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Abstract: Currently, seven molecular subtypes of prostate cancer (PCa) are known, the most common
of which being the subtype characterized by the presence of the TMPRSS2–ERG fusion transcript.
While there is a considerable amount of work devoted to the influence of this transcript on the
prognosis of the disease, data on its role in the progression and prognosis of PCa remain controversial.
The present study is devoted to the analysis of the association between the TMPRSS2–ERG transcript
and the biochemical recurrence of PCa. The study included two cohorts: the RNA–Seq sample of
Russian patients with PCa (n = 72) and the TCGA–PRAD data (n = 203). The results of the analysis of
the association between the TMPRSS2–ERG transcript and biochemical recurrence were contradictory.
The differential expression analysis (biochemical recurrence cases versus biochemical recurrence-free)
and the gene set enrichment analysis revealed a list of genes involved in major cellular pathways. The
GNL3, QSOX2, SSPO, and SYS1 genes were selected as predictors of the potential prognostic model
(AUC = 1.000 for a cohort of Russian patients with PCa and AUC = 0.779 for a TCGA–PRAD cohort).

Keywords: prostate cancer; TMPRSS2–ERG molecular subtype; tumor recurrence; gene expression;
RNA–Seq

1. Introduction

Currently, seven major molecular subtypes of prostate cancer (PCa), identified by the
Cancer Genome Atlas Research Network, TCGA–PRAD project [1], are known. Four of the
seven subtypes are characterized by the presence of fusion transcripts between the TM-
PRSS2 exons and the exons of genes encoding members of the erythroblast transformation-
specific (ETS) family of transcription factors: ERG, ETV1, ETV4, and FLI1 (the frequency
of the subtypes is 46%, 8%, 4%, and 1%, respectively). Three other subtypes are character-
ized by the presence of point mutations in one of the following genes: SPOP, FOXA1, or
IDH1 (the frequency of the subtypes is 11%, 3%, and 1%, respectively) [1,2]. Thus, about
half of all PCa cases have a TMPRSS2–ERG fusion transcript, which is formed due to
an intrachromosomal rearrangement leading to the fusion of two genes: TMPRSS2 and
ERG. The TMPRSS2 gene is characterized by a higher expression level compared with
that of ERG gene expression in the prostate tissue [3]; however, their fusion leads to a
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manifold increase in ERG expression [4–6]. Furthermore, a number of studies have de-
scribed TMPRSS2–ERG-mediated feed-forward regulation of wild-type ERG, inducing its
overexpression [7,8]. ERG is a pro-oncogenic transcription factor involved in the regulation
of embryonic development, cell proliferation, and differentiation. Multiple increases in
the expression of the ERG entail serious transcriptomic reprogramming and altered cell
signaling (for example, activation of WNT/TGF-beta and NOTCH pathways). It is believed
that the fusion of TMPRSS2 and ERG is an early driver event of PCa tumorigenesis. The
TMPRSS2–ERG fusion transcript is found in prostatic intraepithelial neoplasia (PIN); the
presence of this fusion transcript is associated with an unfavorable prognosis and more
aggressive PCa [9–11].

Predicting PCa recurrence is a nontrivial task, despite the existing stratification
schemes for risk groups based on traditional clinical parameters, such as the Gleason
score, lymphatic dissemination, and preoperative prostate-specific antigen (PSA). The most
widely used method to classify patients is that of D’Amico, which identifies three risk
groups: low, intermediate, and high [12]. However, these risk groups do not accurately
reflect the likelihood of recurrence in PCa. Biochemical recurrence (BCR) is established at
postoperative PSA ≥ 0.2 ng/mL and, as a rule, occurs only in some high-risk patients but
can also be observed in some intermediate-risk patients [10,13,14], which are cases with
an unfavorable prognosis. Therefore, it is necessary to search for more precise prognostic
markers. The TMPRSS2–ERG fusion transcript can be a potential marker of an unfavorable
prognosis in PCa.

