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Deleterious mutations in ALDH1L2 suggest a novel cause
for neuro-ichthyotic syndrome
Catherine Sarret1,2, Zahra Ashkavand3, Evan Paules3,4, Imen Dorboz5, Peter Pediaditakis3, Susan Sumner3,4, Eléonore Eymard-Pierre2,
Christine Francannet2, Natalia I. Krupenko 3,4, Odile Boespflug-Tanguy5,6 and Sergey A. Krupenko3,4

Neuro-ichthyotic syndromes are a group of rare genetic diseases mainly associated with perturbations in lipid metabolism,
intracellular vesicle trafficking, or glycoprotein synthesis. Here, we report a patient with a neuro-ichthyotic syndrome associated
with deleterious mutations in the ALDH1L2 (aldehyde dehydrogenase 1 family member L2) gene encoding for mitochondrial 10-
formyltetrahydrofolate dehydrogenase. Using fibroblast culture established from the ALDH1L2-deficient patient, we demonstrated
that the enzyme loss impaired mitochondrial function affecting both mitochondrial morphology and the pool of metabolites
relevant to β-oxidation of fatty acids. Cells lacking the enzyme had distorted mitochondria, accumulated acylcarnitine derivatives
and Krebs cycle intermediates, and had lower ATP and increased ADP/AMP indicative of a low energy index. Re-expression of
functional ALDH1L2 enzyme in deficient cells restored the mitochondrial morphology and the metabolic profile of fibroblasts from
healthy individuals. Our study underscores the role of ALDH1L2 in the maintenance of mitochondrial integrity and energy balance
of the cell, and suggests the loss of the enzyme as the cause of neuro-cutaneous disease.

npj Genomic Medicine            (2019) 4:17 ; https://doi.org/10.1038/s41525-019-0092-9

INTRODUCTION
Neuro-ichthyotic syndromes are a group of rare genetic
diseases mainly associated with perturbations in lipid metabo-
lism, intracellular vesicle trafficking, or glycoprotein synthesis.1

Congenital dry and scaly skin and progressive neurological
symptoms are hallmarks of this group of diseases.
Sjögren–Larsson syndrome (SLS: MIM#270200) is one of the
most recognized neuro-ichthyotic syndromes characterized by
congenital ichthyosis, leukoencephalopathy, intellectual dis-
ability, and spastic di- or tetraplegia.2–4 In 95% of patients it is
caused by mutations of the ALDH3A2 gene which encodes for
the fatty aldehyde dehydrogenase (FALDH), a microsomal
enzyme that oxidizes long-chain aldehydes to fatty acids.2,5,6

SLS patients without mutations in the ALDH3A2 gene have also
been identified, leaving the cause of the symptoms unknown.7

Here, we report a patient with a congenital neuro-ichthyotic
syndrome but atypical phenotype displaying dysmorphic
features, and abnormalities on MRI and MR (1H-MRS) spectro-
scopy in the absence of ALDH3A2 gene mutations and no
spastic paraplegia to suggest classic SLS. The diagnosis of
Coffin–Lowry syndrome, made after identification of a deleter-
ious frameshift mutation in the RPS6KA3 gene,8,9 does not
explain all features of the patient. We provide evidence that the
neuro-ichthyotic syndrome in this case is associated with the
loss of expression of the ALDH1L2 gene, which encodes a
mitochondrial folate enzyme.

RESULTS
Patient’s developmental history and morphological features
The patient (male) presented at birth with hypotonia, abnormally
thick fingers and toes, and ichthyosis. Pruritis and facial
dysmorphism were apparent since the age of 11 months (Fig.
1). He had normal statural, ponderal, and head circumference
growth. Motor acquisitions during the 1st year were severely
delayed with sitting acquired at 11 months and independent
walking at 3 years. At 14 years, the patient was able to speak using
efficient isolated words and had good communication skills. He
was unable to read and presented hyperactivity and attention
deficit increasing over time. To date, the patient had normal
walking and has not developed neurological signs including
spastic paraplegia or ataxia. Morphological studies of skeleton,
abdomen, and heart were normal. Electroencephalogram showed
diffuse moderate bradyrythmia. Somatosensory evoked potentials
revealed prolonged latencies on the four limbs and motor evoked
potentials showed the lack of cortical response. MRI at 1.5 T
demonstrated early diffuse hypomyelination with coalescing and
dilated Virchow–Robin spaces. 1H-MRS reveals two abnormal lipid
peaks in the white matter persistent at short and long echo times
(other peaks were normal, except a small increase of inositol)
(Fig. 1). Positions of these peaks in our patient correspond to
positions of the characteristic peaks in classic SLS but the overall
profile was different. Specifically, in SLS the 1.3 ppm peak is more
prominent while the 0.9 ppm peak is smaller (Fig. 1m). In our patient,
the peaks were still evident at 6 years of age, the finding which in
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association with the leukodystrophy initially suggested the SLS
diagnosis. Of note, in SLS patients both peaks are permanent
through age while in our patient these peaks decreased over time
and were not detected after 8 years of age (Supplementary Fig. 1).

