUC score Sensitivity Specificity

Hall et al.

(2020)

“X-ray images on public

medical Github

repositories;”

“Radiopaedia;”

“Italian Society of Medical

and Interventional

Radiology (SIRM)”

135 COVID-19 patients;

320 Viral and Bacterial Pneumonia

patients (X-Ray images)

Data augmentation Resnet50 and

VGG16 plus

CNN

91.24% 0.94 – – (106)

Hammoudi

et al. (2020)

“Chest XRay Images

(Pneumonia) dataset;”

COVID-19 X-ray image

database developed by

Cohen JP;

148 Bacterial pneumonia;

148 Viral pneumonia;

148 Normal patients (X-Ray Images)

– DenseNet169 95.72% – – – (107)

El-Din Hemdan

et al. (2020)

COVID-19 X-ray image

database developed by

Cohen JP;

COVID-19 X-ray image

database by Dr.

Adrian Rosebrock

25 COVID-19 patients;

25 normal patients (X-Ray images)

Scaling to 224*224 pixels;

One-hot encoding

COVIDX-Net

(VGG19 and

DenseNet201

models)

VGG19 =

90%;

DenseNet201

= 90%

VGG19 =

0.90;

DenseNet201

= 0.90

VGG19 =

100%;

DenseNet201

= 100%

– (108)

Jain et al.

(2020)

“Chest XRay Images

(Pneumonia) dataset;”

COVID-19 X-ray image

database developed by

Cohen JP;

250 COVID-19 patients;

300 Bacterial pneumonia;

350 Viral pneumonia;

315 Normal patients (X-Ray Images)

Normalize images according to

the images in the ImageNet

database;

Data augmentation (rotation and

Gaussian blur);

ResNet50 97.77% – 97.14% – (109)

Luz et al.

(2020)

“COVIDx dataset;”

“RSNA Pneumonia

Detection Challenge

dataset;”

“COVID-19 image

data collection”

183 COVID-19 patients;

5,521 Pneumonia patients;

8,066 normal patients (X-Ray images)

Intensity normalization;

Data augmentation

EfficientNet B3 93.9% – 96.8% – (110)

Ozkaya et al.

(2020)

From the Italian Society of

Medical and Interventional

Radiology

53 COVID-19 patients (CT images)
Feature vectors obtained from

Pre-trained VGG-16, GoogleNet

and ResNet-50 networks and

fusion method;

Feature ranking by t-test method

SVM 98.27% – 98.93% 97.60% (68)

(Continued)
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TABLE 2 | Continued

Author, year Data source Data structure and size Data preprocessing Best model

structure(s)

Performance measurements (on the best model) References

Accuracy AUC score Sensitivity Specificity

Ozturk et al.

(2020)

“covid-chestxray-dataset

available at: https://github.

com/ieee8023/covid-

chestxray-dataset”

4 ARds images, 101 COVID images, 2

No finding images, 2

pneumocystis-pneumonia images, 11

Sars images, and 6 streptococcus

(X-Ray images)

Data augmentation; SMOTE

oversampling; creating feature

vectors with sAE and PCA;

feature extraction by feature

vectors, Gray Level

Co-occurrence Matrix, Local

Binary Gray Level Co-occurrence

Matrix, Gray Level Run Length

Matrix, and Segmentation-based

Fractal Texture Analysis

SVM 94.23% 0.99 91.88% 98.54% (111)

Wang et al.

(2020)

COVIDx dataset 266 COVID-19 patients; 5,536

Pneumonia patients; 8,066 normal

patients (X-Ray images)

– COVID-Net

Network

Architecture using

a “lightweight

residual

projection-

expansion-

projection-

extension design

pattern”

(Customized

CNN)

93.3% 91.0% – (1)

Zhang et al.

(2020)

X-COVID, OpenCOVID 599 COVID-19 patients; 2,107

non-COVID-19 patients (non-viral

pneumonia and healthy) (X-Ray images)

Data augmentation; Feature

extraction using EfficientNet

Confidence-

aware anomaly

detection

78.57% 0.844 77.13% 78.97% (112)

Data Source: The source(s) that images were acquired from, Data Structure and Size: Number of images, image modalities, sample groups, Data Preprocessing: cleaning, Instance selection, normalization, transformation, feature

extraction, selection, etc. The product of data preprocessing is the final training set, Best Model Structure(s): Best machine algorithm or deep learning model reported in the selected paper based on its performance, Performance

