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Abstract: To improve the low acceptance ratio and revenue to cost ratio caused by the poor match
between the virtual nodes and the physical nodes in the existing virtual network embedding (VNE)
algorithms, we established a multi-objective optimization integer linear programming model for
the VNE problem, and proposed a novel two-stage virtual network embedding algorithm based
on topology potential (VNE-TP). In the node embedding stage, the field theory once used for data
clustering was introduced and a node embedding function designed to find the optimal physical node.
In the link embedding stage, both the available bandwidth and hops of the candidate paths were
considered, and a path embedding function designed to find the optimal path. Extensive simulation
results show that the proposed algorithm outperforms other existing algorithms in terms of acceptance
ratio and revenue to cost ratio.

Keywords: network virtualization; virtual network embedding; topology potential; topology
potential entropy

1. Introduction

In recent years, network virtualization technology has mainly been of academic interest. It is not
only a key technology to solve the ossification problem of the Internet [1–3], but also a core technology
in cloud computing [4–6]. In the future Internet, through network virtualization, the current Internet
service providers will be decoupled into two independent entities: infrastructure providers and service
providers. Infrastructure providers are responsible for deploying and managing the physical network,
while service providers are responsible for assembling, installing, and managing virtual networks and
offering services through them. Such an Internet paradigm makes it possible to introduce new network
architectures, protocols, and services without changing the existing network, effectively supporting
the innovation of network technologies and overcoming the Internet ossification problem [7]. In the
cloud computing environment, through network virtualization, users can be provided with flexible,
scalable, and self-service resource leasing services, which can effectively promote the development of
cloud computing.

As a resource allocation problem in the process of network virtualization, virtual network
embedding (VNE) is one of the major challenges in network virtualization [8]. Because VNE is
limited by node resource constraints, link resource constraints, access control conditions, and random
arriving of virtual network requests (VNRs), the solution to the VNE problem is extremely complex.
It has been proved that the VNE problem is NP-hard [9]. Although the VNE problem can be solved
by exact solutions [10,11], when the instances of the problem are large, it is difficult to solve it in a
limited time.

In order to make a tradeoff between the solution quality and the execution time, most scholars
decompose the VNE problem into two stages: node embedding and link embedding, and use

Entropy 2018, 20, 941; doi:10.3390/e20120941 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/1099-4300/20/12/941?type=check_update&version=1
http://dx.doi.org/10.3390/e20120941
http://www.mdpi.com/journal/entropy


Entropy 2018, 20, 941 2 of 14

heuristic-based algorithms to solve it. In these two-stage VNE algorithms, different kinds of heuristic
approaches are usually used in the node embedding stage, which are also the main contributions
of these algorithms; and the shortest path, k-shortest path or multiple commodity flow algorithm is
usually adopted in the link embedding stage.

In the node embedding stage, most of the early scholars [12–14] only adopted simple greedy
strategies to embed virtual nodes onto the physical nodes with the highest local resource. Since these
algorithms only consider the resources of the nodes themselves, the topology attributes of adjacent
nodes are neglected, which results in poor coordination of node embedding and link embedding, thus
decreasing the performances of the VNE algorithms.

