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)is paper examines the bifurcation control problem of a class of delayed fractional-order predator-prey models in accordance
with an enhancing feedback controller. Firstly, the bifurcation points of the devised model are precisely figured out via theoretical
derivation taking time delay as a bifurcation parameter. Secondly, a set comparative analysis on the influence of bifurcation
control is numerically studied containing enhancing feedback, dislocated feedback, and eliminating feedback approaches. It can
be seen that the stability performance of the proposed model can be immensely heightened by the enhancing feedback approach.
At the end, a numerical example is given to illustrate the feasibility of the theoretical results.

1. Introduction

)e predator-prey model is a class of considerable models in
the sphere of ecological models. )e prey-predator model is
one of the basic topics in ecology as a result of the pervasive
importance and existence, which constitutes the convoluted
food chains and food networks. )e original predator-prey
system was formulated in [1, 2]. It is generally accepted that
time delays have been merged into biological models to
elaborately delineate the authentic dynamical predator-prey
use taking into account the time required for resource re-
generation time, maturation period, reaction time, feeding
time, and gestation period [3, 4]. Many excellent results have
been attained on the study of predator-prey models [5–7].

Fractional calculus is merged into complicated, dy-
namical systems which extremely renovate the theory of the
design and control performance for complex systems.
Scholars discovered that physical phenomena in nature can
be depicted more accurately by fractional-order models in
comparison with classical integer-order ones [8]. Recently,
quite a few researchers introduced fractional calculus into
the predator-prey model and constructed fractional

predator-prey models, for example, design and control of
various ecological models [9–11], secure communication
[12, 13], system control [14, 15], and so on. Furthermore,
modelling and control based on the theory of the fractional
calculus of complex systems can greatly enhance the ca-
pability of discrimination, design, and control for dynamic
models since fractional calculus possesses infinite memory
and more degrees of freedom [16]. Consequently, a number
of available theories and principles have been further ren-
ovated on the basis of fractional calculus. Modelling and
control for fractional order dynamical models have recently
grown a hot research issue [17–22]. In fact, lots of biological
models exhibit fractional dynamics thanks to possessing
memory effects. Lately, fractional calculus has been suc-
cessfully introduced into predator-prey models, and some
interesting phenomena have been studied. In [23], the au-
thors consider a fractional order delayed predator-prey
system with harvesting terms. In [24], Mondal et al. found
that the solutions of the fractional-order predator-prey
system converge to the respective equilibrium more slowly
as fractional order decreases. In [25], Chinnathambi and
Rihan proposed that fractional order can strengthen the
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stability of the prey-predator system and hamper the oc-
currence of oscillation behaviors. Fractional dynamics of the
predator-prey model without delays have been captured
[26, 27].

)e Hopf bifurcation has been widely researched for
nonlinear systems, and a number of significant results have
been obtained [28–30]. It should be pointed out that bi-
furcation problems of conventional delayed integer-order
models have been fully studied, due to the maturity of
theoretical methods. Nevertheless, the bifurcations of frac-
tional-order dynamical systems have been analyzed in many
papers [31–34]. In 2018, the authors gave attention to the
bifurcation problems of the delayed generalized fractional-
order prey-predator model with interspecific competition,
and exact bifurcation results were obtained [32]. In [34], the
bifurcation of a class of quaternion-valued fractional-order
neural networks with time-varying delay was given, and it
indicated that an increase in orders of fractional-order
models will result in advancing the onset of bifurcation. In
recent years, the problem of bifurcation control of fractional
models with time-varying delay has attracted people’s at-
tention [35–38]. In [37], research has found that the bi-
furcation phenomena can be controlled by adjusting
extended feedback delay or fractional order. In [38], a newly
invented fractional-order PD scheme involving variable
order was proposed to control the generation of bifurcation
for integer-order small-world network, and innate bifur-
cation can be efficiently unperturbed if dedicated control
gains are set.