Measurements (on the best model): The measurement of the model’s output performance based on accuracy, sensitivity, specificity, and AUC score.
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DISCUSSION

Machine and deep learning methods have been proven
as valuable strategies to assess massive high-dimensional
characteristics of medical images. CT or X-Ray findings of
COVID-19 patients have similarities with other atypical and
viral pneumonia diseases. Therefore, machine and deep learning
methods might facilitate automatic discrimination of COVID-
19 from other pneumonia conditions. The differential diagnosis
of COVID also includes drug-induced diseases or immune
pneumonitis. However, most of the studies reviewed here
lack these kinds of samples. This point is the limitation of
these studies. Different methods, such as Ensemble, VGG-
16, ResNet, InceptionNetV3, MobileNet v2, Xception, CNN,
VGG16, Truncated Inception Net, and KNN, have been used
for the purpose of assessment of chest images of COVID-19
patients. Notably, the application of these methods on X-rays
has offered promising results. Such a finding is particularly
important since X-rays are easily accessible and low cost.
These methods not only can diagnose COVID-19 patients
from non-COVID pneumonia cases, but can also predict the
severity of COVID-19 pneumonia and the risk of short-term
mortality. In spite of the low expense of X-ray compared with
CT images, the numbers of studies that assessed these two
types of imaging using machine/deep learning methods are not
meaningfully different. However, few studies have used these
methods on both types of imaging (25, 29, 40). CNN-based
methods have achieved accuracy values above 99% in classifying
COVID-19 patients from other cases of pneumonia or related
disorders, as reported by several independent studies, suggesting
these strategies as screening methods for initial evaluation of
COVID-19 cases.

Although both deep learning and machine learning strategies
can be used for the mentioned purpose, they differ in some
respects. For instance, deep learningmethods usually need a large
amount of labeled training data to make a concise conclusion.
However, machine learning can apply a small amount of data
delivered by users. Moreover, deep learning methods need high-
performance hardware. Machine learning, on the other hand,
needs features to be precisely branded by users, deep learning
generates novel features by itself, thus requires more time to
train. Machine learning classifies tasks into small fragments and
subsequently combines obtained results into one conclusion,
whereas deep learning resolves the problems using end-to-
end principles.

Several studies have diagnosed COVID-19 patients through
the application of machine learning methods rather than using
deep learning methods by retrieving the features from the
images. These studies have yielded high recognition outcomes
and have the advantage of high learning speed (12). Pre-
processing is an essential step for reducing the impacts of
intensity variations in CT slices and getting rid of noise.

Subsequent thresholding and morphological operations have

also enhanced the analytical performance. Data augmentation

and histogram equalization are among the most applied

preprocessing methods.

One of the most promising approaches used in the included
studies was transfer learning. Transfer learning is defined as
using model knowledge on a huge dataset (which is referred
to as the “pre-trained model”) and transferring it to use on
a new problem. This is very useful in settings like medical
imaging, where there is a limited number of labeled data
(113). Previous studies showed favorable outcomes of the
transfer learning approaches in medical imaging tasks (114,
115). Among the included studies, Bridge et al. (25) even
reached 100% classification accuracy on COVID-19 using the
pre-trained InceptionV3.

The availability of public databases of CT and X-ray images
of patients with COVID-19 has facilitated the application of
machine learning methods on large quantities of clinical images
and execution of training and verification steps. However, since
these images have come from various institutes using different
scanners, preprocessing of the obtained data is necessary to make
them uniform and facilitate further analysis (12). Appraisal of
demographic and clinical data of COVID-19 patients and their
association with CT/ X-ray images features as well as the accuracy
of machine learning prediction methods would provide more
valuable information in the stratification of COVID-19 patients.
Moreover, one of the major challenges of deep learning models
in medical applications is its unexplainable features due to its
black-box nature, which should be solved (116). Future studies
can focus on approaches that provide interpretation besides
black-box predictions.

CONCLUSION

Deep and machine learning methods have high accuracy
in the differentiation of COVID-19 from non-COVID-19
pneumonia based on chest images. These techniques have
facilitated the automatic evaluation of these images. However,
deep learning methods suffer from the absence of transparency
and interpretability, as it is not possible to identify the exact
imaging feature that has been applied to define the output
(13). As no single strategy has the capacity to distinguish all
pulmonary disorders based merely on the imaging presentation
on chest CT scans, the application of multidisciplinary
approaches is suggested for overcoming diagnostic
problems (13).
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