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COVID-19 Screening in Chest X-Ray Images
Using Lung Region Priors
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Abstract—Early screening of COVID-19 is essential for
pandemic control, and thus to relieve stress on the health
care system. Lung segmentation from chest X-ray (CXR)
is a promising method for early diagnoses of pulmonary
diseases. Recently, deep learning has achieved great
success in supervised lung segmentation. However, how
to effectively utilize the lung region in screening COVID-19
still remains a challenge due to domain shift and lack
of manual pixel-level annotations. We hereby propose
a multi-appearance COVID-19 screening framework by
using lung region priors derived from CXR images. Firstly,
we propose a multi-scale adversarial domain adaptation
network (MS-AdaNet) to boost the cross-domain lung
segmentation task as the prior knowledge to the classifica-
tion network. Then, we construct a multi-appearance net-
work (MA-Net), which is composed of three sub-networks
to realize multi-appearance feature extraction and fusion
using lung region priors. At last, we can obtain prediction
results from normal, viral pneumonia, and COVID-19
using the proposed MA-Net. We extend the proposed
MS-AdaNet for lung segmentation task on three different
public CXR datasets. The results suggest that the MS-
AdaNet outperforms contrastive methods in cross-domain
lung segmentation. Moreover, experiments reveal that
the proposed MA-Net achieves accuracy of 98.83% and
F1-score of 98.71% on COVID-19 screening. The results
indicate that the proposed MA-Net can obtain significant
performance on COVID-19 screening.

Index Terms—Unsupervised domain adaptation, lung
segmentation, multi-appearance, chest X-ray image,
COVID-19.

I. INTRODUCTION

PULMONARY disease is one of the leading causes of mor-
bidity and mortality throughout the world. Especially the

ongoing global pandemic of COVID-19 [1], caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has
caused more than three million deaths and severe harm to the
world’s economy. In spite of such high fatality and social burden,
the diagnostic tests for COVID-19 are far from satisfactory. The
rapid and accurate screening of patients plays an important role
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Fig. 1. t-SNE visualization of the domain shift problems where the
three datasets are collected from different hospitals.

in controlling the outbreak and relieving the pressure on the
medical system due to the strong infectivity of COVID-19.

As CXR is cheaper and faster to obtain than computed
tomography (CT) scan, CXR has become one of the most
regularly used medical image to perform early-stage screening
of patients with acute respiratory distress syndrome (ARDS)
and currently with COVID-19 symptoms. However, manual
reading of CXR images is expertise-required, time-consuming,
and error-prone. With the fast development of deep learning
(DL) methods in medical image analysis [2] and physiological
signals recognition [3], an emerging trend is to employ DL
methods to assist radiologists and other physicians in reading and
comprehending CXRs.

Lung segmentation is a fundamental task to assist clinical
diagnosis owing to the abundant image-based structural infor-
mation, such as shape irregularities, size measurements, and the
volume of the lungs provided by it. The provided information can
be used to facilitate disease pattern recognition, segmentation,
quantization, and further be employed to analyze biomarkers for
lung diseases, including COVID-19 [4].

While lung segmentation is of great clinical importance, two
main problems hinder the performance and development of lung
segmentation. One is domain shift problem, which is exacer-
bated by the under-representation of some rare medical con-
ditions, varying imaging configurations, modalities, and other
factors. As shown in Fig. 1, the source domain dataset cannot be
well generalized to the target domain dataset due to the different
data distribution. Another problem is that manual annotations of
CXR images by radiologists would impose enormous strains on
medical resources. Accordingly, there is a strong motivation to
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learn a lung segmentation model on the source domain data with
pixel-level labels and obtain good performance on the unlabeled
target domain data to realize unsupervised adaptation.

In this paper, we propose a framework by leveraging unsuper-
vised lung segmentation results as prior knowledge and further
develop a DL network for the early-stage screening of patients
who are suspected to be infected with COVID-19. Specifically,
we firstly develop a multi-scale adversarial domain adaptation
network (MS-AdaNet) for lung segmentation. The proposed
MS-AdaNet combines the concepts of unsupervised domain
adaptation (UDA) and adversarial learning to force the distri-
bution of the target domain closer to the source domain. Then
with the segmentation results, we build a multi-appearance net-
work (MA-Net) ensemble of three models for multi-appearance
feature extraction of the Original CXR (OC), Heterogeneity in
Lung Shapes (HLS), and Heterogeneity in Pixel Values (HPV),
respectively. At last, the network fuses the multi-appearance
features at the decision level for screening COVID-19 in CXR
images.

