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ABSTRACT

The use of high-throughput array and sequencing
technologies has produced unprecedented amounts
of gene expression data in central public deposito-
ries, including the Gene Expression Omnibus (GEO).
The immense amount of expression data in GEO
provides both vast research opportunities and data
analysis challenges. Co-expression analysis of high-
dimensional expression data has proven effective
for the study of gene functions, and several co-
expression databases have been developed. Here,
we present a new co-expression database, COEXPE-
DIA (www.coexpedia.org), which is distinctive from
other co-expression databases in three aspects: (i)
it contains only co-functional co-expressions that
passed a rigorous statistical assessment for func-
tional association, (ii) the co-expressions were in-
ferred from individual studies, each of which was de-
signed to investigate gene functions with respect to
a particular biomedical context such as a disease
and (iii) the co-expressions are associated with med-
ical subject headings (MeSH) that provide biomedi-
cal information for anatomical, disease, and chemical
relevance. COEXPEDIA currently contains approxi-
mately eight million co-expressions inferred from 384
and 248 GEO series for humans and mice, respec-
tively. We describe how these MeSH-associated co-
expressions enable the identification of diseases and
drugs previously unknown to be related to a gene or
a gene group of interest.

INTRODUCTION

Unprecedented amounts of gene expression data derived
from high-throughput microarray and next-generation se-
quencing (NGS) technologies have accumulated in several
public depositories such as the Gene Expression Omnibus

(GEO) (1), ArrayExpress (2) and the Short Read Archive
(SRA) (3). The cumulative size of the databases continues to
grow at an increasing rate owing to the ever-decreasing cost
for NGS. Therefore, these central depositories of gene ex-
pression data are considered important resources with huge
potential for the study of gene functions. For example, as of
July 2016, GEO contained over 1.8 million microarray or
NGS samples, of which over 1.3 million samples were de-
rived from either humans or laboratory mice. The majority
of the samples are for gene expression profiling. This exist-
ing prohibitive amount of data becomes a major challenge
when exploring functional hypotheses using the public data
depository (4).

One of the popular approaches to study gene functions
using high-dimensional expression data is co-expression
analysis, which is based on the key observation that func-
tionally associated genes tend to co-express across many dif-
ferent biological contexts (5). Aggregated co-expression re-
lationships can be used to construct a functional gene net-
work, in which a functional inference for each gene can be
made using various network analysis algorithms (6). This
network-based approach has proven useful in disease gene
identifications and disease classifications (7,8). To increase
the usability of the expression data in the central depos-
itories, co-expression databases such as COXPRESdb (9)
and GeneFriends (10) were developed through large-scale
analysis efforts. These databases allow users to identify co-
expressed genes and their associated biological concepts
such as Gene Ontology (GO) terms (11), facilitating the
functional characterization of a gene of interest.

Here, we present a new co-expression database, CO-
EXPEDIA (www.coexpedia.org), which is distinctive from
other co-expression databases in three aspects. First, we in-
cluded only co-expressions in COEXPEDIA that passed a
rigorous statistical test for co-functionality. We anticipated
that a high correlation of expression across samples does
not always indicate a functional association between genes.
Therefore, we opted to measure the probability of func-
tional coupling for the given co-expressed gene pairs and
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take gene pairs that were significantly co-expressed as well
as highly likely to be co-functional. Second, we inferred co-
expressions from individual studies rather than aggregating
samples from multiple studies. With this study-centric co-
expression analysis, we were able to focus more on context-
associated co-expressions. We achieved this by leveraging
co-expressions among samples for each GEO series (GSE),
which generally corresponded to a published study that was
designed and conducted to investigate gene functions with
respect to a particular biomedical context such as a disease
and drug treatment. Third, the co-expressions in COEXPE-
DIA are associated with medical subject headings (MeSH).
We employed MeSH terms to systematically analyze the
context-associated co-expressions. MeSH terminology was
developed by the National Library of Medicine (NLM)
as a controlled vocabulary thesaurus to index and catalog
biomedical information in articles for PubMed (see https:
/lwww.nlm.nih.gov/mesh/ for more details). MeSH terms
are hierarchically organized with 16 top-level categories. Be-
cause most GSEs are based on at least one PubMed article
that has been indexed by MeSH terms, the co-expressions
derived from each GSE are consequently associated with
MeSH terms. We describe how the MeSH-associated co-
expressions enable the identification of unknown gene-to-
disease, gene-to-drug, disease-to-disease, and disecase-to-
drug associations.