)e performance of nonlinear systems can be elevated
utilizing bifurcation control methods. Recently, bifurcation
control strategies have been used to delay the onset of bi-
furcation in fractional-order systems with time delay
[39–42], such as dislocated feedback control, speed feedback
control, and enhancing feedback control [43, 44]. In [43], the
author considered that the feedback coefficients were smaller
than the ones of ordinary feedback control in controlling the
hyperchaotic Lorenz system. In [44], it was revealed that the
hyperchaotic Lorenz system can be efficiently controlled
based on the enhancing feedback control approach in
comparison with the addressed feedback ones by selecting
relatively simple external inputs and small necessary feed-
back coefficient. Actually, it is difficult to completely control
the dynamical properties of a complex system relying on a
unique feedback variable. In this instance, a larger feedback
gain needs to be selected for procuring the anticipated
dynamical behaviors of a nonlinear system. Hence, to ac-
quire high-quality performance of the devised fractional-
order dynamical systems, it is essential to adopt the en-
hancing feedback approach to control the onset of bifur-
cation. Up to now, few results with respect to the bifurcation
control of fractional order predator-prey systems with delays
by adopting the enhancing feedback control method have
been obtained.

Based on the above motivations, so far, to the best of the
authors’ knowledge, no work has concerned the Hopf bi-
furcation control for a delayed fractional-order predator-
prey model with feedback control. )e main contributions
can be summarized in three aspects:

(1) An improved fractional-order predator-prey model
is constructed by introducing an enhancing feedback
control strategy.

(2) A larger feedback gain is selected for controlling the
onset of bifurcation of the created system through
dislocated feedback scheme.

(3) It detects that the control effects of the proposed
system can be largely hoisted by using enhancing
feedback approach than dislocated feedback one.
)is implies that the devised enhancing feedback
method can attenuate the control amount compared
with dislocated feedback ones. It is pointed out that
the devised enhancing feedback method can atten-
uate the control amount compared with dislocated
feedback ones.

)e organization of this paper is as follows. In Section 2,
several useful definitions and lemmas of fractional-order
calculus are recalled. In Section 3, the discussed system is
proposed. In Section 4, by analyzing the associated char-
acteristic equation, the existence of the Hopf bifurcation of
the delayed fractional-order predator-prey model with
feedback control is established. In Section 5, one illustrative
example is provided to demonstrate the theoretical results.
Section 6 is the conclusion of the paper.

2. Preliminaries

In this section, let us recall some definitions and lemmas of
fractional derivatives, which can be used in the proofs of
main result of Section 4.

Definition 1 (see [16]). )e Caputo fractional-order deriv-
ative can be defined as

D
q
t f(t) �

1
Γ(l − q)

􏽚
t

t0

(t − s)
l− q− 1

f
(l)

(s)ds, (1)

where t≥ t0, l − 1≤ q< l ∈ Z+, Γ(·) is the gamma function,
and Γ(s) � 􏽒

∞
0 ts− 1e− tdt.

By adopting Laplace transform, it follows from the
Caputo fractional-order derivatives that

L D
q
t f(t); s􏼈 􏼉 � s

q
F(s) − 􏽘

l−1

k�0
s

q− k− 1
f

(k)
(0), l − 1≤ q< l ∈ Z

+
.

(2)

If f(k)(0) � 0, k � 1, 2, . . . , n, then
L D

q
t f(t); s􏼈 􏼉 � sqF(s).

Lemma 1 (see [45]). +e following n-dimensional linear
fractional-order model is explored:

D
q1 l1(t) � a11l1(t) + a12l2(t) + · · · + a1nln(t),

D
q2 l2(t) � a21l1(t) + a22l2(t) + · · · + a2nln(t),

⋮

D
qn ln(t) � an1l1(t) + an2l2(t) + · · · + annln(t),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)
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where 0< qi < 1 (i � 1, 2, . . . , n). Assume that qi is the lowest
common multiple of the denominators ψi of qi, where
qi � (φi/ψi), (φi,ψi) � 1, φi,ψi ∈ Z+, ∀i � 1, 2, . . . , n. It is
represented as

Δ(λ) �

λa1 − a11 −a12 · · · −a1n

−a21 λa2 − a22 · · · −a2n

⋮ ⋮ ⋱ ⋮

−an1 −an2 · · · λan − ann

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

+en, the zero solution of model (3) is globally asymp-
totically stable in the Lyapunov sense if all roots λ of the
equation det(Δ(λ)) � 0 satisfy |arg(λ)|> (qiπ/2).