To conclude, the main contributions of this paper are:
1) We propose a lung region-based COVID-19 screening

framework in CXR. Via the fusion of multi-appearance CXRs,
our proposed framework conducts the combined model to per-
form COVID-19 screening task.

2) To overcome the domain shift and unsupervised prob-
lems, a multi-scale feature adversarial learning scheme called
MS-AdaNet is developed to mitigate the domain gap for lung
segmentation from different datasets without annotations.

3) Through extensive experiments for COVID-19 screening
based on multi-appearance CXRs, we demonstrate that lung
region prior knowledge can substantially improve the classifi-
cation accuracy on COVID-19 datasets. And the results further
provide an explainable conclusion to assist clinical diagnosis.

In the following sections, we introduce the related works
involving image segmentation, domain adaptation and COVID-
19 classification in Section II. In Section III we discuss our
framework in details. We provide the implementation details
and conduct extensive experiments in Section IV and Section V.
Finally, we conclude this paper in Section VI.

II. RELATED WORKS

In this section, we briefly review three types of works that are
related to the proposed lung region-based COVID-19 screen-
ing framework: (1) DL in image segmentation, (2) domain
adaptation in medical image analysis, (3) DL in COVID-19
classification.

Deep Learning in Image Segmentation. DL in image seg-
mentation, focusing on computer vision and medical imaging,
has become one of the most popular research in recent years.
Litjens et al. [5] have surveyed the DL methods applied to
medical image segmentation. Specially, the Fully Convolutional
Network (FCN) proposed by Long et al. [6] has become a pow-
erful and promising framework by replacing the fully connected
layers in the classification networks with upscaling layers. Many
works [7], [8] developed for organ segmentation in medical
images, were inspired by the end-to-end FCN model. Such work

has also combined with a convolutional network (e.g. ResNet [9]
and DenseNet [10]) for efficient prostate segmentation [11].
With the dramatic development of FCN in medical image
processing, Ronneberger et al. [12] proposed a novel U-Net
framework for semantic segmentation in medical images. U-Net
combined the FCN architecture with skip connections between
encoder and decoder layers. Many networks were proposed
subsequently based on U-Net by introducing nested and dense
skip connections [13] or adding densely connected blocks [14].
In this work, we employ U-Net with some careful adjustments
as our segmentation network.

Domain Adaptation in Medical Image Analysis. Domain
shift is a long-standing problem in medical image analysis due
to the under-representation of some rare medical conditions,
varying imaging configurations and other factors. Unsupervised
domain adaptation has been proved to be effective in addressing
domain shift problem in medical image analysis [15], [16], as
well as challenging and yet to be explored. Most approaches fo-
cus on minimizing measures of distances between the source do-
main and the target domain features [17]. Recent works follow a
similar spirit via adversarial learning, including image-to-image
translation [18], feature adaptation [19], and cross-modality seg-
mentation [20] with the mixtures of image-to-image translation
and feature adaptation [21]. Moreover, Zhang et al. [22] pro-
posed a collaborative UDA method for medical image diagnosis
and evaluated on different datasets including COVID-19 to prove
its generalization and superiority.

Deep Learning in COVID-19 Classification. Due to the
strain on medical system caused by the outbreak of COVID-19
pandemic, many DL methods have been developed to assist radi-
ologists in screening pneumonia patients, including COVID-19
patients on radiology images [23]–[26]. Especially on CXRs,
Wang et al. [27] proposed a three-stage nodule detection method.
They trained the cost-sensitive random forest for lung nodule
classification based on the lung segmentation. Minaee et al. [28]
trained four convolutional networks using transfer learning on
CXRs for COVID-19 classification. Nour et al. [29] proposed
a convolutional neural network which can be used to assist
the radiologists in detecting positive COVID-19 cases. Wang
et al. [30] proposed a computer-aided detection system with two
steps: lung feature extraction and local patches training. They
claimed that the system can efficiently and accurately screen
COVID-19 cases.