In order to better solve the VNE problem, some scholars have recently proposed several
coordinated two-stage VNE algorithms, which consider link embedding when solving node
embedding. Zhao et al. [15] take the neighborhood relationship between nodes into consideration in
the node embedding stage, which can shorten the link embedding distance and improve the acceptance
ratio and revenue to cost ratio. Ding et al. [16] borrow the betweenness centrality in graph theory
to rank the nodes in virtual networks, and sort the nodes of the physical network according to the
correlation properties between the former selected and unselected nodes. In this way, node embedding
and link embedding are well coordinated. Similar to literature of ref. [16], Zhang et al. [17] propose a
novel node importance evaluating method with the purpose of choosing the most important physical
node so as to facilitate the subsequent link embedding. The main contributions of their work are
the definitions of the node degree and clustering coefficient information. Inspired by the successful
PageRank algorithm used by Google’s search engine, the Markov Random Walk Model [18] and the
Markov Reward Model [19] are introduced to measure the importance of nodes in a network. In their
algorithms, each node is ranked based not only on its local resources but also on the resources of the
nodes from which it can reach. In this way, the information about the links, necessary for the link
embedding stage, is also considered during the node embedding stage. In recent years, multi-criteria
decision analysis methods such as TOPSIS [20] and ELECTRE [21] have been introduced into VNE
algorithms. In these algorithms, first, the authors define several attributes of nodes from both local
and global perspectives, and then use a multi-criteria decision analysis method to rank the nodes
in the network. In this way, the most appropriate physical nodes will be selected to host the virtual
nodes, which will facilitate subsequent link embedding. Though, in all of the above methods, the
network topology structure is used to evaluate the resource capabilities of nodes, which makes the
results of node ranking more reasonable and improves the embedding performance of VNRs, in our
opinion, some special topological attributes of nodes can be further explored and utilized to improve
the embedding performance of VNRs.

Different from the above research, in this paper, we consider the topological importance of nodes
in the network from a new perspective. In physics, the field represents the distribution of a physical
quantity in space, which can be used to describe the interaction between non-contact objects. Gan et
al. [22] introduced field theory into abstract data space. In their paper, the importance of data objects
can be clarified by describing the virtual interactions among data objects. Inspired by the above theory,
we introduced the field theory into the VNE process and used the topology potential to measure the
topology importance of nodes.

The main innovations and contributions of this paper can be summarized as follows:

(1) To describe the topology importance of a node in a network from a global perspective, a new
topological attribute named “node topology potential” is defined, which can be utilized to further
improve the embedding performance of VNRs.

(2) A novel virtual network embedding algorithm based on topology potential (VNE-TP) is proposed.
The VNE-TP algorithm considers the importance of the nodes in terms of topology and resources
in the node embedding stage, and considers the available bandwidth and path length in the link
embedding stage.
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(3) The simulation results are provided to validate the performance of the VNE-TP algorithm. It can
be demonstrated that the VNE-TP algorithm outperforms the existing algorithms in terms of
acceptance ratio and revenue to cost ratio.

The rest of this paper is organized as follows. In Section 2, we present the network model and
the evaluation indicators of VNE. In Section 3, we give a multi-objective optimization integer linear
programming formulation for the VNE problem. In Section 4, we analyze the topology importance
of each node in a network, and define the topology potential of a node and the topology potential
entropy of the network. In Section 5, we propose our novel algorithm. In Section 6, we perform a broad
simulation of the algorithms and discuss the simulation results. Finally, in Section 7, we conclude
this paper.

2. Network Model and Evaluation Indicators

2.1. Physical Network

The physical network can be modeled as a weighted undirected graph Gp =
(

Np, Ep, Ap
n, Ap

e

)
,

where Np is the set of physical nodes, Ep is the set of physical links, Ap
n is the set of the attributes of

physical nodes, and Ap
e is the set of the attributes of physical links. For a given physical node np ∈ Np,

its attributes include the available CPU (Central Processing Unit) resource and location information,
denoted as cpu(np) and loc(np), respectively. Similarly, for a given physical link ep ∈ Ep, its attribute
is the available bandwidth, denoted as b(ep).

2.2. Virtual Network Request

Similar to the physical network, the virtual network can also be modeled as a weighted undirected
graph Gv = (Nv, Ev, Cv

n, Cv
e ), where Nv represents the set of virtual nodes, Ev represents the set of

virtual links, Cv
n represents the set of the constraint attributes of virtual nodes, and Cv

e represents the
set of the constraint attributes of virtual links. For a given virtual node nv ∈ Nv, its attributes include
the required CPU resource and location information, denoted as cpu(nv) and loc(nv), respectively.
For a given virtual link ev ∈ Ev, its attribute is the required bandwidth, denoted as b(ev). Based on the
virtual network model above, the k-th arrived VNR can be considered as VNRk = (Gv, ta, te), where
Gv represents the virtual network topology, ta represents the arrive time of the VNR, and te represents
the end time of the VNR.