INFERENCE OF CO-FUNCTIONAL CO-EXPRESSIO
NS

We analyzed human and mouse GSEs based on the
major Affymatrix platforms (GPL96, GPL570, GPL571,
GPL3921, GPL6244 for human; GPL339, GPL1261,
GPL8321, GPL6246 for mouse) to infer co-expressions for
biomedical research. GEO contains several hundred thou-
sand human and mouse samples. We used the Pearson cor-
relation coefficient (PCC) to measure the correlation of ex-
pression patterns between two genes. Using expression cor-
relations across a large number of samples by concatenat-
ing multiple GSEs can identify statistically more robust
co-expressions, yet co-expression signals for a specific con-
text could be buried by the abundant noise spanning sam-
ples for irrelevant contexts. Therefore, we conducted a co-
expression analysis for each GSE, as each is generally com-
posed of samples from more coherent biological contexts.
To manage the statistical robustness of the inferred co-
expressions, we used only GSEs with at least 12 samples.
Previous studies reported that the MASS5 normalization
method was more effective than the RMA method in co-
expression analysis (12,13). We therefore normalized all the
raw array data using MASS except GPL6244 and GPL6246,
the more recent platforms in which MASS is not applicable.

To ensure that the inferred co-expressed genes are also
likely to be functionally coupled, we measured the likeli-
hood of functional association for co-expressed gene pairs
using the Bayesian statistics framework (14). For this bench-
marking analysis, we generated a set of positive gold-
standard co-functional gene pairs using pathway annota-
tions with the GO biological process (GOBP) or MetaCyc
(15) for both human and mouse data. We also defined a
set of negative gold-standard data by pairing two annotated

genes that do not share their pathway annotation at all. The
log likelihood score (LLS) of co-expressions was calculated
with the following equation:

P(LIC) /P(ﬁLIC?>
P(L)/P(=L)

where P(L) and P(—L) represent the probabilities of posi-
tive and negative gold-standard co-functional links, respec-
tively. P(L|C) and P(—L|C) indicate the probabilities of
positive and negative gold-standard co-functional links for
the given strength of co-expression measured by the PCC,
respectively. Gene pairs were sorted by decreasing order of
the PCC, and then the LLS was calculated for each bin of
1000 gene pairs from the highest PCC. We then found a
regression curve that best fit the data points between the
PCC and LLS based on a sigmoid function. Using the best
regression function, we assigned an LLS for all gene pairs
with a PCC. To identify co-expressed gene pairs that are
highly likely to be functionally coupled, we applied an LLS
threshold of 1, which is equivalent to ~2.7 times more likely
than random chance (Figure 1A).

During our co-expression analysis for the GSEs, we fre-
quently observed poor correlations between PCC and LLS
values (see the example of GSE11292, Figure 1B), demon-
strating that the co-expressions across the given samples
do not necessarily indicate a co-functional relationship be-
tween the two genes. We analyzed a total of 2056 and 2468
GSEs but found meaningful correlations between PCC and
LLS values and inferred co-functional co-expressions from
only 384 and 248 GSEs for humans and mice, respectively
(Supplementary Table S1). COEXPEDIA currently con-
tains a total of 3 026 367 and 4 912 497 co-functional co-
expressions for humans and mice, respectively.