Although researchers have made these efforts for the classi-
fication of COVID-19 on CXR images, there is a lack of ex-
tending the use of lung region and multi-appearance images for
pneumonia classification. As suggested by Xie el al. [31], using
DL models, the lung nodule characteristics can be learned from
multi-views and multi-appearances images. Jaeger et al. [32]
developed an automated CXR screening system. The system
segments the lung region in CXR firstly and then computes a
set of shape, edge, and texture features as input to a binary
classifier to realize tuberculosis screening. Oh et al. [4] analyzed
the biomarkers in COVID-19 CXR images. They trained a lung
segmentation network and investigated the correspondence be-
tween lung contours and categorical classes. A pneumonia clas-
sification network was trained with four different types of CXRs.
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Fig. 2. Overview of our proposed lung region-based COVID-19 screening framework. The framework architecture consists two stages. Step-1:
MS-AdaNet. The supervised loss Lseg is employed to update the segmentation network as the sum of three segmentation losses. The three
discriminators {D1,D2,D3} differentiate the input of the three scales respectively to obtain the adversarial loss Ladv . Step-2: MA-Net. The lung
masks are obtained based on the well-trained network G in step-1, and the multi-appearance CXR images are further generated as the input of the
corresponding sub-network to get the final classification results.

Inspired by the above works, we adapt the U-Net with some
careful adjustments and introduce a multi-scale adversarial
learning strategy for UDA lung segmentation, and then uti-
lize the segmentation results as prior knowledge to generate
multi-appearance images for improving the performance on
COVID-19 screening.

III. METHODS

A. Overview

Our framework aims to attain reliable classification results via
a lung region-based multi-appearance network. As illustrated in
Fig. 2, the framework consists of two steps: a UDA lung segmen-
tation network, and a multi-appearance pneumonia classification
network. In the first step, we apply a multi-scale adversarial
learning method to obtain a well-trained lung segmentation
network G on source and target domain datasets. Specially, we
denote the source dataset as Xs with pixel-level annotations
Ys and the target dataset as Xt without any annotations. In the
second step, the lung masks can be attained by the segmenta-
tion network G; then the multi-appearance CXR images OC,
HLS, and HPV can then be generated from the lung masks;
eventually, we train three DL models with three appearances
respectively and fuse them at the decision level for COVID-19
screening.

B. Adversarial Learning for Unsupervised Segmentation

Lung segmentation in CXRs is a basic task for computer-
aided diagnosis system. However, the domain shift problem in
different CXR datasets has caused an enormous challenge in
improving lung segmentation results. Some methods [33], [34]
applied adversarial learning in high-dimensional feature space to
solve the widely existed domain shift problem. Nonetheless, the
high-dimensional features, encoding complex representations,
are difficult to be adapted directly cross domain for pixel-wise
segmentation task. To fully exploit information and achieve
better performance in different domains, we utilize the features
produced in semantic prediction space of the different decoder
levels to exploit object features via an adversarial learning
scheme.

Single-scale Training: Firstly, for the segmentation network
G training part, it is trained with Xs and the corresponding label
Ys by minimizing a hybrid loss from source domain:

Lseg = CE (Ys, Ps) +Dice (Ys, Ps) (1)

where CE(·) represents cross-entropy loss, Dice(·) represents
dice loss and Ps = G(Xs) is the segmentation output.

Subsequently, in order to reduce the domain gap between Ps

and Pt, where Pt = G(Xt), we use the adversarial loss Ladv

with an inverted domain label (c = 1). When the parameters of
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discriminator D are frozen, Ladv encourages the segmentation
network G for learning common feature distributions between
Pt and Ps by fooling the discriminator D. It can be defined as:

Ladv (Pt) = −
∑

log (D (Pt)) (2)

Sencodly, for the discriminator D training part, the fully-
convolutional discriminator D with CE loss Ld to classify the
segmentation outputs corresponding to Ps or Pt. The discrimi-
nator loss can be defined as:

Ld(Ps, Pt) = −
∑

[(1− c) log (D(Pt)) + c log (D(Ps))]

(3)
where c ∈ {0, 1} specifies the domain label from the target
domain or the source domain.