2.3. Evaluation Indicators

The optimization goal of VNE is to efficiently and reasonably utilize the physical network
resources in the entire VNE process. In this paper, we use acceptance ratio and revenue to cost
ratio as the evaluation indicators for the VNE algorithm.

The VNE acceptance ratio is the ratio of the number of successfully embedded VNRs to the
number of total arrived VNRs in a period of time, which can be defined as Formula (1).

η(T) =

T
∑

t=0
|VNRsucc|

T
∑

t=0
|VNRarri|

(1)

where VNRsucc represents the set of VNRs which have been successfully embedded during the time
from 0 to T, and VNRarri represents the set of VNRs which have arrived during the time from 0 to T.
We can see that the higher the acceptance ratio, the more are VNRs embedded successfully in a certain
period of time.
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The revenue of accepting VNRk = (Gv, ta, te) at time t refers to the total resource it demands,
which can be defined as Formula (2).

R(Gv, t) = ∑
ns∈Nv

cpu(ns) + ∑
est∈Ev

b
(
est) (2)

The cost of accepting VNRk = (Gv, ta, te) at time t is the total physical resource allocated to it,
which can be defined as Formula (3).

C(Gv, t) = ∑
ns∈Nv

∑
ni∈Np

xs
i ·cpu(ns) + ∑

est∈Ev
∑

eij∈Ep

yst
ij · b

(
est) (3)

where xs
i is a binary variable denoting the embedding relation between the virtual node ns and the

physical node ni, and yst
ij is a binary variable denoting the embedding relation between the virtual link

est and the physical link eij. The definitions of xs
i and yst

ij are shown in Formulas (4) and (5).

xs
i =

{
1, if virtual node ns is embedded onto physical node ni

0, otherwise
(4)

yst
ij =

{
1, if virtual link est is routed through physical link eij

0, otherwise
(5)

The revenue to cost ratio is defined as the ratio of the embedding revenue to the embedding cost
in a certain period of time, as shown in the Formula (6).

ϕ(T) =

T
∑

t=0
∑

Gv∈VNRsucc

R(Gv, t)

T
∑

t=0
∑

Gv∈VNRsucc

C(Gv, t)
(6)

where we can see that ϕ(T) reflects the resource utilization efficiency of the physical network. The larger
ϕ(T), the higher is the utilization efficiency of the physical resource.

3. Problem Formulation

3.1. Objective Functions

For the online VNE problem, the arrival time, resource requirements, and time of life of the VNRs
are unknown. When a VNR arrives, if the embedding objective is only to reduce the embedding cost,
more bottleneck links may be generated in the physical network, which will reduce the ability of the
physical network to accept subsequent VNRs; if the embedding objective is only to reduce the number
of bottleneck links in the physical network, a physical path with more hops may be required to host
each embedded virtual link, which will increase the embedding cost of the VNR. Therefore, in this
paper, the VNE problem is modeled as a multi-objective integer linear programming model, whose
objective functions are to minimize the embedding cost of the VNR as well as the number of bottleneck
links in the physical network, such as Formula (7) and Formula (8).

min ∑
ns∈Nv

∑
ni∈Np

xs
i ·cpu(ns) + ∑

est∈Ev
∑

eij∈Ep

yst
ij · b

(
est) (7)

min ∑
ep∈Ep

bl(ep) (8)
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In Formula (8), bl(ep) is a binary variable denoting whether ep is a bottleneck link. bl(ep) is 1
if the physical link ep is a bottleneck link, and 0 otherwise. In this paper, when the utilization of a
physical link is more than 80%, we consider it to be a bottleneck link.