Mutations identified by whole exome sequencing
Sequencing of the ALDH3A2 exons, exon/intron junctions, and the
full-length cDNA did not reveal any mutations in this gene in our
patient. The following mutations were found by the whole exome
analysis: (1) a de novo hemizygous mutation (c.263dup, p.
Ser89Leufs*4) in the RPS6KA3 gene on the X chromosome,10,11 a
deleterious frameshift mutation not carried by the patient’s
mother. This finding confirmed that the patient was affected by
a Coffin–Lowry syndrome8 and partially explained the patient’s
features but did not explain the congenital pruritic ichthyosis, MRI
or 1H-MRS features typical of SLS. (2) This patient also has
compound heterozygous mutations in the ALDH1L2 gene, which
encodes for a mitochondrial 10-formyltetrahydrofolate dehydro-
genase.12 Discovered mutations, one intronic near splice site

(c.2517-5C>T) and one frame shift (c.827del/p.Val276Glyfs*33;
rs770401066, dbSNP NCBI) were not present in the homozygous
state in ExAC or gnomAD. The patient’s asymptomatic parents and
brother were heterozygous for one of these mutations. Segrega-
tion analysis revealed that the father harbors the Val276Glyfs*33
frameshift mutation, while the mother harbors the c.2517-5C>T
intronic mutation. The presence of a mutant mRNA resulting from
the frame shift was confirmed in patient’s fibroblasts by the direct
sequencing. The mutated sequence predicts a truncated protein
of 307 aa, including the 22 aa mitochondrial leader sequence, 253
aa of the N-terminal folate-binding domain/hydrolase catalytic
center,13 and the 32 aa random peptide with no identity to known
proteins resulted from the frameshift (Supplementary Fig. 2). Such
truncated proteins are usually not folded properly,13 and
apparently are rapidly degraded. Indeed, the truncated protein
was not detected in the patient’s fibroblasts. Deficiency of the
ALDH1L2 gene has not been reported and the overall con-
sequences of the enzyme loss for the cell are not clear. We
examined fibroblasts from this patient, his parents and healthy
unrelated individual, and present evidence that the loss of

Fig. 1 Particularities of the patient phenotype. Patient at the age of 3 years a, b and 14 years c presented with a facial dysmorphism with
epicanthus, hypertelorism, broad nasal root, anteverted nares, long philtrum, thin upper lip. The written consent for publication of these
photos was obtained from child’s parents. Cerebral MRI shows diffuse hypomyelination at the age of 2 years with white matter appearing
respectively in hypersignal on T2-weighted sequences, in hypersignal on FLAIR sequences and in normosignal on T1-weighted sequences d,
g, j. Progressive myelination and dilatation and coalescing of Virchow–Robin spaces at the age of 6 e, h, k and 14 years f, i, l. 1H-MRS in the
corona radiata for classical SLS patients shows a typical major peak at 1.3 ppm and a smaller peak at 0.9 ppm (m, arrows). 1H-MRS for our
patient reveals a similar pattern with two peaks at 1.3 and 0.9 ppm (arrows) at the age of 2 n and 6 years o. However, the peak at 1.3 ppm
appears smaller than the peak at 0.9 ppm in our patient. We observed no decrease in N-acetyl-aspartate (NAA)/creatine (Cr) ratio, or in choline
(Cho) peak suggesting normal maintenance of neuronal and myelin content but a small increase of inositol peak that may be due to some
astrocytic stress. Family pedigrees p and patient’s genotype r, s

C. Sarret et al.

2

npj Genomic Medicine (2019)    17 Published in partnership with CEGMR, King Abdulaziz University

1
2
3
4
5
6
7
8
9
0
()
:,;



ALDH1L2 impairs the mitochondrial function and is the likely
cause of a new neuro-ichthyotic syndrome.

Characterization of patient’s fibroblasts
Compared to fibroblasts from a healthy individual (control, C cells),
patient’s fibroblasts (R cells) have barely detectable ALDH1L2
protein (Fig. 2a–c and Supplementary Fig. 3). Levels of ALDH1L2
mRNA were also significantly lower in patient’s cells (Fig. 2d and
Supplementary Fig. 4). Since one of the alleles of the ALDH1L2
gene in the patient has mutation near the splice site, we
attributed the decrease in the mRNA level to the impaired
transcription caused by the mutation. Indeed, splice site mutations
are known to cause loss of gene expression.14 Levels of the
ALDH3A2 protein were not different between the two cell lines
(Fig. 2a and Supplementary Fig. 3), an indication that FALDH
deficiency was not the primary cause of the patient’s symptoms.
The ALDH1L2 enzyme catalyzes the conversion of 10-formyl-THF
to THF and CO2 simultaneously producing NADPH from NADP+

(Fig. 2e).12,15,16 Therefore, the ALDH1L2 activity is likely to affect
folate metabolism but the extent of the enzyme contribution to
the maintenance of reduced folate pools is not clear. The total
folate levels were not significantly different between patient’s (R)