The semantic prediction space contains the information of
lung structures. Specially, the distribution between different lung
regions should be consistent with typical lung regions. If the lung
features extracted from source CXRs are close to target CXRs,
the discriminator D would fail to differentiate which domain that
the feature belongs to, as the lung regions are consistent.

Multi-Scale Training: The final output layer of the decoder
may not be adapted high-dimensional complex representation,
for the reason that it is far away from the layer in latent
space. Thus, we incorporate multi-level adversarial learning
method [35] into our framework to boost the gradients back-
propagation to the compact spaces. Accordingly, we extend the
hybrid loss in Equation (1) and the adversarial loss in Equation
(2) as Li

seg and Li
adv , where i indicates the i-th scale of the

decoder used for predicting the segmentation output.
Taken them together, we optimize the segmentation network

G in following min-max criterion:

min
G

max
D1,D2,D3

λiLi
seg + βiLi

adv (4)

where the λi and βi with i =1, 2, 3 are trade-off weights. Due
to that high-dimensional feature outputs carry less information
to predict the segmentation, we empirically set λi and βi as
{1.0, 0.1, 0.1} and {0.1, 0.1, 0.01} respectively.

C. Multi-Appearance Classification

We characterize the original CXR image as the OC appear-
ance. Based on the segmented lung region in OC image, the HLS
appearance and the HPV appearance can be obtained by setting
pixel values of the lung region to 0 and non-lung region to 0,
respectively.

For the MA-Net, the n-th input can be denoted by Xm
n =

S(G(Xn))m, where S(·) is the operation to generate the ap-
pearance images and m ∈ {OC,HPV,HLS}. Then the corre-
sponding output can be denoted byOm

n . The inference procedure
can be formulated as:

Mn = fs

(∑
m

(Om
n ,Wm

cls | Xm
n ) ,Wfc

)
(5)

where Wm
cls and Wfc indicate the learned convolutional weights

of m-th appearance classification sub-network and the learned
weighs of fully-connected layers, respectively. fs(·) represents
the softmax function.

TABLE I
SEGMENTATION DATASETS

As COVID-19 infection has similar features with other viral
pneumonia diseases, it is difficult for clinicians to diagnose on
CXR images [4]. In other words, MA-Net should have strong
abilities to deal with the hard samples between ‘COVID-19’ and
‘viral pneumonia’. Motivated by the outstanding performance of
focal loss in solving hard samples and class imbalance problems
in medical diagnosis, we employ focal loss to balance the
weights of different classes. Specially, the focal loss Lcls can
be defined as:

Lcls =
∑

α ·
(
1− e−CE(Mn,yn)

)γ
· CE (Mn, yn) (6)

where yn is the class label, α is a weighting factor and γ is the
tunable focusing parameter.

D. Network Architecture

Segmentation Network: To achieve better prediction per-
formance, we employ an encoder-decoder network based on
the U-Net [12] model with some careful adjustment as the
backbone network. Each encoder stage consists of two convolu-
tional layers, batch normalization, leaky-ReLU activation, and
a max-pooling layer. Each decoder stage is constructed with an
upsampling layer, two convolution layers, batch normalization
and leaky-ReLU activation. Through every stage of the decoder,
the output features are collected at the resolutions of x/4 and
x/2 before a 1×1 convolutional layer followed by an upsam-
pling layer to recover to the resolution x. Moreover, multiple
discriminators enable the model to receive feedback at semantic
prediction space via multi-scale features. The discriminator
consists of five 4×4 convolutional layers with stride of 2 and
the numbers of feature maps are {32, 64, 128, 256, 1}.

Classification Network: The multi-appearance images are
used to train MA-Net. The MA-Net contains three sub-networks,
and each sub-network is associated with one appearance.
DenseNet is employed in this work as the backbone model,
which including a 7×7 convolutional layer with a 3×3 max-
pooling, and 4 dense blocks with a transition layer between
two contiguous dense blocks subsequently. We concatenate the
output of the last average pooling layer in each sub-networks
and then add two extra fully connected layer for three categories
classification task.