To date, a number of studies have been published that confirm the association of
TMPRSS2–ERG with an unfavorable prognosis. For example, a study of several cohorts of
PCa patients found less recurrence-free survival (RFS) for TMPRSS2–ERG-positive PCa
cases [15]. At the same time, an important aspect is the quantitative level of expression of
the TMPRSS2–ERG fusion transcript and the ERG gene, not just their presence [16]. On the
other hand, several studies have shown that TMPRSS2–ERG is a precursor of a favorable
prognosis. A recent study showed better survival in TMPRSS2–ERG-positive patients than
in TMPRSS2–ERG-negative patients [17]. Several other studies on numerous cohorts of PCa
patients also did not reveal a direct relation between TMPRSS2–ERG gene rearrangement
and BCR [18,19]. Thus, the data on the association of the TMPRSS2–ERG fusion transcript
with BCR are contradictory, and its role in the progression of PCa remains unclear.

In this work, we studied the association between the presence and expression level of
the TMPRSS2–ERG fusion transcript and BCR using a cohort of 72 PCa samples obtained
from Russian patients. We also searched for potential prognostic markers based on dif-
ferential gene expression for the TMPRSS2–ERG molecular subtype using RNA–Seq data
from the cohort of Russian patients and The Cancer Genome Atlas project (TCGA–PRAD).

2. Materials and Methods
2.1. Materials

The study used two cohorts: 72 tumor samples of PCa obtained from Russian patients
and RNA–Seq data of the TCGA–PRAD project. Tumor samples of PCa with paired adjacent
morphologically normal tissues were collected and characterized at the P.A. Herzen of the
Ministry of Health of Russia (Table 1). The patients provided written informed consent to
participate in this study. Samples were collected from patients not undergoing neoadjuvant
therapy. Each sample contained a minimum of 70% of tumor cells.

For differential expression analysis, we used RNA–Seq data for locally advanced PCa
cases from TCGA–PRAD [20] obtained from patients without neoadjuvant therapy and
belonging to the Caucasian population. For these cases, the disease recurrence status and
tumor molecular subtype were known (Table 1).
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Table 1. Clinical and pathological characteristics of the studied cohorts.

Criterion Cohort of Russian
Patients with PCa

TCGA–PRAD
Cohort

PCa samples, total
Age (years), mean (range)

72 203
63 (41–73) 62 (46–78)

pT, n pT3a 35 98
pT3b 37 105

pN, n pN0 43 139
pN1 29 64

pM, n pM0 72 203
pM1 0 0

Gleason score, n

6 7 8
7 41 77
8 10 30
9 13 8

10 1 2
Biochemical recurrence (PSA ≥ 0.2 ng/mL), n 13 63

2.2. Methods
2.2.1. Isolation of RNA and Reverse Transcription

Total RNA was isolated from fresh, frozen samples using the MagNA Pure Compact
RNA Isolation Kit (Roche, Basel, Switzerland) according to the manufacturer’s protocol.
The concentration of the isolated RNA was determined on a Qubit 2.0 fluorometer (Thermo
Fisher Scientific, Waltham, MA, USA) using a Qubit RNA BR Assay Kit (Thermo Fisher
Scientific). The quality of the isolated RNA was assessed on an Agilent 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA, USA) using an Agilent RNA 6000 Nano Kit (Agilent
Technologies). The RNA integrity number (RIN) was no less than 8.0. Reverse transcription
was performed using Mint reverse transcriptase (Evrogen, Moscow, Russia) according to
the manufacturer’s protocol.

2.2.2. Quantitative PCR (qPCR)

The TaqMan Gene Expression Assays Hs03063375_ft (Thermo Fisher Scientific) was
used to assess the expression level of the TMPRSS2–ERG fusion transcript. The RPN1
gene [21] was used as a control gene (primer and probe sequences for RPN1 [22]). qPCR
was performed with an Applied Biosystems 7500 Real-Time PCR System (Thermo Fisher
Scientific). The following process was used for amplification: 95 ◦C for 15 min; 40 cycles at
95 ◦C for 15 s; 60 ◦C for 60 s. Each qPCR reaction was repeated three times. To assess the
level of expression, the method of relative measurements (∆CT) was used and calculations
were performed using the ATG program (Analysis of Transcription of Genes) [23].