Lemma 2 (see [45]). +e following n-dimensional linear
fractional-order model with delays is examined:

D
q1 l1(t) � a11l1 t − τ11( 􏼁 + a12l2 t − τ12( 􏼁 + · · · + a1nln t − τ1n( 􏼁,

D
q2 l2(t) � a21l1 t − τ21( 􏼁 + a22l2 t − τ22( 􏼁 + · · · + a2nln t − τ2n( 􏼁,

⋮

D
qn ln(t) � an1l1 t − τn1( 􏼁 + an2l2 t − τn2( 􏼁 + · · · + annln t − τnn( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where qi ∈ (0, 1) (i � 1, 2, . . . , n), the initial values Vi(t) �

Ψi(t) are given for −maxi,j, and τi,j � −maxi,j ≤ t≤ 0∀i �

1, 2, . . . , n. For system (5), time-delay matrix
τ � (τi,j) ∈ (R+)n×n, coefficient matrix H � (ai,j)n×n, state
variables li(t), li(t − τi,j) ∈ R, and initial values Ψi(t)

∈ C0[−τmax, 0]. Its fractional order is defined as
q � (l1, l2, . . . , ln). It is defined as

Δ(s) �

s
q1 − a11e

−sτ11 −a12e
−sτ12 · · · −a1ne

−sτ1n

−a21e
−sτ21 s

q2 − a22e
−sτ22 · · · −a2ne

−sτ2n

⋮ ⋮ ⋱ ⋮

−an1e
−sτn1 −an2e

−sτn2 · · · s
qn − anne

−sτnn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(6)

3. Mathematical Model Description

A delayed ratio-dependent fractional-order predator-prey
system is proposed in this paper. )e mathematical model is
depicted by

D
u
y1(t) � y1(t − τ) 1 − y1(t − τ)􏼂 􏼃 −

y1(t − τ)y2(t)

y1(t − τ) + αy2(t)
,

D
u
y2(t) � βy2(t − τ) δ −

y2(t − τ)

y1(t − τ)
􏼢 􏼣,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(7)

where the relative variables and parameters of systems (7)
are interpreted in Table 1.

In this paper, we consider the delayed fractional-order
version of (7) which is given as follows:

D
u
y1(t) � y1(t − τ) 1 − y1(t − τ)􏼂 􏼃 −

y1(t − τ)y2(t)

y1(t − τ) + αy2(t)
+ ϕ1 y1(t)( − y

∗
1􏼂 􏼃,

D
u
y2(t) � βy2(t − τ) δ −

y2(t − τ)

y1(t − τ)
􏼢 􏼣 + ϕ2 y2(t) − y

∗
2( 􏼃,􏼂

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(8)

where ϕ1, ϕ2 represent the feedback control gains.

Remark 1. Hence, we have the observation that model (8)
degenerates into the integer-order model in [46] when
selecting u � 1, ϕ1 � ϕ2 � 0. If ϕ1 � 0,ϕ2 ≠ 0 or ϕ1 ≠ 0, ϕ2 � 0,
thenmodel (8) develops into dislocated time-delayed feedback

control model. If ϕ1 ≠ 0,ϕ2 ≠ 0, then model (8) develops into
the enhancing time-delayed feedback control model.

Under the condition 1 + αδ > δ, model (7) occupies a
unique positive equilibrium point E∗ � (y∗1 , y∗2 ), which
complies with the following equations:

Table 1: Parameter values for mathematical model (7).

Symbols Interpretation
y1(t) Denotes the population densities of prey at time t

y2(t) Denotes the population densities of predator at time t

u u ∈ (0, 1] is fractional order
α Positive constant
β Positive constant
δ Positive constant

τ Time delay for both the densities of the predator and the
prey
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1 − y
∗
1 −

y
∗
2

y
∗
1 + αy

∗
2

� 0,

β δ −
y
∗
2

y
∗
1

􏼠 􏼡 � 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(9)

)is means that y∗1 � ((1 + αδ − δ)/(1 + αδ)), y∗2 �

(δ(1 + αδ − δ)/(1 + αδ)).

Remark 2. E∗ of system (7) is consistent with system (8),
which does not rely on the values of control parameters ϕ1
and ϕ2 � 0. )is implies that E∗ is immutable in the devised
controllers.