and control (C) fibroblasts (Fig. 2f), only 10-formyl-THF was
noticeably and significantly different between two fibroblast
cultures (Fig. 2f). ALDH1L1, the cytosolic homolog of ALDH1L2 and
a major user of 10-formyl-THF17,18 was not present in either
fibroblast culture (Supplementary Fig. 5). Therefore, the three-fold
increase of this folate upon the ALDH1L2 loss (Fig. 2f) indicates
that the enzyme is a major user of 10-formyl-THF. The ratio of
NADPH/NADP+, metabolites also involved in ALDH1L2 catalysis,
was more than four-fold lower in patient versus control fibroblasts
(Fig. 2g and Supplementary Fig. 6), supporting the role of
ALDH1L2 as the main source of NADPH generation.19 Further-
more, patient’s fibroblasts have much lower ATP levels in
mitochondria as well as in whole cells (Fig. 2h and Supplementary
Figs. 7 and 8) with the ATP/ADP ratio indicating a very low energy
status in patient’s fibroblasts (Fig. 3b, d). Another characteristic
feature of ALDH1L2-deficient fibroblasts is a decreased prolifera-
tion rate (Fig. 2i), which was not responsive to the increase of
folate in media (10 μM leucovorin or 20 μM folic acid). In fact, the
metabolomics analysis demonstrated differences between the
patient and control fibroblasts beyond folate metabolism (Fig. 2j)
with statistically significant (p < 0.05) differences for 250 out of 475
assigned metabolites.

Fig. 2 Difference between fibroblasts from the patient (R cells) and fibroblasts from healthy individual (C cells). a–c R cells have much lower
levels of ALDH1L2 protein as evaluated by Western blot assay (a, ratios of averaged band intensities are indicated; statistics is shown in
Supplementary Fig. 3) and confocal microscopy b in cells or by Western blot assay in isolated mitochondria (c). In panel a, samples were from
different plates (biological replicates) with 20 μg of the total protein loaded per well. d Levels of ALDH1L2 mRNA are lower in R cells (mean ±
SE of three biological replicates). e Cytosolic and mitochondrial folate pathways. f Levels of folate coenzymes (FA, folic acid; THF,
tetrahydrofolate; 5-MTHF, 5-methyl-THF; 10-CHO-THF, 10-formyl-THF) in C and R cells (only 10-CHO-THF was noticeably and significantly
different between the two cell lines). For each cell type mean ± SE of three independent experiments (each done in quadruplicate) is shown (3
biological replicates each includes 4 technical replicates). g Ratio of NADPH/NADP+ in C and R cells (mean ± SE of four biological replicates). h
Levels of ATP in C and R cells (mean ± SE of four biological replicates). For panels d, g, h, p values were below 0.001 (Student’s t-test) for the
comparison of R and C cells (detailed statistical analysis for these panels is shown in Supplementary Figs. 4 and 6–8). i Proliferation rate of C
and R cells measured in real-time (xCelligence); samples with three densities of cells were monitored for each cell type. In each case,
experiments were done in duplicate with automated averaging of data points. j PCA for metabolites (475 total) measured in C and R cells (n=
4; samples are biological replicates)
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Comparison of our patient’s fibroblasts with fibroblasts derived
from parents
Fibroblast cultures generated from both parents (mother, M,
heterozygous for the intronic mutation; father, F, heterozygous for
the mutation causing a premature stop codon) showed ALDH1L2
protein expression though its levels were noticeably higher in
father’s cells (Fig. 3a). Both cell lines have similar levels of
ALDH3A2 proteins comparable with those of patient’s fibroblasts
(Fig. 3a), and both demonstrated a much faster proliferation rate
than R cells as indicated by the doubling time (Fig. 3b). ATP levels
in the father’s cells were remarkably higher than in R cells (Fig. 3c).
Furthermore, mitochondria from R cells have lower membrane
potential (Fig. 3d) and showed increased levels of reactive oxygen
species (Fig. 3e). Correspondingly, metabolomic analysis has
shown increased levels (fold-change > 2; p < 0.05) of several
oxidative stress biomarkers such as methionine sulfoxide, 5-
oxoproline, and ophthalmate, in patient’s cells (Supplementary
Data File 1). Confocal microscopy has shown differences in
mitochondrial morphology in patient’s fibroblasts with the
appearance of rounded isolated mitochondria, which were not
seen in healthy control or father’s fibroblasts (Fig. 3f). The
morphology of mitochondria in mother’s fibroblasts was similar
to the morphology of the control and father’s fibroblasts though
mother’s cells were smaller in size compared to fibroblasts from
other individuals (Fig. 3f). These cells as well have normal doubling
time (Fig. 3b) and mitochondrial membrane potential (Fig. 3d).

Electron microscopy further confirmed altered mitochondrial
morphology in R cells compared to father’s cells (Supplementary
Fig. 9). In contrast to mitochondria of father’s cells, which are
filamentous as commonly seen in cultured fibroblasts,20 mito-
chondria of R cells appear to be shorter and distorted. Another
noticeable feature of R cells was the presence of large vesicles not
seen in F cells (Supplementary Fig. 9). We suggest that these
alterations are linked to the metabolic effects caused by the
ALDH1L2 deficiency. Thus, significant differences in metabolic
profile in R cells were associated with amino acid, nucleotide, and
lipid pathways (Fig. 4 and Supplementary Data File 1). Of note,
accumulation of all common amino acids is indicative of
decreased protein biosynthesis,21 which is in line with decreased
proliferation and low energy status in R cells. Strong changes in
the lipid profiles were seen in R cells with the most dramatic
increase of acylcarnitine metabolites (Fig. 4) and the reduction of
mono- and diglycerides as well as all classes of phospholipids
(Supplementary Data File 1).