2.2.3. RNA Sequencing

The mRNA libraries were prepared using a TruSeq® Stranded mRNA LT kit (Illumina,
San Diego, CA, USA) according to the manufacturer’s protocol. Sequencing was performed
on the NextSeq500 System (read length—75 nt, single-end mode) using the NextSeq
500/550 High Output Kit v2.5 (Illumina).

2.2.4. Data Analysis

FastqQC (v.0.11.9, Cambridge, UK) [24] and Trimmomatic (v.0.33, Jülich, Germany) [25]
were used for the quality control and trimming of reads, respectively. The STAR splice-
aware aligner (v.2.7.1, Cold Spring Harbor, NY, USA) [26] was used to map the reads to
the reference genome (GRCh37.p13, GENCODE, Cambridge, UK) [27]. FeatureCounts
(Subread package v.1.6.4, Parkville, Australia) [28] was used to calculate the read counts
per gene. Differential expression analysis was carried out in the R environment (v.3.6.3,
Vienna, Austria) [29] using the edgeR package (v.3.24.3, NSW, Australia) [30]. Gene set
enrichment analysis (GSEA) was performed using the clusterProfiler package (v.3.14.3,
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Guangzhou, China) with the Gene Ontology (GO), Kyoto Encyclopedia of Genes and
Genomes (KEGG), and REACTOME databases [31]. The specificity and sensitivity of
candidate genes predicting unfavorable prognosis were estimated by the random forest
(RF) method and receiver operating characteristic (ROC) analysis with the area under the
ROC curve (AUC) calculation using the randomForest (v.4.6-14, Rahway, NJ, USA) [32]
and pROC (v.1.17.0.1, Geneva, Switzerland) packages [33]. Both cohorts (Russian patients
and TCGA) were used to train and test the random forest model. Each cohort was split
multiple times into two groups (70% tumors—training set; 30% tumors—testing set). The
impact of TMPRSS2–ERG fusion presence on RFS was accessed by Kaplan–Meier survival
analysis using survminer R package (v. 0.4.8, Montpellier, France) [34].

2.2.5. Statistics

The analysis of associations between the presence/level of expression of TMPRSS2–
ERG and BCR was performed in the R environment (v.3.6.3) [29]. Pearson’s chi-squared
test (χ2) and odds ratio quantity (OR) were used to assess the relationship between the
TMPRSS2–ERG transcript presence and the presence of biochemical recurrence. To assess
the association between the TMPRSS2–ERG expression level and biochemical recurrence,
the Mann–Whitney U-test (MW test) and fold change (FC) quantity were used. Differences
were considered statistically significant at a p-value ≤ 0.05.

The quasi-likelihood (QLF test) and the MW tests were used to assess the significance
of changes in gene expression. Genes that passed a QLF p-value ≤ 0.05 were considered
differentially expressed.

3. Results
3.1. Expression of the TMPRSS2–ERG Fusion Transcript in PCa Samples

Using qPCR, we assessed the expression of TMPRSS2–ERG transcript in 72 tumor
samples of PCa and in paired adjacent normal tissues obtained from Russian patients. In
all tested samples of normal prostate tissue, the expression of the TMPRSS2–ERG fusion
transcript was not detected. The expression of TMPRSS2–ERG transcript was detected in
50% (36/72) of PCa tumor samples.

Furthermore, the whole cohort was divided into two groups based on postoperative
PSA values: (1) BCR (PSA ≥ 0.2 ng/mL) consisting of 13 samples, and (2) the biochem-
ical recurrence-free (BRF, favorable prognosis) group (PSA < 0.2 ng/mL) consisting of
52 samples (seven cases lacked postoperative PSA values data).

For these two groups of samples, factor analysis of the association of TMPRSS2–ERG
fusion transcript presence with BCR was performed using the χ2 test and OR value calculation.
The OR value predicting the direction of changes was 3.56 with χ2 p-value = 0.165.

To evaluate the expression level of TMPRSS2–ERG transcript, ∆CT was calculated
relative to the reference gene (RPN1) for TMPRSS2–ERG-positive samples (n = 36). By
analogy with the whole cohort, these samples were also divided into two groups: (1) BCR
(10 samples), and (2) BRF (19 samples). There was a significant increase in the expression
level of the TMPRSS2–ERG fusion transcript in the BCR group by an average of 5.8 times
(p-value = 0.04) (Figure 1a). Survival analysis showed significantly less RFS for TMPRSS2–
ERG-positive cases (Figure 1b, p-value = 0.009).