To capture the brilliant control effects, the following
essential assumption is presented in this paper:

(H1) ϕ1 ≤ 0, ϕ2 ≤ 0.

According to [45], this paper is devoted to finding out
the conditions of bifurcation for model (8) using time delay
as a bifurcation parameter. )en, quite a few comparative
studies on bifurcation control are carried out. It can be seen
that the stability performance of the controlled model can be
excessively ameliorated on the basis of enhancing feedback
control in comparison with the dislocated feedback control.

4. Main Results

In this section, time delay shall be selected as a bifurcation
parameter to investigate the problem of bifurcation control
for the predator-prey model (8) by utilizing enhancing
feedback approach. )e existence bifurcation and bifurca-
tion point for the proposed model shall be determined.

Performing transformations W1(t) � y1(t) − y∗1 ,
W2(t) � y2(t) − y∗2 , then system (8) can be transformed
into the following form:

D
u
W1(t) � W1(t − τ) + y

∗
1􏼂 􏼃 1 − W1(t − τ) + y

∗
1( 􏼁􏼂 􏼃 −

W1(t − τ) + x
∗
1( 􏼁 u2(t) + y

∗
2( 􏼁

W1(t − τ) + αW2(t)
+ ϕ1W1(t),

D
u
W2(t) � β W2(t − τ) + y

∗
2( 􏼁 δ −

W2(t − τ) + y
∗
2( 􏼁

W1(t − τ) + y
∗
1( 􏼁

􏼢 􏼣 + ϕ2W2(t).

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(10)

It can be seen from system (10) that the linearized form is

D
u
W1(t) � ϵ11W1(t − τ) + ϕ1W1(t) + ϵ12W2(t),

D
u
W2(t) � ϵ21W1(t − τ) + ϕ2W2(t) + ϵ22W2(t − τ),

􏼨

(11)

where

ϵ11 � 1 − 2y
∗
1 −

y
∗
2

y
∗
1 + αy

∗
2

+
y
∗
2y
∗
1

y
∗
1 + αy

∗
2( 􏼁

2,

ϵ12 � −
y
∗
1

y
∗
1 + αy

∗
2

+
αy
∗
2y
∗
1

y
∗
1 + αy

∗
2( 􏼁

2,

ϵ21 �
βy
∗
2

y
∗
1( 􏼁

2,

ϵ22 � βδ −
2βy
∗
2

y
∗
1( 􏼁

2.

(12)

)e associated characteristic equation of (11) is

c1(s) + c2(s)e
− sτ

+ c3(s)e
− 2sτ

� 0, (13)

where

c1(s) � s
2u

− ϕ1 + ϕ2( 􏼁s
u

+ ϕ1ϕ2,

c2(s) � − ϵ11 + ϵ22( 􏼁s
u

− ϕ1ϵ22 − ϕ2ϵ11 + ϵ12ϵ21􏼂 􏼃,

c3(s) � ϵ11ϵ22.

(14)

)e real and imaginary parts of cq(s) (q � 1, 2, 3) are
labeled by cr

q, ci
q. )en, we obtain

c
r
1 � ϖ2u cosuπ − ϕ1 + ϕ2( 􏼁ϖu cos

uπ
2

+ ϕ1ϕ2,

c
i
1 � ϖ2u sin uπ − ϕ1 + ϕ2( 􏼁w

u sin
uπ
2

,

c
r
2 � − ϵ11 + ϵ22( 􏼁ϖu cos

uπ
2

− ϕ1ϵ22 − ϕ2ϵ11 + ϵ12ϵ21􏼔 􏼕,

c
i
2 � − ϵ11 + ϵ22( 􏼁ϖu sin

uπ
2

,

c
r
3 � ϵ11ϵ22,

c
i
3 � 0.

(15)

Both sides of equation (13) are multiplied by esτ ; then, it
follows that

c1(s)e
sτ

+ c2(s) + c3(s)e
− sτ

� 0. (16)

Assume that s � ϖ(cos(π/2) + i sin(π/2)) (ϖ> 0) is a
purely imaginary root of equation (16); then, it results in

c
r
1 + c

r
3( 􏼁cosϖτ − c

i
1 cosϖτ � −c

r
2,

c
i
1 cosϖτ + c

r
1 − c

r
3( 􏼁cosϖτ � −c

i
2.