IV. EXPERIMENTS

A. Datasets

To validate the effectiveness of MS-AdaNet for lung segmen-
tation, we employ three public datasets, summarized in Table I,
for cross domain segmentation. And a public dataset is presented
in Table II for classification.
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TABLE II
CLASSIFICATION DATASET

Lung Segmentation Datasets: We validate our MS-AdaNet
using three publicly available datasets released from different
sources including lung mask labels: the Japanese Society of
Radiological Technology dataset (JSRT, denoted by J) [37] [38],
the Montgomery County chest X-Ray set (MC, denoted by
M) [32], and the Shenzhen chest X-ray set (SC, denoted by
S) [39]. The input CXR images are resized to 256×256 for both
source domain and target domain.

Six cross-domain combinations are constructed, i.e.,J → M ,
J → C,...,M → C. We randomly split each dataset into training
and testing sets according to an 80%/20% division.

COVID-19 Classification Dataset: We evaluate our MA-Net
on a public dataset database [36], which was created to combine
several public databases [40]–[42] of normal, viral pneumonia
and COVID-19 CXRs. The appearance images of OC and HPV
are resized to 1024×1024, and HLS are resized to 256×256. We
use 5-fold cross validation for model evaluation.

B. Environment Setup

Evaluation metric: We use the Dice Similarity Coefficient
(DSC) to evaluate segmentation performance. DSC is a common
choice in unsupervised domain adaptation medical segmentation
tasks [15], [21], [43], which can be defined as:

DSC (A,B) =
2× |A ∩ B|
|A|+ |B| (7)

where A and B represent the lung region of prediction and ground
truth, respectively.

For classification evaluation, accuracy, F1-score, recall and
precision are employed, which can be written as:

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

F1 = 2× Precision×Recall

Precision+Recall
(9)

Recall =
TP

TP + FN
(10)

Precision =
TP

TP + FP
(11)

Implementation details: We conduct experiments using the
PyTorch framework and all the experiments are performed on
two NVIDIA RTX 2080Ti GPUs.

1) Segmentation Network: Each cross-domain combina-
tion model is trained 500 epochs with a batch size of 4,
and all the modules are trained using Adam optimizer
with initial learning rate of 2× 10−4 and decreased using
the polynomial decay with power as 0.9 [14].

2) Classification Network: We set the batch size as 2 and the
maximum epoch number is 100. The min-batch stochastic
gradient descent with initial learning rate of 1× 10−4 is
chosen for training. In addition, the hyper-parameters are
the same for each appearance sub-network. To avoid over-
fitting, we set the patience of early stop scheme is set as 20.

C. Results

Effectiveness of MS-AdaNet: Two comparative experiments
are designed to validate the effect of domain adaptation on
lung segmentation. We firstly conduct supervised training for
the target domain to obtain the ‘Supervised’ results as the
upper bound. Then the ‘No-adaptation’ lower bound results are
obtained by training the segmentation model directly on the
source domain and testing it on the target domain. Notably, the
segmentation network in MS-AdaNet is employed to obtain the
upper and lower bound results. Table III shows the results of lung
segmentation in cases of different combinations of source and
target domains. It can be observed that the lower bound DSCs of
S → M andM → S are significantly higher than DSCs of other
combinations. The reason for the higher DSC may be the similar
imaging methods applied in M and S, as well as more similar
domain distributions of M and S. The average DSCs of the upper
and lower bound obtained by the trained models are 95.2% and
35.3% respectively. Our MS-AdaNet achieved average DSC of
90.6%, which is slightly below the ‘Supervised’ results. The
visual comparison in Fig. 3 shows that our method is able to
generate reliable semantic lung segmentation.