LLS = 1n<

OVERVIEW OF THE COEXPEDIA DATA STRUCTURE

All co-expressions in COEXPEDIA are based on an indi-
vidual GSE, which generally corresponds to at least one
published study. Given that each study was designed and
conducted to investigate gene functions within a partic-
ular biomedical context, the co-expressions derived from
the study are expected to be associated with the relevant
biomedical context as well (Figure 2A). For example, the
GSE6613 study was conducted to identify gene expression
signatures of early Parkinson’s disease. Thus, it is expected
that co-expressions inferred from GSE6613 are associated
with Parkinson’s disease at the early stage. If we interpret co-
expression networks in the context of Parkinson’s disease,
we may have a better chance of identifying causative genes
or diagnostic biomarkers for Parkinson’s disease. Therefore,
the context information for the given co-expressions will en-
hance our ability to generate hypotheses that are more rele-
vant to the given medical subjects. If the given GSE has been
published, we can collect relevant biomedical information
via the MeSH terms assigned for the article. We collected
the list of PubMed articles for each GSE from Simple Om-
nibus Format in Text (SOFT) data files, and MeSH terms
from XML-formatted summaries of each PubMed article.
These cross references between GSEs and PubMed articles,
and between MeSH terms and PubMed articles were then
used to map associations between GSEs and MeSH terms.
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Figure 1. Assessment of co-functional co-expression. (A) Co-functional co-expressions show a strong positive correlation between the strength of co-
expression (measured by PCC) and likelihood of functional association (measured by LLS). For example, co-expressions across healthy and malignant
human B-lymphocytes with or without B-cell receptor stimulation (GSE39411) show a strong correlation with the likelihood of co-functional associations.
LLS scores are assigned for all co-expressed gene pairs based on sigmoid regression fitting of data points between PCC and LLS, and only those with
at least an LLS of 1 (i.e. ~2.7 more likely to be co-functional than random chance) are included in the COEXPEDIA database. (B) In many cases, the
co-expressions inferred from a GSE do not implicate a co-functional relationship. For example, the co-expressions across time-course samples during the
activation of human regulatory and effector T cells (GSE11292) show a poor correlation between PCC and LLS, indicating that these co-expressions are

unlikely to be co-functional.

For example, GSE6613 can be associated with the MeSH
terms ‘Parkinson’s disease’, ‘biomarkers’, ‘diagnosis’ and
‘risk factors’ via the associated PubMed article (16). This
biomedical information for co-expressions allows the explo-
ration of novel biomedical hypotheses for a gene or a group
of genes using enriched MeSH terms among co-expressions
(Figure 2B).

MeSH terms are composed of 16 categories, and we se-
lected terms from only four categories that are thought
to be more useful for generating biomedical hypotheses:
Anatomy (A), Diseases (C), Chemicals and Drugs (D) and
Psychiatry and Psychology (F). MeSH terms in category
Anatomy (A) indicate particular organs, tissues, cell types,
and other body structures. Considering that many diseases
involve disorders of a particular organ, tissue, or cell-type,
these MeSH terms are expected to be useful for generat-
ing disease-relevant hypotheses. We excluded MeSH terms
under two subcategories of the Anatomy (A) category:
‘Cells, Cellular Structures’ (A11.284) and ‘Cells, Cultured’
(A11.251) owing to their low relevance to a specific disease.
The Diseases (C) category has the largest number of MeSH
terms. We excluded terms under three subcategories of this
category: ‘Animal Diseases’ (C22), ‘Disease’ (C23.550.288),
‘Disease Attribute’ (C23.550.291) and ‘Chromosome Aber-
rations’ (C23.550.210), which are irrelevant to the specific
diseases. For the Chemicals and Drugs (D) category, we
used only terms under two subcategories: ‘Inorganic Chem-
icals’ (D01) and ‘Organic Chemicals’ (D02). MeSH terms
in the Psychiatry and Psychology (F) category were used to
supplement the disease terms for mental and behavior dis-
orders.