⎧⎨

⎩ (17)

It is further labeled as
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ψ1(ϖ) � −c
r
2 c

r
1 − c

r
3( 􏼁 − c

i
1c

i
2,

ψ2(ϖ) � −c
i
2 c

r
1 + c

r
3( 􏼁 + c

i
1c

r
2,

ψ3(ϖ) � c
r
1( 􏼁

2
+ c

i
1􏼐 􏼑

2
− c

r
3( 􏼁

2
,

ρ1 � − ϕ1 + ϕ2( 􏼁,

ρ2 � ϕ1ϕ2,

ρ3 � ϵ11 + ϵ22,

ρ4 � −ϕ1ϵ22 − ϕ2ϵ11 + ϵ12ϵ21,

ρ5 � ϵ11ϵ22.

(18)

From equation (17), it is concluded that

cosϖτ �
ψ1(ϖ)
ψ3(ϖ)

,

sinϖτ �
ψ2(ϖ)
ψ3(ϖ)

.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(19)

By means of equation (19), we obtain

ψ3(ϖ) � ψ2
1(ϖ) + ψ2

2(ϖ). (20)

It can be defined from equation (20) that

φ(ϖ) � ψ2
3(ϖ) − ψ2

1(ϖ) − ψ2
2(ϖ) � 0. (21)

In terms of equation (21), we obtain

φ(ϖ) � ϖ8u
+ η1ϖ

7u
+ η2ϖ

6u
+ η3ϖ

5u
+ η4ϖ

4u
+ η5ϖ

3u

+ η6ϖ
2u

+ η7ϖ
u

+ η8 � 0,

(22)

where ηi (i � 1, 2, . . . , 8) are computed in Appendix.
We further give the additional assumption:

(H2) Equation (22) has at least positive real roots.

It follows from the first equation of equation (19) that

τ(k)
�
1
ϖ

arccos
ψ1(ϖ)
ψ3(ϖ)

+ 2kπ􏼢 􏼣, k � 0, 1, 2, . . . . (23)

Define the bifurcation point

τ0 � min τ(k)
􏽮 􏽯, k � 0, 1, 2, . . . , (24)

where τ(k) is defined by equation (23).
In the following, we will consider the stability of model

(10) when τ � 0. If τ is removed, the characteristic equation
(16) develops into

s
2u

+ φ1s
u

+ φ2 � 0, (25)

where

φ1 � − ϕ11 + ϕ22 + ϵ11 + ϵ22( 􏼁,

φ2 � ϕ1ϕ2 + ϵ11ϵ22 + ϕ1ϵ22 + ϕ2ϵ11 − ϵ12ϵ21.
(26)

It is obvious from φ1 > 0, φ2 > 0 that the two roots of
equation (25) have negative parts satisfying Lemma 1. )us,
the positive equilibrium of fractional-order model (8) is
asymptotically stable.

To obtain the conditions of bifurcation, we further as-
sume the following:

(H3)
M1N1 + M2N2

N
2
1 + N

2
2
≠ 0, (27)

where M1, M2, N1, N2 are described by equation (32).

Lemma 3. Let s(τ) � ξ(τ) + iϖ(τ) be the root of equation
(13) near τ � τj satisfying ξ(τj) � 0, ϖ(τj) � ϖ0; then, the
following transversality condition holds:

Re
ds

dτ
􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌 ϖ�ϖ0 ,τ�τ0( )
≠ 0, (28)

where ϖ0, τ0 represent the critical frequency and bifurcation
point of model (8).

Proof. )e real and imaginary parts of ℓp
′(s), p � 1, 2, 3 are

labeled by ℓ′rp , ℓ
′i
p. Using implicit function theorem to dif-

ferentiate (13) concerning τ, the following equation can be
concluded:

c1′(s)
ds

dτ
+ c2′(s)

ds

dτ
e

− sτ
+ c2(s)e

− sτ
−τ

ds

dτ
− s􏼠 􏼡􏼢 􏼣 + c3′(s)

ds

dτ
e

− 2sτ
+ c3(s)e

− 2sτ
−2τ

ds

dτ
− s􏼠 􏼡􏼢 􏼣 � 0. (29)

Equation (13) implies that c3′(s) � 0. Mathematically,
from equation (32), we obtain

ds

dτ
�

M(s)

N(s)
, (30)

where

M(s) � s c2(s)e
− sτ

+ 2c3(s)e
− 2sτ

􏽨 􏽩,

N(s) � c1′(2) + c2′(s) − τc2(s)􏼂 􏼃e
− sτ

− 2τc3(s)e
− 2sτ

.

