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Glaciation accompanied our human ancestors in Africa through‐
out the Pleistocene and is considered a major factor that triggered 
human evolution (Gamble, Davies, Pettitt, & Richards, 2004; Maslin 
& Christensen, 2007). Although glacier cover in Africa strongly fluc‐
tuated over the last 100 thousands years (Downie, 1964; Kaser, Mölg, 
Cullen, Hardy, & Winkler, 2010; Mark & Osmaston, 2008; Rosqvist, 
1990), regrettably, equatorial glaciers and snow are currently dis‐
appearing rapidly, and we are likely the last generation who may 
get to know these peculiar places (Thompson, Mosley‐Thompson, 
Davis, & Brecher, 2011). Despite the permanently harsh conditions 
of glacier/snow habitats, they support a remarkable diversity of 
life ranging from single‐cell microbes (e.g., Archae, algae, bacteria, 
fungi) to sophisticated, multicellular animals (e.g., ice worms, roti‐
fers, tardigrades; Cook, Edwards, Takeuchi, & Irvine‐Fynn, 2016; 
Darcy, Gendron, Sommers, Porazinska, & Schmidt, 2018; Takeuchi, 
Nishiyama, & Li, 2010; Zawierucha, Buda, et al., 2018; Zawierucha, 
Kolicka, Takeuchi, & Kaczmarek, 2015). To date, only two reports 

have been published on glacial biodiversity on equatorial glaciers, 
and two on snow, habitats that are destined to disappear com‐
pletely within the next few decades (Kuja, Makonde, Boga, Muigai, 
& Uetake, 2018; Nedbalová & Sklenár, 2008; Uetake et al., 2014; 
Zawierucha,	Gąsiorek,	et	al.,	2018).	Will	we	make	efforts	to	describe	
glacial equatorial biodiversity? Will we prolong the lives of equatorial 
glacier organisms in laboratories for further studies? What can we 
learn about these organisms and our coexistence with them?

Only a few places on Earth still host equatorial and near equato‐
rial ice—Africa (Kenya, Tanzania, Uganda), New Guinea, and the larg‐
est equatorial ice cover, South America (Ecuador, Colombia; Figure 1). 
These glaciers are all located at least at 4,000 m a.s.l., higher than many 
tropical glaciers in South America or temperate glaciers in the Caucasus 
or Alps (Veettil & Kamp, 2019). Considering the hundreds of studies de‐
voted to microbial communities and invertebrates on glaciers and snow 
in the Arctic, Antarctic, Third Pole (Hindu Kush–Karakoram–Himalayan), 
and other high mountain regions (Cook et al., 2016; Hodson et al., 
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Abstract
Glaciation accompanied our human ancestors in Africa throughout the Pleistocene. 
Regrettably, equatorial glaciers and snow are disappearing rapidly, and we are likely 
the last generation who will get to know these peculiar places. Despite the perma‐
nently harsh conditions of glacier/snow habitats, they support a remarkable diversity 
of life ranging from bacteria to animals. Numerous papers have been devoted to mi‐
crobial communities and unique animals on polar glaciers and high mountains, but 
only two reports relate to glacial biodiversity in equatorial regions, which are des‐
tined to melt completely within the next few decades. Equatorial glaciers constitute 
“cold islands” in tropics, and discovering their diversity might shed light on the bio‐
geography, dispersal, and history of psychrophiles. Thus, an opportunity to protect 
biota of equatorial glaciers hinges on ex situ conservation. It is timely and crucial that 
we should investigate the glacial biodiversity of the few remaining equatorial glaciers.
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2008; Hotaling, Hood, & Hamilton, 2017; Kaczmarek, Jakubowska, 
Celewicz‐Gołdyn,	&	Zawierucha,	2016;	Zawierucha	et	al.,	2015),	 the	
scarce knowledge collected from tropical icy islands seems alarming, 
from the perspective of biodiversity protection. Equatorial and tropical 
glaciers (e.g., in central Asia, South America) are considered a source 
of freshwater maintaining downstream animals and plants assemblages 
(Bosson, Huss, & Osipova, 2019; Milner et al., 2017; Veettil & Kamp, 
2019). Also equatorial, glacier‐fed streams present unique hydraulic 
patterns when compared to temperate regions, and taxon richness in 
glacier‐fed streams of the Ecological Reserve of Antisana (Ecuador) will 
be significantly reduced following glacier shrinking (Cauvy‐Fraunié et 
al., 2013). But these equatorial glaciers are also unique ecosystems and 
may be sources of nutrients and first migrants in cold water streams 
(Bagshaw et al., 2013; Dresch et al., 2019; Pessi et al., 2018).