Restoration of biochemical properties by expression of wild-type
ALDH1L2
Re-expression of ALDH1L2 (via viral transduction) in patient
fibroblasts (LR cells, Fig. 4a) restored the morphological features
of father’s cells, including re-appearance of filamentous mitochon-
dria (Fig. 3f) and disappearance of large vesicles (Supplementary
Fig. 9); decreased the doubling time (Fig. 3b); increased levels of

Fig. 3 Patient fibroblasts have lower ATP and energy index, and altered mitochondrial morphology in comparison with fibroblasts from
parents or SLS patient. a Western blots assays of ALDH1L2 and ALDH3A2 in fibroblasts isolated from the patient (R), both parents (mother, M;
father, F) and from an SLS patient (SLS). LR denotes patient’s fibroblasts transduced for ALDH1L2 expression. Numbers on the bottom of each
panel indicate band intensity (arbitrary units) for ALDH1L2 and ALDH3A2 relative to the intensity of corresponding actin band. b Doubling
time and energy index of different fibroblast cultures (cell labeling as in panel a). c ATP levels measured by a colorimetric assay in different
fibroblast cultures. Three different samples (biological replicates) were used in this experiment; for each sample, 4 measurements (technical
replicates) were performed and the average of these measurements were used to calculate mean ± SE. d TMRM (tetramethylrhodamine) to
MitoTracker Green ratio in different fibroblasts. Six samples (biological replicates) were analyzed for each cell type. e Levels of ROS evaluated
by confocal microscopy after DCF (2′,7′-dichlorodihydrofluorescein diacetate) staining in patient (R cells) and control (C cells) fibroblasts
(values were calculated from the analysis of 10 cells for each cell type; laser power was kept uniform for all measurements). f Confocal images
(108×) of different fibroblast cultures (as in panel a). Live cells were stained with Hoechst (nucleus staining, light-blue), MitoTracker Green
(mitochondrial staining, green), or TMRM (mitochondrial staining, red); scale bars, 10 µM. For panels c, d, *p < 0.05; **p < 0.01; ***p < 0.001
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ATP (Fig. 3c) and mitochondrial membrane potential (Fig. 3d) thus
improving the energy status of these cells and making them more
similar to father’s fibroblasts. Overall, the metabotype of patient
cells with restored ALDH1L2 expression was shifted towards the
metabotype of father cells (Fig. 4b, c) indicating that the
metabotype of patient cells is associated with the loss of
ALDH1L2. Specifically, Krebs cycle intermediates and acyl carni-
tines were similar in LR and F fibroblasts (Fig. 4d–f). These data
indicate that the ALDH1L2 loss affects fatty acid metabolism. In
fact, several reports implicated the enzyme in β-oxidation and
fatty acid metabolism22–24 though underlying mechanisms are not
clear. Alternatively, alterations in fatty acid metabolism could be a
cellular response to oxidative stress associated with the ALDH1L2
loss.25 The phenotype rescue by transduction of ALDH1L2
indicates that the metabolic changes and mitochondrial dysfunc-
tion were not caused by Coffin–Lowry syndrome.

Comparison of our patient’s fibroblast with fibroblasts derived
from an SLS patient
We have also compared our patient’s fibroblasts with the
fibroblast culture from a patient with classical SLS caused by the
loss of ALDH3A2 enzyme due to a homozygous mutation (c.471
+1delG in intron 3) associated with the splicing abnormality of the
ALDH3A2 gene. Levels of ALDH1L2 appeared normal in the SLS
patient and were similar to the protein level in father’s fibroblasts
(Fig. 3a). These cells have a standard doubling time and ATP levels

similar to father’s cells characterized in this study (Fig. 3b, d).
Confocal microscopy has shown that SLS fibroblasts have a typical
mitochondrial morphology (Supplementary Fig. 10a) distinct from
that observed in R cells (Fig. 3f). The metabotype of SLS fibroblasts
was different from the metabotype of fibroblasts from our patient
as well as metabotypes of healthy control or asymptomatic
parents of our patient (Supplementary Figs. 10b, 10c, and 11; and
Supplementary Data File 1). These differences suggest that our
patient has a distinct biochemical basis for SLS-like symptoms.

DISCUSSION
Patient reported here displays characteristics leading to the
diagnosis of SLS-like neuro-ichthyotic syndrome. Since this patient
does not have mutations in the ALDH3A2 gene, the cause of the
disease remained unclear until exome sequencing revealed
inherited mutations in the ALDH1L2 gene. The patient also has a
deleterious frameshift mutation in the RPS6KA3 gene, which
encodes for ribosomal S6 kinase (RSK2), a growth factor-regulated
serine/threonine kinase and a member of the RAS-MAPK signaling
pathway.10,11 Mutations in this gene are associated with
Coffin–Lowry syndrome, a rare X-linked genetic disorder char-
acterized by intellectual disability, tapering fingers, cranio-facial
and skeletal abnormalities.8 Affected males were also reported to
have cardiac problems, obesity, short stature, microcephaly, dental
abnormalities, deafness, visual problems, hypotonia, hyperlaxity,
behavioral troubles, epilepsy, sleep apneas, or drop attacks.26,27