(31)

From equation (30), we obtain
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Table 2: Comparative results based on different parameters and approaches of system (34).

Feedback strategy Fractional order Feedback gain Critical frequency Bifurcation point Simulations
Enhancing control u � 0.95 ϕ1 � −0.25, ϕ2 � −0.18 ϖ0 � 0.7063 τ0 � 2.2072 Figures 1 and 2
Enhancing control u � 1 ϕ1 � −0.25, ϕ2 � −0.18 ϖ0 � 0.7256 τ0 � 2.0148 Figure 3
Dislocated control u � 0.95 ϕ1 � 0, ϕ2 � −0.18 ϖ0 � 0.6799 τ0 � 2.0283 Figure 4
Dislocated control u � 0.95 ϕ1 � 0, ϕ2 � −0.4 ϖ0 � 0.6073 τ0 � 2.5569 Figure 5
Dislocated control u � 0.95 ϕ1 � −0.25, ϕ2 � 0 ϖ0 � 0.7282 τ0 � 1.8642 Figure 6
Dislocated control u � 0.95 ϕ1 � −1.2, ϕ2 � 0 ϖ0 � 0.6448 τ0 � 2.4733 Figure 7
Without control u � 0.95 ϕ1 � 0, ϕ2 � 0 ϖ0 � 0.7086 τ0 � 1.6044 Figure 8
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Figure 1: Time responses and portrait plots of model (34) with u � 0.95, ϕ1 � −0.25, ϕ2 � −0.18, and τ � 2.1< τ0 � 2.2072.
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Figure 2: Time responses and portrait plots of model (34) with u � 0.95, ϕ1 � −0.25, ϕ2 � −0.18, and τ � 2.3> τ0 � 2.0902.
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(H3) indicates that transversality condition holds, which
completes the proof of Lemma 3. □

Based on the previous analysis, the following theorem is
obtained.

Theorem 1. Under conditions (H1)–(H3), the following
results are available:

(1) Equilibrium point E∗ of model (8) is asymptotically
stable for τ ∈ (0, τ0).

(2) Model (8) undergoes a Hopf bifurcation at E∗ for
τ � τ0, that is, it has one branch of periodic solutions

that can bifurcate from the zero equilibrium point at
τ � τ0.

Remark 3. Due to the higher order of equation (22), it is not
always easy to deal with all the positive real roots of it
theoretically. However, it is simple to procure the concrete of
these positive real roots of equation (22) with the help of
Maple numerical software. Hence, the values of τ0 can be
accurately concluded.

Remark 4. It can be seen that a small feedback gain cannot
control the onset of bifurcation of a delayed fractional
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Figure 11: Time responses of model (34) with u � 0.83 and τ � 2.3.
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predator-prey model based on dislocated feedback strategy
in [47]. Based on the dislocation feedback method, an ex-
tended delayed feedback method was designed to control
bifurcation of a delayed fractional predator-prey model
despite selecting a small feedback gain in [37]. It should be
pointed out that the extended feedback delay plays an es-
sential role in postponing Hopf bifurcation for such model.
In this paper, by choosing enhancing feedback method, the
bifurcation of the proposed model can be easily controlled
provided that a set of smaller feedback gains is selected.
Contrarily, the bifurcation of the devised model can be
controlled by using the dislocated feedback approach only if
a larger feedback gain is requested. It exhibits that the onset

of the bifurcation for the fractional delayed predator-prey
model can be delayed and satisfactory bifurcation control
effects are realized compared with the dislocated feedback
approaches in this paper. )is shows that the devised en-
hancing feedback method can reduce the control cost
compared with dislocated feedback ones.