HYPOTHESIS GENERATION VIA MESH-ASSOCIATE
D CO-EXPRESSIONS

With COEXPEDIA, we provide a companion web server
that facilitates generating biomedical hypotheses for either
a single gene or a group of genes queried by users. A sin-
gle gene query starts with the identification of associated
functions or diseases. When users submit a query gene,
the web server first returns three types of search results:
co-expressed partners sorted by the sum of LLSs from all
supportive GSEs (i.e. sum of LLS) (Figure 3A), enriched
GOBP terms (Figure 3B), and Disease Ontology (DO) (17)
terms (Figure 3C) among co-expressed genes, sorted by the
P-values from Fisher’s exact test. These GOBP and DO
terms suggest pathways and diseases associated with the
query gene, respectively. The web server also provides a vi-
sual representation of the network of the co-expressions be-
tween the query gene and its co-expressed partners (Figure
3D). The publication-grade network images are also avail-
able for download.

Next, the web server returns MeSH terms enriched
among the co-expressions (Figure 3E). The enrichment of
MeSH terms among the co-expressions is measured by the
summation of LLSs from all supportive GSEs that are in-
dexed by the MeSH terms. The top-ranked MeSH term can
be interpreted as the most relevant biomedical context for
the given co-expressions. We found that MeSH terms un-
der Neoplasm (C04) are frequently indexed in PubMed ar-
ticles, reflecting a study bias towards cancer in genomics. To
facilitate the browsing of non-neoplasm diseases enriched
among co-expressions, we opted to provide lists of the en-
riched MeSH terms that either include or exclude neoplasm
MeSH terms in two separate tables (see Figure 3E). Users
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Figure 2. Overview of the COEXPEDIA data structure. (A) Co-expressions are inferred from individual GSEs, each of which is associated with at least
one PubMed article. Each article has multiple MeSH terms indexed. Consequently, each co-expression can be associated with at least one MeSH term. (B)
A real example of the data structure by CTLA4 co-expressions. The enrichment score of each MeSH term for the given co-expressions can be calculated by
the summation of the sum of edge scores (i.e. LLS) derived from multiple GSEs (e.g. enrichment score for T-lymphocytes was calculated by summation of
the sum of edge scores from GSE12195, GSE20711 and GSE14924). The given scoring scheme identified isotretinoin, T-lymphocytes, cyclophosphamide,
epirubicin as top four MeSH terms enriched for CTLA4 co-expressions.
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Figure 3. Screenshots of the BRCAI query results. (A) A list of the co-expression partners of BRCAI ranked by the sum of LLS scores. (B) A list of the
enriched GOBP terms among BRCAI co-expression partners ranked by the P-value from Fisher’s exact test. (C) A list of the enriched DO terms among
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partners. (E) A list of the enriched MeSH terms among the BRCAI co-expression network. (F) A visualization of the gene network of BRCAI and its
co-expression partners only for the selected MeSH term ‘Heart’. (G) Information on the studies (GSEs and PubMed articles) that support the selected
MeSH term ‘Heart’ for the co-expression network.
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may conduct GOBP and DO enrichment analyses in the
context of a particular MeSH term by clicking the “View’
link next to it. This context-specific functional enrichment
analysis provides a different list of associated GOBP or DO
terms. Then, the server provides a visualization of the net-
work for the specific MeSH term (Figure 3F) and informa-
tion on supportive GSEs and PubMed articles (Figure 3G).

A query using a gene group returns results similar to
those from a single gene query. The enrichment analy-
sis is not based on all the query genes but only on the
query genes that are co-expressed with other query genes.
The genome-wide association study (GWAS) and whole
exome sequencing (WES) approaches have resulted in the
reporting of many genes with disease implications. Co-
expressions among a group of genes implicated for a dis-
ease can be enriched for some MeSH terms. The enriched
disease- or chemical-associated MeSH terms for the co-
expressions among the disease-associated genes may re-
veal novel disease-to-disease or disease-to-drug associa-
tions. The web server provides a table of gene sets precom-
piled from GWASdb (18) to enable easy queries of GWAS
candidate genes.