Historically, glaciers have been considered sophisticated parts of 
our natural landscape, space for explorers, recreation, and a symbol 
of the wilderness (Carey, 2007). Currently, however, glaciers and ice 
sheets are considered natural hazards as contributors to sea‐level 
rise and an economic threat due to shrinking of frozen freshwater 
reservoirs (Beniston, Stoffel, & Hill, 2011). For biologists, glaciers 
were once considered unproductive and sterile, but in the last few 
decades, this view has been fully reversed with discoveries of ex‐
tremophilic glacier organisms across the domains of life (Edwards et 
al., 2014; Shain et al., 2016; Takeuchi, Kohshima, Yoshimura, Sekto, 

& Fujita, 2000; Zawierucha et al., 2015). Although glacial organisms 
(e.g., algae, invertebrates) were first observed in the 19th century 
(Drygalski, 1897), glaciers as an important ecological habitat re‐
mained forgotten since that time (Hodson et al., 2008). Abiotic views 
of glaciers as simply water in a frozen state have evolved into pe‐
culiar biomes, differing from polar and high mountain ecosystems 
by unique organism assemblages, topographic features, and climate 
(Anesio & Laybourn‐Parry, 2012). Although glaciers have been a 
particular focus of polar biologists, ecologists, and biochemists over 
the past two decades (Bagshaw et al., 2013; Cook et al., 2016; Dial, 
Ganey, & Skiles, 2018; Takeuchi et al., 2000), we emphasize that 
equatorial glacier habitats, biodiversity, and ecosystems remain 
mostly	unexplored	(Uetake	et	al.,	2014;	Zawierucha,	Gąsiorek,	et	al.,	
2018). We identified marginal knowledge on equatorial glacier bio‐
diversity using search engines such as Scopus, Web of Science, and 
literature published herein. We supported our investigation using 
Google scholar. Using a set of keywords related to glacial ecosys‐
tems (Table 1), we revealed that this knowledge is almost nonexis‐
tent in comparison with tropical, mountain, and polar glaciers. Even 
though some data on equatorial ice are hidden under the term trop‐
ical	(Kuja	et	al.,	2018;	Zawierucha,	Gąsiorek	et	al.,	2018),	still	knowl‐
edge of equatorial glaciers is limited. Certainly, as shown in Table 1, 
a number of published studies correlate with the area of glaciation. 
Even though equatorial glaciers are small (i.e., playing marginal roles 

F I G U R E  1   Map presenting equatorial areas still hosting glaciers. 1. Colombia, 2. Ecuador, 3. Uganda, 4. Tanzania, 5. Kenya, 6. New 
Guinea. (a) Nevado del Huila (https ://commo ns.wikim edia.org/wiki/File:Volcan_Huila_9‐12‐2008_(1).jpg, Martin Roca [CC BY 3.0]), (b) 
Antisana (https ://upload.wikim edia.org/wikip edia/commo ns/8/8d/Antis ana_im_Septe mber_2018.jpg, Stefan Weigel [CC BY‐SA 4.0]), (c) 
Rwenzori (Courtesy Jun Uetake], (d) Kilimanjaro (https ://upload.wikim edia.org/wikip edia/commo ns/c/c6/Kilim anjaro_%28pau lshaf fner%29.
jpg, Paul Shaffner [CC BY 2.0], (e) Mount Kenya (https ://commo ns.wikim edia.org/wiki/File:Pt_Thoms on_Batian_Nelion_Mt_Kenya.JPG#file, 
[CC BY‐SA 3.0]), (f) Puncak Jaya (https ://upload.wikim edia.org/wikip edia/commo ns/5/5d/Suman tri_%28cen ter%29_with_Ngga_Pulu_%28rig 
ht%29_from_Carst ensz_Summit_by_Chris tian_Stangl_flickr.jpg, Christian Stangl [CC BY‐SA 2.0]
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in global cycles in comparison with polar ice caps, perhabs influenc‐
ing small scientfic interests), due to their high speed of melting and 
their unique location, they should be studied urgently. Nonetheless, 
it seems their existence was and still is forgotten. Jan Carstenszoon, 
a Dutch explorer who visited New Guinea in 1623, reported on the 
existence of Puncak Jaya snow to citizens of the old continent, which 
was ridiculed by those who were skeptical about glaciers in the trop‐
ics. Since then, equatorial glaciers have been mostly neglected in the 
biological sciences and are mostly within the scope of glaciologists 
(Kaser et al., 2010; Milner et al., 2017; Thompson, Brecher, Mosley‐
Thompson, Hardy, & Mark, 2009; Thompson et al., 2011).