Remark 5. )e influence of fractional order on the bifur-
cation point is adequately discussed. )is means that better
effects in delaying the onset of bifurcation can be achieved as
fractional order decreases if feedback gain is established. At
the same time, it can be seen that better control effects can be
gained in delaying bifurcation of the proposed model by
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Figure 13: Comparison of the values of τ0 versus ϕ1 for model (34) with u � 0.95.
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applying the enhancing feedback method instead of dis-
located feedback one.

5. Numerical Example

In this section, we give one example to show the feasibility
and effectiveness of the results obtained in this paper. All of

the simulation results are based on Adama-Bashforth-
Moulton predictor-corrector scheme. In this section, nu-
merical simulations are presented. For the purpose of
comparison, the parameters were identically derived from
[46]. E∗ can be obtained as (y∗1 , y∗2 ) � (0.5775, 0.3465). )e
initial values are all designated as (y1(0), y2(0)) � (0.5, 0.3).
Investigate the controlled model
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(34)

where α � 0.7, β � 0.9, δ � 0.6, y∗1 � 0.5775, and y∗2 �

0.3465.
Some results are available in Table 2.
Figure 1 describes the asymptotic stability of system (34)

when τ � 2.1< τ0 � 2.2072. Hopf bifurcation occurs, and the
instability of system (34) with τ � 2.3> τ0 � 2.2072 is

depicted in Figure 2. It can be observed that system (34)
turns unstable when u � 1 is selected and other parameters
are established (see Figure 3). Moreover, it can be seen from
Figure 4 that system (34) becomes unstable by choosing τ �

2.1 with dislocated control ϕ1 � 0, ϕ2 � −0.18. Furthermore,
it can be seen from Figure 5 that system (34) converges to E∗
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Figure 17: Comparison of the values of τ0 versus ϕ2 for model (34) with ϕ � 0.95.
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Figure 18: Time responses of model (34) with u � 0.95 and τ � 2.1.
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when choosing larger ϕ2 � −0.4.)is means that the onset of
bifurcation of system (34) can be controlled by taking larger
feedback gain in terms of dislocated control. Similar phe-
nomena can be observed in Figures 6 and 7. When abol-
ishing the controllers, that is, ϕ1 � 0, ϕ2 � 0, it is clear that
system (34) becomes unstable, which is illustrated in
Figure 8.

In fact, by changing the values of u, the corresponding τ0
can be obtained by taking the enhancing feedback control and
dislocated feedback control and without control approaches,
respectively, which is illustrated in Figure 9. )is implies that
enhancing feedback control transcends others, which is verified
in simulation results in Figures 10–12. When establishing u,
ϕ2 � −0.18, or ϕ2 � 0, the values of τ0 can be determined as ϕ1

varies, which is depicted in Figure 13. Figure 13 alsomeans that
enhancing feedback control exceeds dislocated feedback con-
trol, as shown in Figures 14–16. )e order is selected as u �

0.95 and the parameter is designated as ϕ1 � −0.25, taking
ϕ1 � 0 and varying ϕ2 in model (34), and the values of τ0 can
be computed, which is described in Figure 17. It can also be
seen from Figure 17 that enhancing feedback control over-
matches dislocated feedback control, which is very consistent
with numerical simulations in Figures 18–20.

6. Conclusion

In this paper, the issue of bifurcation for a delayed of
fractional predator-prey model with feedback control has
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Figure 19: Time responses of model (34) with u � 0.95 and τ � 2.1.
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been given. By utilizing time delay as the bifurcation
parameter, a number of criteria to ensure the existence of
the Hopf bifurcation for the fractional-order predator-
prey model with feedback control were studied. Mathe-
matical analysis and simulation results further reveal that
better efficiency of bifurcation control has been obtained
in terms of enhancing feedback approach compared to
dislocated and uncontrolled ones with partially or com-
pletely removing the branch for feedback gains. It can be
seen that the onset of bifurcation can be controlled for the
dislocated feedback schemes, yet greater feedback gains

must be taken, which increases the cost of control model.
Contrarily, the stability performance of the controlled
model can be extremely ameliorated on account of the
designed enhancing feedback methodology by choosing
smaller feedback gains. In addition, numerical results
have been provided to confirm the efficiency of the derived
theoretical results.

Appendix
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