Fig. 4 Metabolomic analysis of R, F, and LR fibroblasts. a Lentivirus-based expression of ALDH1L2 in LR fibroblasts restores levels of the
enzyme seen in control or parent’s cells (Western blot assay of isolated mitochondria and confocal image of fibroblasts stained with ALDH1L2-
specific antibody, St indicates lane with molecular weight standards, VDAC is shown as mitochondrial marker; green fluorescence indicates
ALDH1L2; nuclei were co-stained with DAPI). b PCA (principal component analysis, performed with SIMCA Version 15.0.2, Sartorius Stedim
Data Analytics AB, Umeå, Sweden) of metabolomic data (total of 516 metabolites) for R, F, and LR fibroblasts (n= 5 biological replicates in each
case). c Heat map representation of the metabolite comparison between R, F, and LR cells (performed with Qlucore Omics Explorer
v.3.4 software, Qlucore, Lund, Sweden; data were filtered by p value ≤ 0.05). d Schematic depicting the TCA cycle and its connection to
carnitine pathway. e, f Levels of Krebs cycle metabolites and carnitine and most acylcarnitine derivatives are similar in F and LR cells but
compared to R cells are much lower in both cell lines. Statistically significant differences (n= 5) are highlighted in green (p < 0.05, decreased
metabolites), red (p < 0.05, increased metabolites), or light red (p < 0.1, increased metabolites). g Proposed mechanism for the effect of the
ALDH1L2 loss
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Brain MRI can show cerebral atrophy, hypoplasia of the corpus
callosum or the cerebellar vermis, ventricular dilatation or
asymmetry, dilatation of the Virchow–Robin spaces leading to
periventricular white matter cystic lesions, and constricted fora-
men magnum.28–31

Recognizing Coffin–Lowry syndrome in very young children is
often difficult since physical characteristics are mild and not
specific, and screening for ribosomal S6 kinase mutations is
essential in most cases to confirm the diagnosis.32 In our case as
well the diagnosis of Coffin–Lowry syndrome was considered only
after discovering the deleterious mutation in RPS6KA3. This was a
de novo somatic mutation not carried by the patient’s mother, a
very common case in Coffin–Lowry disease.27,33,34 The mutation
may explain some specific features of our patient (facial
dysmorphism, toe and hand abnormalities, moderate cognitive
and attention disabilities, and dilatation of Virchow–Robin spaces
on MRI) but it is unlikely to contribute to pruritic ichthyosis, severe
diffuse hypomyelination seen on MRI, and abnormal lipid peaks
on 1H-MRS, features usually observed in SLS. Therefore, we
attribute these features to the loss of ALDH1L2 protein. Such loss
is defined by the nature of the compound mutations. Thus, the
premature stop codon was predicted to produce a truncated
protein (307 amino acid residues compared to 923 amino acid
residues in normal protein), which includes 32 random amino
acids at the C-terminus resulted from the frameshift. Such proteins
are usually non-functional and are likely to undergo rapid
degradation.35 In agreement with this conclusion, we did not
detect the truncated protein in our patient’s fibroblasts. Of note,
our previous studies indicated that the truncation of the enzyme
beyond 290 aa (this does not include the mitochondrial leader
sequence) produces non-functional protein.13 In the case of the
frameshift mutation it would be 285 amino acids including the
random peptide at the C-terminus. The splice site mutation in the
second allele apparently compromised splicing, which would
explain the drop in the mRNA level observed in patient’s
fibroblasts. In fact, disrupted constitutive splicing most often
results in loss of gene expression due to aberrant splicing.14

Our experiments with cultured patient’s fibroblasts provided a
strong support for ALDH1L2 as a causative factor of patient’s
conditions. Thus, cultured fibroblasts displayed abnormal mito-
chondrial morphology and very slow proliferation capacities,
phenomena not reported for fibroblasts from patients with either
Sjogren–Larsson or Coffin–Lowry syndrome. In fact, mitochondria
in keratinocytes of SLS patients appear normal36,37 and our study
demonstrated normal proliferation of fibroblasts from an SLS
patient. Fibroblast cultures established from patients with
Coffin–Lowry syndrome were characterized for signaling pathways
downstream of RSK29,38,39 but effects of the protein on prolifera-
tion or mitochondria function/morphology in such fibroblasts
were not reported. Interestingly though, Rsk2 deficiency in mice
was associated with enhanced proliferative capacity of fibroblast-
like synoviocytes,40 the effect opposite to that observed for
ALDH1L2-deficient fibroblasts in our experiments. Perhaps the
strongest indication for ALDH1L2 mutations as the underlying
cause of the neuro-ichthyotic syndrome in our patient was the
restoration of the normal mitochondrial morphology and most of
the metabotype, seen in father’s cells, after re-introduction of the
wild-type enzyme to the patient’s fibroblasts.
ALDH1L2 encodes a 923 amino acid residues (including 22

amino acids of the mitochondrial leader sequence in the N-
terminus) protein, which resides in the mitochondrial matrix.12 So
far deficiency of the ALDH1L2 gene has not been reported, and the
overall consequences of the enzyme loss for the cell are not yet
clear. Nonetheless, the importance of mitochondrial folate path-
ways for the cell is well established,41–44 and recent reports further
underscored the role of folate-bound mitochondrial serine
metabolism for mitochondrial integrity and oxidative phosphor-
ylation.45–47 Our study provides strong evidence that ALDH1L2 is a