Scientific investigation has produced two studies on equatorial 
glacial biology, and both are devoted to organisms on one Ugandan 
glacier (Figure 1, Figure 3 A‐B). Uetake et al. (2014) reported a 
novel biogenic aggregation of mainly protonemal moss gemmae 
and protonema (called GMGA—glacier moss gemmae aggregation). 
Importantly, these aggregations are home to numerous microor‐
ganisms, and the inevitatble loss these glaciers (located at Rwenzori 

Mountains) will lead to the loss of this unique habitat. Subsequently, 
Zawierucha,	 Gąsiorek,	 et	 al.	 (2018)	 discovered	 rotifers	 and	 tardi‐
grades in GMGA and described a new tardigrade species, Adropion 
afroglacialis (and another identified to the genus level, Figure 2), em‐
phasizing the need for equatorial glacial biodiversity conservation. 
Additionally, Kuja et al. (2018) and Nedbálova & Sklenár (2008) stud‐
ied snow packs on Mount Kenya and Ecuador respectively, empha‐
sizing the extinction threat of cold‐adapted microbes. However, as 
on glaciers of polar, alpine and third pole regions, scientists should 
expect more species of metazoans on and in the vicinity of equato‐
rial glaciers, together with novel species of primary producers and 
bacteria. Glaciers worldwide as supraglacial ecosystems encompass 
habitats like streams, lakes, cryoconite holes (water‐filled reservoirs 
on glacier surfaces), weathering crusts, glacier mice (moss balls), dirt 
cones, and tills (Cook et al., 2016; Coulson & Midgley, 2012; Franzetti 
et al., 2017; Hodson et al., 2008; Zawierucha, Buda, et al., 2018; 
Figure 3). Parts of equatorial glaciers covered by perennial snow also 
may constitute viable habitats based on recently discovered distinct 

TA B L E  1   Results of search in scientific browsers Scopus and WoS (Web of Science) using titles, abstracts, keywords, and topic of papers 
in relation to ecosystems on glaciers (Accessed on 09.05.2019)

Browser

Keywords

Equator, glacier Tropic, glacier Alpinea, glacier Arctic, glacier Antarctic, glacier

Scopus 89 276 2,692 4,194 3,362

WoS 63 167 2,941 2,241 2,546

Equator, glacier, 
cryoconiteb

Tropic, glacier, 
cryoconite

Alpine, glacier, 
cryoconite

Arctic, glacier, 
cryoconite

Antarctic, glacier, 
cryoconite

Scopus 0 0 41 84 35

WoS 0 0 66 112 51

Equator, glacier, 
biodiversity

Tropic, glacier, 
biodiversity

Alpine, glacier, 
biodiversity

Arctic, glacier, 
biodiversity

Antarctic, glacier, 
biodiversity

Scopus 1 8 102 65 58

WoS 3 4 139 68 58

Equator, glacier, 
supraglacial

Tropic, glacier, 
supraglacial

Alpine, glacier, 
supraglacial

Arctic, glacier, 
supraglacial

Antarctic, glacier, 
supraglacial

Scopus 1 2 81 151 44

WoS 1 0 91 93 54

aAlpine refers to the type of polar and high mountain glaciers. 
bCryoconite is dark sediment on the glacier surface (from ancient Greek “kryos”—cold and “konis”—dust, Nordenskiöld (1875)) comprising mineral par‐
ticulate matter of local and remote origin, including organic compounds, bacteria, algae, fungi, which in turn support protozoans and invertebrates. 
Cryoconite is a basic element in the functioning of supraglacial ecosystems (Cook et al., 2016; Hodson et al., 2008; Takeuchi, 2002; Takeuchi et al., 
2010). 

F I G U R E  2   Water bears (Tardigrada) 
found on disappearing Ugandan glacier. 
(a) Adropion afroglacialis Zawierucha, 
Gąsiorek,	et	al.,	2018,	(b)	Hypsibius sp. 
(scale bar given in micrometers)