Additionally, we analyzed the association between the presence of the TMPRSS2–ERG
fusion transcript and BCR using a cohort of 203 PCa samples from the TCGA–PRAD project,
which was also divided into the groups of BCR (n = 52) and BRF (n = 151). The OR value
for this cohort was 0.83 with χ2 p-value = 0.80.
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Figure 1. TMPRSS2–ERG fusion transcript in PCa samples. (a) Relative level of transcript expression in positive PCa samples.
Y axis is relative level of TMPRSS2–ERG transcript expression (log2 transformation). BCR—biochemical recurrence group
(blue), BRF—biochemical recurrence-free group (gray). (b) Recurrence-free survival (RFS) curves (with 95% CI—shaded
areas) for TMPRSS2–ERG-free cases (grey) and TMPRSS2–ERG-positive cases (red). X axis is time in months, Y is the
survival probability.

3.2. Differentially Expressed Genes and Significantly Enriched Pathways

Earlier, we performed an analysis of differentially expressed genes (DEGs) between
groups of favorable and unfavorable prognoses for the lymph-node-negative LAPC and
for the TMPRSS2–ERG-positive LAPC TCGA–PRAD cohort [35].

In the current study, we analyzed differential gene expression using an expanded
cohort of PCa samples obtained from Russian patients and the TCGA–PRAD cohort.
The following groups of comparisons were formed: (1) BCR versus BRF cases within the
TMPRSS2–ERG molecular subtype and (2) BCR versus BRF cases within the TMPRSS2–ERG
molecular subtype in the TCGA–PRAD cohort. As a result, 388 DEGs (QLF p-value ≤ 0.05,
logCPM ≥ 3) were filtered for BCR within the TMPRSS2–ERG molecular subtype, which
overlapped between the two studied cohorts (Figure 2, Supplementary Table S1). A total
of 104 identified genes were characterized by an increase in expression in the BCR group
within the TMPRSS2–ERG molecular subtype, while the expression levels of 284 genes
decreased (Supplementary Table S1).

Using GSEA, enrichment with genes participating in several pathways related to
the cytoskeleton, cell cycle, hormones, and secretion (insulin secretion, retinol, growth
hormone pathways, calcium signaling), repair, and cell transport was revealed (Figure 3).
The complete GSEA results are presented in Supplementary Table S2.
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Figure 2. Heatmap of 388 differential expressed genes between BCR and BRF for TMPRSS2–ERG molecular subtype of the
cohort of Russian patients and TCGA–PRAD cohort. (a) BCR versus BRF cases within TMPRSS2–ERG molecular subtype;
(b) BCR versus BRF cases within TMPRSS2–ERG molecular subtype in TCGA–PRAD cohort. BCR—biochemical recurrence
group, BRF—biochemical recurrence-free group. Red color indicates upregulated genes, blue—downregulated.
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Figure 3. Dotplots showing top 20 enriched pathways. Y axes—pathways, X—gene ratio (number of input genes for
this pathway/number of genes for this pathway), count—number of input genes for this pathway. (a) GO; (b) KEGG;
(c) Reactome.

3.3. Four-Gene Prognostic Model

Among the 388 identified DEGs, seven candidate genes were highlighted as the
most promising markers of unfavorable prognosis based on the distribution of differential
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expression between groups in both cohorts: GNL3, ODF2, PAXBP1, QSOX2, SSPO, SYS1,
and ZNF302 (Figure 2).

To determine a potential predictive model based on combinations of the aforemen-
tioned candidate genes, ROC analysis was performed. The combination of the genes GNL3,
QSOX2, SSPO, and SYS1 showed the best prognostic characteristics as a predictive model
in both analyzed cohorts (AUC = 1 for the cohort of Russian patients, sensitivity = 1,
specificity = 1; AUC = 0.779 for the TCGA cohort, sensitivity = 0.526, specificity = 0.870)
(Figure 4). The results of other possible predictive models are presented in Supplementary
Table S3. In our research, we identified GNL3, QSOX2, and SSPO as upregulated genes and
SYS1 as downregulated for the BCR group within TMPRSS2–ERG-positive PCa (Table 2).