COEXPEDIA predictions depend on not only the co-
functionality between co-expressed genes but also the reli-
ability of gene-to-MeSH relationships. We presumed that
a high probability of a functional association between
genes in COEXPEDIA could be achieved by using only
co-functional co-expressions. Next, we assessed gene-to-
MeSH relationships using literature-based gene-to-MeSH
pairs from the Gene2MeSH database (http://gene2mesh.
ncibi.org) as gold-standard data. We compiled a total of 39
657 gold-standard gene-to-MeSH pairs from the database.
After excluding the prevalent Neoplasm (C04) terms, there
were 38 224 gene-to-MeSH pairs left. We then counted
the cumulative number of gold-standard gene-to-MeSH
pairs in the top N ranked MeSH terms for each gene. We
observed that the cumulative number of retrieved gold-
standard gene-to-MeSH pairs increased as more MeSH
term predictions were considered with either including or
excluding Neoplasm terms (Figure 4). The number of gold-
standard gene-to-MeSH pairs retrieved by COEXPEDIA
is substantially higher than that by random predictions (by
~25-50-fold), which indicates that relevant biomedical con-
texts for each gene can be reliably identified by utilizing
MeSH-associated co-expressions.

CASE STUDIES
Predictions for a single gene: BRCAI and CTLA4

The COEXPEDIA prediction for BRCAI, a tumor sup-
pressor gene whose mutations substantially increase breast
cancer susceptibility, returned GOBP terms related to DNA
repair and cell cycle checkpoints as highly enriched path-
ways among BRCA co-expressed partners (see Figure 3B).
Next, the DO enrichment analysis returned ‘cancer’ and
‘breast ovarian cancer’ terms as the diseases most associated
with BRCAI. Notably, these associated diseases, which are
already well known, were followed by ‘colorectal cancer’,
whose association with BRCAI is not widely known (see
Figure 3C). Interestingly, recent studies have reported that
the risk for colorectal cancer is increased in female carriers

of BRCAI mutations (19,20), which validates the gene-to-
disease association predicted by COEXPEDIA.

Searching for non-neoplasm MeSH terms associated
with BRCAI returned ‘Heart’ as the second top associ-
ated term (see Figure 3E and F). Interestingly, BRCAI was
recently reported as an essential regulator of heart func-
tion and survival following myocardial infarction (21). Co-
expressions that support the association between BRCAI
and heart function were derived from GSE8481 (22) (see
Figure 3G), although this study was not designed explic-
itly to investigate the association between BRCA! and heart
function.

Next, we queried CTLA4, an immune checkpoint that
is a major therapeutic target used in tumor immunother-
apy (23). Immune-related GOBP terms were returned as the
top enriched pathways, and autoimmune diseases such as
lupus, multiple sclerosis, and arthritis were returned as the
most associated DO terms, which are all consistent with the
roles of CTLA4 in immune suppression. Interestingly, some
chemicals used in cancer chemotherapy were suggested to
be highly associated with CTL A4 via the enrichment analy-
sis for non-neoplasm MeSH terms: isotretinoin (rank 1), cy-
clophosphamide (rank 3), epirubicin (rank 3) and paclitaxel
(rank 3) (see Figure 2B). We found that the combination
of low-dose cyclophosphamide and anti-CTLA4 blockade
(ipilimumab) for melanoma is currently under clinical trial
(https://clinicaltrials.gov/ ID: NCT01740401). Epirubicin
was recently reported to inhibit regulatory T-cell activity
(24), which also implicates the potential enhancement of
anti-CTLA4 immunotherapy by combination therapy. Re-
garding paclitaxel, a preclinical investigation of the combi-
nation of anti-CTLA4 ipilimumab and paclitaxel showed a
synergistic therapeutic effect in mouse tumor models (25).
Excluding isotretinoin, we found evidence in the literature
that supported the potential benefit of the combined use
of cyclophosphamide, epirubicin, and paclitaxel in anti-
CTLA4 cancer immunotherapy. All these chemical MeSH
terms were supported by co-expressions derived from the
GSE32646 data set composed of 115 breast cancer tu-
mor samples with resistance to the chemotherapeutics (26).
However, an association between the chemical drugs and
CTLA-4 or tumor immunotherapy was not indicated in
the study. These results suggest that MeSH-associated co-
expressions can identify potential drugs for novel or en-
hanced treatments for diseases.