key player in these processes and the loss of the enzyme due to
deleterious gene mutations leads to neuro-ichthyotic disease.
What could be underlying mechanisms of such effect? ALDH1L2
enzyme converts 10-formyl-THF to THF and CO2 in an NADP+-
dependent reaction thus producing NADPH (Fig. 2e).15 Though
the biological role of this reaction is not fully understood, the
enzyme could be a major source of NADPH in mitochondria.19 In
turn, mitochondrial NADPH is crucial for the maintenance of
reduced glutathione, the major antioxidant, and the loss of
NADPH is associated with increased oxidative stress. In this regard,
growing body of evidence indicates the link between oxidative
stress and mitochondrial dysfunction.48–50 For example, increased
oxidative stress in skin fibroblasts of patients with multiple acyl-
CoA dehydrogenation deficiency led to fragmented mitochon-
dria,25 the morphology similar to that observed in fibroblasts of
our patient. In fact, the role of ALDH1L2 protein in preventing
oxidative stress has been suggested by the study of melanoma
cell metastasis.51 Thus, we propose that the ALDH1L2 loss induces
mitochondrial dysfunction due to reduced NADPH and increased
oxidative stress (Fig. 4g).

METHODS
Legal authorization and ethics approval
The parents have given their permission (written consent form) for
publication of the child’s photos. Written informed consents were obtained
from parents for the genetic analyses. This report is in accordance with the
French “Reference methodology” (MR-001) modified on 5th January 2006
and signed by the CHU of Clermont-Ferrand on 15th March 2007 for
standard patient care. This research obtained authorization of the local
ethics committee (CHU of Clermont-Ferrand).

Reagents
All reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA)
unless otherwise specified.

Gene sequencing
ALDH3A2 exons, exon/intron junctions, and the full-length cDNA were
sequenced essentially as we previously described.52 Whole exome
sequencing was performed by IntegraGen SA (Evry, France) using the
SureSelect V4 capture kit (Agilent, Massy, France) and the
HighSeq2000 sequencer (Illumina, San Diego, CA)53 after written informed
consent obtained from patient’s parents. Peripheral blood samples were
drawn from the antecubital vein into 4ml EDTA-containing tubes.
Genomic DNA extraction was performed automatically from 2ml of whole
blood on a QIAsymphony SP instrument, by using the QIAsymphony DSP
DNA Midi kit (QIAGEN), following the manufacturer’s protocol. There were
37,950 variations in the patient. Of these variants, 35,310 were classified as
single nucleotide variations and 2640 were indels. Further analysis was
focused on genes encoding proteins related to aldehyde dehydrogenases.
This approach selected a single mutant gene. Interpretation was based on
Human Genome Build 37 (NCBI/hg19).

Generation of fibroblasts culture
Written consent has been obtained from parents prior to biopsies
according to the institutional document for tissue biopsies and referring
to the French laws for ethics and protection of subjects participating in
medical research. Skin biopsies were performed at the anterior forearm
after anesthesia with lidocaine/prilocaine cream applied topically for 1 h. A
cylindrical skin plug including epidermis and dermis was removed using a
sterile 3 mm skin punch and placed in 0.9% NaCl solution. Skin samples
were washed and transferred to culture dishes containing DMEM/F12, 10% of
FBS, penicillin/streptomycin/amphotericin (final concentration of 200U/ml,
0.2 and 0.5 μg/ml, respectively) and maintained at 37 °C and under
humidified air containing 5% CO2. After 1 week, the medium of the explant
cultures was changed every 2–3 days. When confluent, cells were expanded.
All fibroblast cell lines were maintained in DMEM (Gibco) supplemented with
10% FBS (Atlanta Biologicals, Flowery Branch, GA, USA) and 5% penicillin/
streptomycin/neomycin cocktail (Gibco).
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Doubling time assay
Cell number was determined by hemocytometer or Countess II cell counter
(Thermo, Waltham, MA, USA). In folate supplementation experiments,
folinic acid or folic acid were added at 10 and 20 µM, respectively.
Doubling time assays were performed by seeding a confluent 10-cm dishe
of each cell line onto 6-cm dishes in triplicate. The seed time was
considered T0 and cells were left to proliferate for 24 h. Cell numbers at 0
and 24 h were determined by trypan blue exclusion assay using
hemocytometer.

RNA extraction and cDNA synthesis
Total RNA was isolated from 2 × 106 cells using an RNeasy mini kit (Qiagen).
One microgram of total RNA was used in a reverse-transcription reaction to
generate cDNA using high capacity cDNA reverse transcription kit (Applied
Biosystems).

Real-time PCR
Quantification of mRNAs was carried out by real-time PCR Realplex4
Mastercycler (Eppendorf, Hauppauge, NY, USA) using RT2 SYBR Green PCR
master mix (Applied Biosystem) in final 20 μl PCR mixture containing 10 μl
SYBR Premix EX Taq, 2 μl cDNA (100 ng), 0.4 μl (10 μM) forward and 0.4 μl
(10 μM) reverse primers and 6.8 μl ddH2O. The PCR protocol was as follows:
initial 95 °C melting for 5 min, then 40 cycles of denaturation at 95 °C for
30 s, annealing at 60 °C for 30 s, and elongation at 72 °C for 20 s. Levels of
ALDH1L1 and ALDH1L2 mRNA were normalized by the levels of actin as
housekeeping gene. The fold change in mRNA expression was calculated
using 2−ΔΔCt.