(a) (b)
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F I G U R E  3   A, B. Dark matter 
(cryoconite) on glacier surface in 
Uganda	(courtesy	Elżbieta	Wiejaczka),	
mineral grains , most likely along with 
various microorganisms, e.g., ice algae, 
cyanobacteria (Cook et al., 2016; 
Gerdel & Drouet, 1960). Analogues to 
potential snow and supraglacial features 
on equatorial glaciers. C. Red snow on 
snow patches in the Pyrenees during 
summer. Effect of algae (Chlamydomonas 
sp.) blooming; D. Red snow with first 
aggregations (granules) formed by 
microorganisms; E, F. Cryoconite granules, 
bioreactors formed due to interaction 
of cyanobacteria (glacial ecosystem 
engineers) and other biotic and abiotic 
components on ice (Langford, Hodson, 
Banwart, & Bøggild, 2010; Takeuchi et al., 
2010; Uetake et al., 2016), G. Cryoconite 
granule overgrown by cyanobacteria 
(scale bar in millimeter); H, I. Cryoconite 
holes with cryoconite granules on bottom 
(H ‐ in the Alps, I – in Spitsbergen (small 
holes connected into one puddle)); J. Dirt 
cones in the Alps

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)
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and isolated biogeographic communities on snow in various parts of 
the world (Kuja et al., 2018; Lutz et al., 2016; Onuma et al., 2017). 
Moreover, glacial ecosystems include not only supraglacial envi‐
ronments, but also englacial and subglacial channels which, despite 
much research in polar regions, remains enigmatic, yet inhabited by 
diverse microbial communities (Achberger et al., 2017). In equatorial 
zones, these habitats are more speculatory than empirically recog‐
nized. To date, only GMGA and snow have been described, while 
other potential habitats remain undiscovered.

Knowledge on psychrophiles and their habitats is important in 
both basic and applied sciences (Hulatt, Berecz, Egeland, Wijffels, & 
Kiron, 2017; Segawa et al., 2018; Singh, Hanada, Singh, & Tsuda, 2014; 
Stibal et al., 2017). Equatorial glaciers constitute, “cold islands” for life 
in tropical regions and discovering their diversity might shed light on 
the biogeography of psychrophiles, their metabolism, dispersal, and 
history. A particular difference between equatorial and polar glaciers 
is that the former follows both seasonal and daily cycles. Due to high 
altitude, their surface is irradiated intensively, they represent differ‐
ent geological settings, and mostly they are not directly surrounded 
by high mountains (like glaciers in Svalbard or the Alps), which de‐
creases the delivery of local mineral and organic material on the gla‐
cier surface. The glaciated areas in Colombia and Ecuador belong to 
the inner tropics, with a year‐round precipitation pattern that lacks 
any seasonality (Veettil & Kamp, 2019). These climatic and geological 
differences likely shape different microbial assemblages in comparison 
with polar or alpine glaciers. Biodiversity on equatorial glaciers may 
even be important in explaining biological processes from the distant 
past. Currently, water reservoirs on large ice sheets are considered 
as potential analogue for refugia during the period of Snowball Earth 
(Hawes, Jungblut, Matys, & Summons, 2018; Hoffman, 2016). In turn, 
small equatorial glaciers may constitute analogues for the end of 
Snowball Earth, and the processes and fate of organisms on these gla‐
ciers may reflect the end of glaciation during global warming, shedding 
light on their adaptation to a rapidly changing environment.

Unfortunately, the story of equatorial glaciers is quickly coming 
to an end before its scientific inquiry has really begun—important 
scientific data are literally melting away. Melting ice and snow packs 

in Antropocene is not only triggered by temperature, but in tropical 
regions is more complex due to the effects of deforestation, influ‐
encing rain, and atmospheric humidity (Basantes‐Serrano et al., 2016; 
Kaser et al., 2010; Klein & Kincaid, 2006; Mölg, Rott, Kaser, Fischer & 
Cullen, 2006; Thompson et al., 2009). Most of glaciers on Kilimanjaro 
(Figure 4 A‐B) will most likely disappear within 25 years, while small 
glaciers in New Guinea near the Puncak Jaya peak will last only a few 
more decades (Thompson et al., 2009, 2011); the Ugandan glacier 
probably will be gone in <5 years (Mölg et al., 2006; Taylor, Mileham, 
Tindimugaya, Majugu, Muwanga, & Nakileza, 2006). Fairing slightly 
better are South American glaciers, although those proximal to the 
Equator are melting very quickly (Thompson et al., 2011). For exam‐
ple, the glaciers on Antisana volcano in Ecuador, a few degrees south 
of the Equator, will survive <50 years (Basantes‐Serrano et al., 2016). 
Strong fluctuations in equatorial ice cover occurred during the late 
Pleistocene and early Holocene (Downie, 1964; Kaser et al., 2010; 
Mark & Osmaston, 2008; Thompson et al., 2009), but current global 
shrinking of ice is incontestable. Because small, fragmented ecosys‐
tems are more influenced by changes in temperature, rainfall, and hu‐
midity compared with large contiguous ecosystems, trends in natural 
fragmentation of such ecosystems are an indicator of their vulnerabil‐
ity to global changes (Krauss et al., 2010; Mantyka‐Pringle, Martin, & 
Rhodes, 2012). Equatorial glaciers and snow patches, due to their size 
and location, seem to be the most sensitive climatic indicators and 
may serve as a symbol of disappearing and unknown ecosystems in 
an era of changes triggered by human activity (deforestation, green‐
house gas production, releasing of soot and particulates decreasing 
ice albedo etc.).