Predictions for a group of genes: GWAS candidates for
Alzheimer’s disease

COEXPEDIA predictions for a group of genes, particu-
larly those associated with a genetic disorder, can be used to
generate hypotheses about disease-to-disease associations
(e.g., comorbidity) or novel drugs for disease treatment.
When we submitted a group of 16 genes associated with
Alzheimer’s disease (AD) compiled from GWASdb, only 10
of them were found to be interconnected by co-expressions.
The GOBP enrichment analysis for the 10 co-expressed AD
candidate genes returned pathways involving beta-amyloid
and neurofibrillary tangle assembly regulation as top pre-
dictions, which were all expected. Interestingly, the DO en-
richment analysis for the same 10 genes returned ‘herpes
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Figure 4. Assessment of gene-to-MeSH predictions. Literature-based gene-to-MeSH links compiled from the Gene2MeSH database are used as gold-
standard data to evaluate predictions based on co-expressions in COEXPEDIA. The cumulative number of gold-standard gene-to-MeSH links is counted
in the given top N ranked MeSH predictions for the query gene while excluding (A) or including (B) the prevalent neoplasm MeSH terms. The predictions
by COEXPEDIA are compared with those by 1000 sets of randomly sampled gene-to-MeSH links, which are summarized as distributions for the same
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simplex’ rather than AD as the most associated disease. In-
deed, an international team of researchers has recently pro-
posed that AD could be caused by herpes simplex virus
type 1 (HSV1) infection, according to various lines of ev-
idence (27). The results of the MeSH enrichment analysis
for co-expressions seemed more intriguing. Among the top
enriched non-neoplasm MeSH terms for the AD-associated
co-expressions, we noticed ‘kidney’ (rank 3), which impli-
cates an association of kidney function with AD. Indeed,
multiple studies have reported chronic kidney disease as a
risk factor for AD (28). The supportive co-expressions for
the association of AD with kidney function were inferred
from pancreatic tumor samples (GSE16515) (29) and clear
cell carcinoma of the kidney (GSE14994) (30). These stud-
ies were neither designed nor conducted to investigate ex-
plicitly an association between AD and kidney disorders.
We also found some chemicals used in cancer treat-
ment among the highly associated non-neoplasm MeSH
terms: boronic acids (rank 4) and thalidomide (rank 5).
Indeed, a recent study has reported that alkenylboronic
acids have a neuroprotective function and can affect mul-
tiple biological targets involved in AD (31). This associ-
ation between AD and boronic acids was inferred from
co-expressions across 162 multiple myeloma tumor sam-
ples (GSE6477) (32) from a study that was not designed to
study either AD or boronic acids. In addition, a therapeu-
tic effect of thalidomide on AD has recently been suggested
by a study involving its chronic administration in a mouse
disease model (33). The association of thalidomide with
AD was supported by co-expressions across 46 tumor sam-
ples from multiple myeloma patients who received an initial
therapy of lenalidomide and dexamethasone (GSE31504)
(34). Therefore, we concluded that MeSH-associated co-
expressions can reveal potential drugs with therapeutic ef-

fects on a disease by querying a group of genes associated
with the disease of interest.

CONCLUDING REMARKS

In this study, we present COEXPEDIA, a new database of
co-expressions that are likely to be co-functional and associ-
ated with MeSH terms. By analyzing example queries using
BRCAI, CTLA4, and AD-associated genes from GWAS,
we demonstrate that MeSH-associated co-expressions en-
able the identification of unknown gene-to-disease, gene-to-
drug, disease-to-disease, and disease-to-drug associations.
To the best of our knowledge, COEXPEDIA is the first
co-expression database to integrate MeSH terms, which are
major sources of medical subject annotations. The incorpo-
ration of MeSH terms will greatly potentiate the use of co-
expression information for generating biomedical hypothe-
ses. As the size of gene expression data in GEO continues to
grow at an ever-increasing rate and we constantly endeavor
to index the literature using a controlled biomedical vocabu-
lary system such as MeSH, the framework described in this
study will become more useful for the biomedical research
community.
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