Cell lysate preparation and mitochondria isolation
Mitochondrial fractions were obtained using a mitochondrial isolation kit
(MACS; Miltenyi Biotech, Auburn, CA, USA) following the manufacturer’s
protocol.

Real-time cell analysis
Experiments were carried out using an xCELLigence RTCA DP instrument
(ACEA Biosciences, San Diego, CA, USA) placed in a humidified incubator at
37 °C and 5% CO2 according to the manufacturer’s manual. Cell
proliferation was monitored using E-plate 16 (ACEA Biosciences). The
background impedance reading for each well was set up using cell-free
medium (100 µl per well) after pre-incubation at room temperature for
30min. Cells were seeded in each well in 100 µl cell suspensions across a
concentration range of 5 × 103 to 8 × 104 cells/well and allowed to attach
for 30min at room temperature. Plates were locked in the instrument, and
impedance readings of each well were automatically recorded every
15min for the duration of the experiment.

Metabolomic analysis
Cells were cultured in 15 cm dishes, grown to 70–80% confluency,
harvested, and subsequently flash frozen. Sample preparation for analysis
was carried out at Metabolon Inc., as described.54 Briefly, individual
samples were subjected to methanol extraction then split into aliquots for
analysis by ultrahigh performance liquid chromatography/mass spectro-
metry (UHPLC/MS). The global biochemical profiling analysis comprised of
four unique arms consisting of reverse phase chromatography positive
ionization methods optimized for hydrophilic compounds (LC/MS Pos
Polar) and hydrophobic compounds (LC/MS Pos Lipid), reverse phase
chromatography with negative ionization conditions (LC/MS Neg), as well
as a HILIC chromatography method coupled to negative (LC/MS Polar).55

All of the methods alternated between full scan MS and data dependent
MSn scans. The scan range varied slightly between methods but generally
covered 70–1000 m/z. Metabolites were identified by automated
comparison of the ion features in the experimental samples to a reference
library of chemical standard entries that included retention time, molecular
weight (m/z), preferred adducts, and in-source fragments as well as
associated MS spectra and curated by visual inspection for quality control
using software developed at Metabolon. Identification of known chemical
entities was based on comparison to metabolomic library entries of
purified standards.56

Statistical analysis
Two types of statistical analyses were performed: (1) significance tests and
(2) classification analysis. Standard statistical analyses were performed in
ArrayStudio on log‐transformed data. For analyses not standard in
ArrayStudio, the R program (http://cran.r-project.org/) was used. Following
log transformation and imputation of missing values, if any, with the
minimum observed value for each compound, Welch’s two sample t-test
was used as significance test to identify biochemicals that differed
significantly (p < 0.05) between experimental groups. An estimate of the
false discovery rate (q‐value) was calculated to take into account the
multiple comparisons that normally occur in metabolomic‐based studies.
Classification analyses used included principal components analysis (PCA),
hierarchical clustering, and OPLS-DA. For the scaled intensity graphics,
each biochemical in original scale (raw area count) was rescaled to set the
median across all samples equal to 1.

ATP and NADPH/NADP+ assays
Cells were cultured in 15 cm dishes, harvested at 70–80% confluency, and
flash frozen. ATP and NADPH/NADP+ were measured in whole cell lysate
or isolated mitochondria using colorimetric ATP and fluorescence NADPH/
NADP+ kits (Abcam), respectively according to the manufacturer’s
protocols. Fifty microliters of the prepared sample were used in the assay.
Experiments were carried out four times in triplicate.

Metabolite extraction and HPLC assays
Metabolite extraction and HPLC analysis were performed according to
published procedures.57,58 Cells cultured in 10-cm plates were washed two
times with ice-cold PBS immediately prior to the addition of extraction
buffer (1.5 ml of 9:1 methanol/chloroform mixture). Following the addition
of extraction buffer, plates were scraped, and the extracts were kept at
−20 °C overnight. Samples were spun down at 4 °C for 20min at 21,000 ×
g, supernatants were placed to new Eppendorf tubes, and dried out using
Centrivap (Labconco). Metabolites were dissolved in 1mM Tris pH 9.0,
passed through a 0.22 μm filter (Thermo), and resolved on a Symmetry C18
guard column (3.9 × 5 mm/4.6 × 250mm, 5 μm particle size) using a Waters
HPLC system (Milford, MA, USA). The elution solvents were (A) 0.1 M
KH2PO4 pH 6.0 and (B) 0.1 M KH2PO4, 50% methanol pH 6.0. Elution
conditions were solvent A (11min) and a linear gradient of 0–20% solvent
B. Peaks were detected by absorbance at 260 nm. The retention time was
8, 9, and 14min for ATP, ADP, and AMP, respectively.