Life 2021, 11, x FOR PEER REVIEW 7 of 11 
 

 

3.3. Four−Gene Prognostic Model 

Among the 388 identified DEGs, seven candidate genes were highlighted as the most 

promising markers of unfavorable prognosis based on the distribution of differential ex-

pression between groups in both cohorts: GNL3, ODF2, PAXBP1, QSOX2, SSPO, SYS1, 

and ZNF302 (Figure 2). 

To determine a potential predictive model based on combinations of the aforemen-

tioned candidate genes, ROC analysis was performed. The combination of the genes 

GNL3, QSOX2, SSPO, and SYS1 showed the best prognostic characteristics as a predictive 

model in both analyzed cohorts (AUC = 1 for the cohort of Russian patients, sensitivity = 

1, specificity = 1; AUC = 0.779 for the TCGA cohort, sensitivity = 0.526, specificity = 0.870) 

(Figure 4). The results of other possible predictive models are presented in Supplementary 

Table S3. In our research, we identified GNL3, QSOX2, and SSPO as upregulated genes 

and SYS1 as downregulated for the BCR group within TMPRSS2–ERG−positive PCa (Ta-

ble 2). 

Table 2. Differentially expressed genes associated with biochemical recurrence within TMPRSS2–

ERG molecular subtype included in the prognostic model on ROC analysis. FC—fold change, log-

CPM—log2 counts per million, QLF—quasi−likelihood F−test, MW—Mann−Whitney U−test. 

 Russian Patients TCGA−PRAD 

Gene FC logCPM 
QLF 

p−Value 

MW 

p−Value 
FC logCPM 

QLF 

p−Value 

MW 

p−Value 

GNL3 1.37 7.27 0.0095 0.0032 1.29 7.27 0.0043 0.0048 

QSOX2 1.45 5.04 0.0086 0.0069 1.41 5.07 0.0005 0.0002 

SSPO 2.65 4.62 0.0008 0.0083 2.08 3.32 0.0016 0.0012 

SYS1 −1.33 4.90 0.0073 0.0001 −1.23 5.40 0.0068 0.0052 

 

Figure 4. The ROC curves based on GNL3, QSOX2, SSPO, and SYS1 gene expression within
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free group; red line—ROC curve for Russian patient cohort (AUC = 1.000), blue line—TCGA–PRAD
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Table 2. Differentially expressed genes associated with biochemical recurrence within TMPRSS2–
ERG molecular subtype included in the prognostic model on ROC analysis. FC—fold change,
logCPM—log2 counts per million, QLF—quasi-likelihood F-test, MW—Mann-Whitney U-test.

Russian Patients TCGA–PRAD

Gene FC logCPM QLF
p-Value

MW
p-Value FC logCPM QLF

p-Value
MW

p-Value

GNL3 1.37 7.27 0.0095 0.0032 1.29 7.27 0.0043 0.0048
QSOX2 1.45 5.04 0.0086 0.0069 1.41 5.07 0.0005 0.0002
SSPO 2.65 4.62 0.0008 0.0083 2.08 3.32 0.0016 0.0012
SYS1 −1.33 4.90 0.0073 0.0001 −1.23 5.40 0.0068 0.0052
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4. Discussion

Currently, the question of whether the presence and/or expression level of the
TMPRSS2–ERG fusion transcript is a factor of unfavorable prognosis in PCa remains
unclear. Several studies show contradictory results. In this work, we analyzed the associ-
ation of the presence/expression level of the TMPRSS2–ERG fusion transcript with BCR
in PCa.

A significant increase in the level of TMPRSS2–ERG expression was revealed in the
BCR group in a cohort of Russian patients. At the same time, no statistically significant
association between BCR and the presence of the TMPRSS2–ERG fusion transcript in the
tumor was observed for both studied cohorts. However, less recurrence-free survival was
observed for TMPRSS2–ERG-positive cases.