We compare the performance of our proposed MS-AdaNet
with unsupervised domain adaptation methods including Cy-
cleGAN [44], MUNIT [45], AdaptSegNet [35], SeUDA [43].
These methods utilize either image-to-image translation, feature
adaptation or their mixtures. The first three methods have been
validated in natural images. CycleGAN and MUNIT adapted
image appearance, and AdaptSegNet employed output space
adaptation. SeUDA dedicated to cross-domain lung segmenta-
tion using feature adaptation and image-to-image translation.
We list the results of different methods in Table III, and the
qualitative comparison are shown in Fig. 3. We noticed that
the DSCs of CycleGAN and MUNIT for S → M and M → S
were significantly lower than other combinations, indicating that
image-to-image translation fails to produce photorealistic results
between these two datasets, which is a tedious process. Different
from AdaptSegNet, MS-AdaNet maps the high-dimensional
features to the output in different scales by the same decoder,
which turns out to be more effective for learning the common
features between domains. Therefore, our MS-AdaNet achieves
the best average DSC, which shows that reducing the domain
gap with a simpler adversarial learning strategy is very effective.
Furthermore, t-test has indicated the statistical significance of
the difference between our method and other methods.

MA-Net for classification: To maximize the mapping of
the abnormal lung regions in different pneumonia cases to the
segmentation results, we set normal cases in Table I and the
training set in Table II as the source domain and target domain
in MS-AdaNet for training, respectively. We can then apply the
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TABLE III
COMPARISON OF DSC (MEAN ± STANDARD DEVIATION) PERFORMANCE WITH DIFFERENT UDA METHODS FOR

LUNG SEGMENTATION. THE ASTERISK INDICATES STATISTICALLY SIGNIFICANT DIFFERENCE (p < 0.05)

Fig. 3. Visualization of lung segmentation results with advanced approaches for different domain combinations. From left to right are ‘Supervised’
training upper bound (the first column), ‘No-adaptation’ lower bound (the second column), results of other methods (the third to sixth column),
results of our MS-AdaNet (the last column). The red contours represent the ground truth. The blue-colored fill-in parts are the predictions by
different methods. Each row corresponds to an exemplar sample from the target domain test set.

well-trained segmentation network on classification datasets to
obtain lung masks. In order to demonstrate the performance of
our approach for screening COVID-19, the multi-appearance
performance and quantitative results are shown in Fig. 4 and
Table IV, respectively. The appearance changes in lung mask
caused by different pneumonia diseases are subtle. Due to the
opacity of the lungs caused by pneumonia, the lung contours are

not obvious in CXRs, as shown in cases of viral pneumonia
and COVID-19 in the second and third columns in Fig. 4.
More specifically, bilateral consolidations in viral pneumonia
results in a deformed lung region [4], while more location of the
abnormalities are in the lower lobe in COVID-19 cases [46]. The
lung contours are more clearly defined in normal cases in the first
column, resulting in better segmentation result. Thus we utilize
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Fig. 4. Exemplar samples of different classes of OC (the first column),
HPV (the second column), and HLS (the third columns) selected from
the dataset.

TABLE IV
COMPARISON OF CLASSIFICATION PERFORMANCE OF DIFFERENT METHODS.

(ACC- ACCURACY, PRE.-PRECISION, REC.-RECALL (%))

lung regions as prior knowledge to generate multi-appearance
images for improving the classification accuracy. The compara-
tive results of different methods are shown in Table IV. It can be
noticed that different methods obtain similar results by using
OC images merely as the input. Significantly, our proposed
method, which utilizes the multi-appearance of lung regions on
CXR, can achieve better evaluation results compared with other
methods. In addition, the last two rows in Table IV show that
using DenseNet-121 as the backbone in MA-Net achieves the
best performance.

V. DISCUSSION

A. Ablation Study for Segmentation

We firstly conduct ablation experiments on different com-
binations of source and target domains for domain adaptation
to compare results by using the semantic prediction space and
the feature space adaptation. For feature space adaptation, we
directly use the output features of the first two stages in decoder
as inputs to the discriminators D2 and D3. Table V shows that
the proposed adaptation method performs better than the one in
the feature space. This indicates that with semantic prediction
space adaptation, we can achieve better performance, and the

TABLE V
DSC (MEAN ± STANDARD DEVIATION) PERFORMANCE OF ABLATION STUDY

TABLE VI
COMPARISON OF CLASSIFICATION PERFORMANCE OF DIFFERENT UDA
METHODS. (ACC- ACCURACY, PRE.-PRECISION, REC.-RECALL (%))

feature in different stages of decoder could encourage domain
invariance from integral aspects.