Western blot analysis
Cells were lysed using RIPA buffer containing protease and phosphatase
inhibitor cocktails. The Bradford protein assay (BioRad) was used to
quantify protein concentrations. Equal amounts of protein (20 μg) were
separated on a 7.5–12% Tris–glycine SDS polyacrylamide gel and were
transferred to nitrocellulose membranes (GE). Membranes were blocked
with 5% BSA in TBS supplemented with 0.1% Tween-20 for 1 h at room
temperature and were incubated with primary antibody overnight at 4 °C.
After incubating with horseradish peroxidase-conjugated secondary
antibodies (anti-rabbit, NXA931; anti-mouse, NA934V; both from GE;
1:10,000), membranes were developed using supersignal chemilumines-
cence reagents (Thermo). Blots were striped with a buffer containing 1.5%
glycine, 0.1% SDS, and 1% Tween-20 at pH 2.2. ALDH1L2 was detected
using in-house ALDH1L2-specific polyclonal antibody (1:2000).12 ALDH3A2
(ab113111), VDAC (ab154856), and GAPDH (ab8245) antibodies were from
Abcam. Actin antibody (sc-47778) was purchased from Santa Cruz. All
commercial antibodies were used at the dilution of 1:1000. All blots
derived from the same experiment were processed in parallel. Band
intensities were quantified using ImageJ software, NIH (https://imagej.nih.
gov/ij/). Uncropped blot images are shown in Supplementary Fig. 12.

Immunocytochemistry
Cells were plated onto glass bottom microwell dishes (MatTek Corp.,
Ashland, MA, USA), left to attach overnight and then were stained with
250 nM TMRM, 100 nM Mitotracker, and 0.5 μg/ml Hoechst (all from
Molecular Probes). In a separate experiment, cells were also stained with
40 μM H2DCFDA for whole cell ROS visualization. Cells were stained
independently and imaged immediately following dye incubation to
ensure changes in ROS were not a product of imaging time differences. For
fixed cell immunocytochemistry, cells were cultured on glass coverslips
and subsequently fixed in 4% paraformaldehyde, quenched with ammonia
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sulfate, and washed with PHEM buffer. Cells were permeabilized with 0.1%
Triton-100X and blocked with 5% goat serum for 1 h at room temperature.
Cells were then stained with anti-ALDH1L2 antibody (1:250) for 1 h, rinsed
with PHEM, and incubated with secondary anti-rabbit IGG goat antibody
(Molecular Probes, A21441, 1:500). Coverslips were mounted to glass slides
with mountant containing DAPI (Thermo) and left to dry overnight at 4 °C
and were imaged the following day.

Analysis of mitochondrial mass and membrane potential
Cells (1.5 × 105) were seeded onto 6 cm plates and left to attach overnight.
Cells were harvested, resuspended in 5 ml of fresh medium and stained
with 250 nM TMRM and then with 100 nM MitoTracker Green (both from
Molecular Probes) to determine mitochondrial polarization and mitochon-
drial mass respectively. Intensity of each dye was determined using
CytoFLEX flow cytometer (Beckman Coulter, Indianapolis, IN, USA).
Quantitative analysis was completed using CytoFLEX software.

ALDH1L2 lentiviral transduction
The construct of human ALDH1L2 cDNA cloned to a pLenti-GIII-CMV
lentiviral vector was purchased from Applied Biological Materials Inc.
(Richmond, BC, Canada). Recombinant lentivirus for the ALDH1L2
expression was produced using ViraPower lentiviral expression system
(Thermo) according to the manufacturer’s protocol. Patient’s fibroblasts
grown in a 6-well plate (1 × 106 cells per well) were transduced with 2 ml of
the mixture of RPMI and the generated viral stock (1:1) for 24 h. The
efficiency of lentiviral transduction was confirmed by the killing curve
selection assay with puromycin and individual clones were cultured.

Assays of reduced folate pools
Approximately 5 × 106 cells were collected and rapidly washed three times
with ice-cold PBS. The cell pellet was resuspended in 50mM Tris–HCl
buffer, pH 7.4, containing 50mM sodium ascorbate. Cells were lysed by
heating for 3 min in a boiling water bath. Cell lysates were chilled on ice
and centrifuged for 5 min at 17,000 × g at 4 °C. Folate pools were measured
in cell lysates by the ternary complex assay method as described.59,60

Folate levels were calculated per mg of cellular protein measured by
Bradford assay.

Transmission electron microscopy
Cells were plated on Nunc Permanox slide chambers (3000 cells per well)
in DMEM and left to attach overnight. Cells were fixed for 1 h at room
temperature with 2.5% formaldehyde/glutaraldehyde (1:1) in 0.1 M sodium
cacodylate buffer pH 7.4. Slides were stored at 4 °C until further processing.
Following three rinses with 0.1 M sodium cacodylate buffer, pH 7.4, cells
were post-fixed with 1% osmium tetroxide/1.25% potassium ferrocyanide/
0.1 M sodium cacodylate buffer for 1 h at room temperature. After washes
in deionized water, cells were dehydrated using increasing concentrations
of ethanol (30%, 50%, 75%, and 100% twice, 10 min each) and embedded
in Polybed 812 epoxy resin (Polysciences, Inc., Warrington, PA). Cells were
sectioned en face to the substrate at 70 nm using a diamond knife and
Leica Ultracut UCT ultramicrotome (Leica Microsystems, Inc., Buffalo Grove,
IL). Ultrathin sections were collected on 200 mesh copper grids and stained
with 4% aqueous uranyl acetate for 12min, followed by Reynolds’ lead
citrate for 8 min. Samples were observed with a JEOL JEM-1230
transmission electron microscope operating at 80 kV (JEOL USA, Peabody,
MA) and digital images acquired using a Gatan Orius SC1000 CCD camera
and Gatan Microscopy Suite 3.0 software (Gatan, Inc., Pleasanton, CA).
Magnification for each image set includes 5000×, 10,000×, and 20,000×.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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