Since there is no unambiguous association of the TMPRSS2–ERG transcript with PCa
recurrence, and the known markers of PCa do not have sufficient predictive power, the
second part of our work was devoted to the search for potential prognostic markers of an
unfavorable prognosis of PCa. Given the high biological heterogeneity of PCa [36], the
search for potential markers was carried out within the TMPRSS2–ERG molecular sub-type,
which is characterized by the highest occurrence (46% of all cases of PCa) [1].

Previously, we searched for potential prognostic markers for the cohort of Russian
patients and the TCGA cohort [35,37]. However, we considered potential prognosis markers
for a cohort of Russian patients without taking into account the TMPRSS2–ERG molecular
subtype in view of the cohort size (n = 32). In addition, in the present study, a different study
design was used for the TCGA cohort, including comparison groups and bioinformatic
data processing.

As a result of the analysis, we obtained a list of DEGs (388 genes) common to both
studied cohorts. The identified genes are involved in molecular pathways related to the
regulation of the cytoskeleton, cell cycle and repair pathways, secretion pathways, and
hormone signaling. The above pathways have also been associated with an unfavorable
prognosis in lymph-node-negative PCa [35].

The following genes were selected as potential markers of unfavorable prognosis:
GNL3, ODF2, PAXBP1, QSOX2, SSPO, SYS1, and ZNF302. Based on the results of the ROC
analysis, the best primary predictive model that was identified relied on the combination
of the GNL3, QSOX2, SSPO, and SYS1 genes (AUC = 1 for the cohort of Russian patients;
AUC = 0.779 for the TCGA cohort) for the TMPRSS2–ERG molecular subtype. At the same
time, an increase in expression was noted for the GNL3, QSOX2, and SSPO genes, while
the expression of the SYS1 gene decreased in the group with an unfavorable prognosis.

The GNL3 gene encodes for guanine nucleotide-binding protein-like 3, also known
as the nucleostemin, which is required to maintain the proliferative capacity of stem cells.
The nucleostemin is concentrated in the nucleus and extracellular matrix. It stabilizes the
MDM2 protein by preventing its ubiquitination and, hence, proteasomal degradation. In
this way, the GNL3 protein may interact with p53 and may be involved in tumorigenesis.
The QSOX2 gene encodes quiescin sulfhydryl oxidase 2, a member of the sulfhydryl
oxidase/quiescin-6 (Q6) family (QSOX1), which are involved in the sensitization of neuro-
blastoma cells for IFN-gamma (IFNG)-induced cell death. The QSOX2 protein is localized
as QSOX1 in the nucleus, Golgi apparatus, and extracellular matrix.

The SSPO (or SSPOP) is a pseudogene also known as SCO-spondin, which is involved in
the modulation of neuronal aggregation. The SSPO may be involved in developmental events
during the formation of the central nervous system. There are the metabolism of proteins and
the O-glycosylation of TSR domain-containing proteins among its related pathways.

The SYS1 gene encodes the SYS1 Golgi trafficking protein, which forms a complex
with ADP-ribosylation factor-related protein ARFRP1 and targets ARFRP1 to the Golgi
apparatus. The SYS1 protein is mostly localized in Golgi apparatus and cytosol.

A number of studies have also described the association of GNL3 gene overexpression
with tumor progression and poor survival in cancer of the prostate [38], stomach [39],
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colon [40], breast [41,42], and lung [43]. For three other identified genes (QSOX2, SSPO,
and SYS1), we have described potential involvement in PCa for the first time.

In conclusion, the high expression level of the TMPRSS2–ERG fusion transcript was
associated with unfavorable prognosis. Despite the lack of significant association of the un-
favorable prognosis and presence of the TMPRSS2–ERG fusion transcript, comprehension
of the TMPRSS2–ERG fusion transcript status in tumor is important to clarify which PCa
prognostic model is appropriate for application. The most perspective prognostic model
for TMPRSS2–ERG-positive PCa was based on expression profiles of GNL3, QSOX2, SSPO,
and SYS1 genes. The above model demonstrated sufficiently high predictive potential.
However, further experimental research to validate this model on an expanded cohort by
qPCR is needed.
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