In addition, we further evaluate the multi-scale adversarial
learning introduced in this work by comparing to single-scale ad-
versarial learning. The results are presented in Table V. We only
use the final output of the proposed network to construct it by
removing the segmentation loss {L2

seg, L
3
seg}and the adversarial

loss {L2
adv, L

3
adv} when training the network. The evaluation

results show that the multi-scale adversarial learning further
improves the DSC of lung segmentation.

B. Impact of UDA Methods on Classification

To demonstrate the effectiveness of the proposed MS-AdaNet
in our framework, we compare the performance of MA-Net
based on MS-AdaNet with that of MA-Net based on other
UDA segmentation methods list in Table III. The evaluation
results are presented in Table VI. As MS-AdaNet leads to a
better performance in segmentation, it promotes classification
network better compared with other UDA methods. Moreover,
the performance of SeUDA is also very encouraging, just slightly
smaller than that of the MS-AdaNet method, demonstrating that
based on the correct lung region prior, multi-appearance could
effectively improve the classification results. In addition, the
performance of MA-Net based on the no-adaptation method is
inferior to the performance of only using OC appearance image
shown in Table IV. The above comparative results show that
our proposed framework is quite important for improving the
performance of COVID-19 screening.

C. Impact of Transfer Learning

Due to the small size of medical image datasets, especially in
the COVID-19 screening task, the pre-trained model is a simple
yet effective method to improve classification accuracy [49].
To assess the impact of transfer learning on the performance
of COVID-19 classification in our framework, we compare the
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TABLE VII
PERFORMANCE OF PRE-TRAINED MODEL AND MODEL TRAIN FROM
SCRATCH. (ACC- ACCURACY, PRE.-PRECISION, REC.-RECALL (%))

TABLE VIII
PERFORMANCE OF PROPOSED METHOD AND THREE SINGLE APPEARANCE

MODELS. (ACC- ACCURACY, PRE.-PRECISION, REC.-RECALL (%))

TABLE IX
PERFORMANCE OF ONE AND THREE SUB-NETWORKS. (ACC- ACCURACY,

PRE.-PRECISION, REC.-RECALL (%))

performance of MA-Net based on the DenseNet-121 trained
from scratch with a deep model that has the same architecture
but based on pre-trained DenseNet-121. As shown in Table VII,
because of the small dataset and the prior knowledge of lung
region, the results of the model trained from scratch and the pre-
trained model based on our framework are similar. In addition,
there is a performance improvement in the pre-trained model
without using our framework compared with the model trained
from scratch in Table IV.

D. Analysis for Multi-Appearance Classification

We build MA-Net to integrate the morphological characteris-
tics of lung region into the comprehensive analysis of pulmonary
diseases, including COVID-19. To prove the effectiveness of
multi-appearance fusion, we test the sub-networks individually
with the corresponding appearance image. The results as de-
picted in Table VIII, comparing MA-Net to any single appear-
ance network, the accuracy and other evaluation metrics have
certain improvement. This experiment quantitatively revealed
the role of the multi-appearance images based on lung region in
classifying pneumonia diseases including COVID-19.

Furthermore, we conduct an experiment to demonstrate
the effectiveness of the three sub-networks in classification.
We concatenate OC, HPV, and HLS appearance image as a
three-dimensional tensor, then take the tensor as the input
to a single network. The results in Table IX show that our
proposed framework with three sub-networks can achieve
better performance than a single network with a concatenate
multi-appearance tensor.

VI. CONCLUSION

In this paper, our main contribution focused on screening
COVID-19 in CXR images based on lung region as prior
knowledge. Specifically, we firstly built MS-AdaNet, which
utilizes multi-scale features in semantic prediction space to boost
cross-domain lung segmentation task. We further investigated
the differences in lung regions in different pneumonia including
COVID-19. Then the multi-appearance CXR images were gen-
erated from MS-AdaNet for classification. MA-Net aggregated
across the three appearances performed substantially better than
any of the appearances on their own. In particular, we validated
MS-AdaNet for CXR domain adaptation on three public chal-
lenging lung segmentation datasets and achieved satisfactory
results in different combinations of source and target domains.
Experimental results demonstrated that integrating OC, HLS,
and HPV images can improve the performance of COVID-19
screening tasks on CXR.
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