Bosson et al. (2019) analyzed 19,000 glaciers worldwide (includ‐
ing those in equatorial regions) stating that glaciers may play the 
same function as umbrella, keystone, and flagship species in bio‐
logical species conservation. Such divisions may also be applied to 
equatorial ice. As umbrella species, maintaining equatorial glaciers 
will allow the conservation of other features threatened by melting 
like disappearing glacier habitats, changes of the landscape or local 
climate (Carey, 2007). Unfortunately, many studies indicate that the 
existence of equatorial glaciers is almost over, and we cannot protect 

F I G U R E  4  Glaciers	on	Kilimanjaro.	Pictures	were	taken	on	A.	February	2018,	and	B.	September	2010.	Courtesy	Elżbieta	Wiejaczka

(a) (b)
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these glaciers before mass extinctions. As keystone species, these 
glaciers support the existence of cold streams, which are home for 
unique assemblages of plants and animals, and also plants and an‐
imals	on	glaciers	 (Milner	et	 al.,	 2017;	Zawierucha,	Gąsiorek,	 et	 al.,	
2018). Finally, as flagship species, these glaciers increase awareness 
about the loss of ice ecosystems, the most visible changes of natural 
ecosystems on Earth and their unknown biodiversity at the Equator; 
thus, equatorial glaciers serve as a last endangered endemic species.

The prediction of a changing global climate mobilized world 
leaders in 1992 to reverse these warming trends, leading to an 
international environmental treaty “United Nations Framework 
Convention on Climate Change (UNFCCC)” with an objective to 
stabilize greenhouse gases associated with the widespread loss 
of biodiversity. Since then, however, no comprehensive attempts 
have been made to investigate or protect biodiversity on tropical 
and equatorial glaciers, which are at high risk of being lost for‐
ever, along with their unique biota. Since the announcement of 
the so‐called convention on biodiversity, four volumes of “Global 
Biodiversity Outlook” (GBO) have been published, which pro‐
vides a summary of the status of biodiversity and an analysis of 
efforts taken by the scientific community toward biodiversity con‐
servation. One of the focal areas in the second version of GBO 
(Secretariat of the Convention on Biological Diversity & UNEP 
World Conservation Monitoring Centre, 2006) was reducing loss 
of the components shaping biodiversity, including (a) habitats, (b) 
species, and (c) genetic diversity. In terms of small equatorial gla‐
ciers and snow patches, ecological restoration of habitats is almost 
impossible, and certainly, we will not artificially recover equato‐
rial glacial diversity and function. Thus, it is critically important to 
grasp what we can. Glaciers worldwide contain important infor‐
mation about our past climate and environments within the layers 
of ice. These layers also store biological information, and along 
with microorganisms from the surface and bedrock of glaciers, 
they should be stored for future generations in biological banks. 
GBO 1 highlights the opportunity of ex situ conservation. Such ex‐
amples include seed banks (in glacial communities the equivalent 
are ice core banks) as well as organizations which store biological 
materials for analysis. Taking into account that the species extinc‐
ton rate is 100–1,000 higher than before human existence (Pimm, 
Russel, Gitleman, & Brooks, 1995), it is undisputable that propa‐
gation of representative species and cultures of tractable glacial 
organisms for longer term analyses is crucial and should be made 
available for scientists worldwide.

Considering that marine and terrestrial equatorial regions 
are a biodiversity hotspot (Tapia‐Armijos, Homeier, Espinosa, 
Leuschner, & de la Cruz, 2015), an extrapolation can reasonably 
be made to equatorial glaciers. Do we forgot that species on Earth 
are awaiting discovery, and that many undescribed species inhab‐
iting this biodiversity hotspot are becoming extinct? We cannot 
forget that the recognition of systems and diveristy on our planet 
is a characteristic of natural human curiosity and expansion of our 
knowledge base; it is timely and crucial that we should investigate 
the glacial dynamics, ecology, and biological diversity of the few 

remaining equatorial glaciers before the opportunity is lost. It is 
very important and highly appropriate that mankind should study 
hypothetical ice‐based life on other planets and moons (Martin & 
McMinn, 2018), but it is alarming that we forget about the last 
glaciers which we can explore in our home, on Earth.
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