3.2. Node Constraints

First, the remaining available CPU resource of a physical node ni should not be less than the
CPU resource requirement of the virtual node ns which is embedded onto ni, such as Formula (9).
Second, the Euclidean distance between the physical node and its hosted virtual node should meet the
requirements of the virtual node for distance, such as Formula (10). Third, each physical node can only
host at the most one virtual node in the same VNR, such as Formula (11). Fourth, each virtual node
can only be embedded onto one physical node, such as Formula (12). Finally, the value of xs

i , which is
used to represent the node embedding relationship, should be 0 or 1, such as Formula (13).

∀ns ∈ Nv, ∀ni ∈ Np, xs
i · cpu(ns) ≤ cpu

(
ni
)

(9)

∀ns ∈ Nv, ∀ni ∈ Np, xs
i · dis

(
loc(ns), loc

(
ni
))
≤ D(ns) (10)

∀ni ∈ Np, ∑
ns∈Nv

xs
i ≤ 1 (11)

∀ns ∈ Nv, ∑
ni∈Np

xs
i = 1 (12)

∀ns ∈ Nv, ∀ni ∈ Np, xs
i ∈ {0, 1} (13)

3.3. Link Constraints

First, the available bandwidth of a physical link eij should not be less than the bandwidth
requirement of the virtual links which are embedded onto eij, such as Formula (14). Second, it is
necessary to consider the connectivity constraints of the link to ensure that every virtual link is
embedded onto a valid physical path, such as Formula (15). Finally, the value of yst

ij , which is used to
represent the link embedding relationship, should be 0 or 1, such as Formula (16).

∀eij ∈ Ep, ∑
est∈Ev

yst
ij ·b
(
est) ≤ b

(
eij
)

(14)

∀ni ∈ Np, ∀est ∈ Ev, ∑
nj∈Np

yst
ij − ∑

nj∈Np

yst
ji = xs

i − xt
i (15)

∀est ∈ Ev, ∀eij ∈ Ep, yst
ij ∈ {0, 1} (16)

4. Node Topology Potential and Network Topology Potential Entropy

At present, there are many typical indicators to evaluate the topology importance of nodes
in a network, such as betweenness centrality, degree centrality, and closeness centrality [16,20] etc.
However, these indicators either have strong one-sidedness, or emphasize the role of a single node.
In physics, the concept of field is used to describe the interaction between two non-contact objects,
such as the gravity field and the electromagnetic field. Inspired by the idea above, the field theory
was introduced into the abstract data field [22], and the topology potential proposed to assess the
importance of the nodes in complex networks [23].
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Based on the existing researches, in order to assess the topology importance of each node in a
network, we assume that every node in the network creates a virtual field around itself, overlapping
with fields of other nodes, so that each node has a different topology potential. Considering that
the topology importance of each node is more affected by the performance of its neighboring nodes,
we use the Gaussian function that is able to represent the short-range field well to describe the topology
potential for each node in the space around it. The topology potential of node nm in a network can be
formalized as Formula (17).

TP(nm) =
|N|

∑
k=1

c(nk) · exp

[
−
(

dis(nm, nk)

σ

)2
]

(17)

where |N| represents the number of nodes in the network; c(nk) represents the topology weight of
node nk; dis(nm, nk) represents the shortest distance between node nm and nk; parameter σ is used to
control the influence region of each node, called distance factor. Considering that the bandwidth of the
outgoing links of a node is larger, its influence on the surrounding nodes is stronger, so the node’s
topology weight is defined as Formula (18).

c(nk) = ∑
e∈E(nk)

b(e) (18)

where E(nk) represents the adjacent link set of node nk.
According to the property of the Gaussian function, when the value of σ is large, the influence

range of every node in the network is larger; when the value of σ is small, the influence range of every
node in the network is smaller. In order to select an appropriate value of σ, the topology potential
entropy of the network is defined as Formula (19), and the value of σ is obtained by setting the topology
potential entropy to be minimum.

HTP = −
|N|

∑
m=1

TP(nm)
|N|
∑

k=1
TP(nk)

· ln

 TP(nm)
|N|
∑

k=1
TP(nk)

 (19)

5. VNE-TP Algorithm Design

According to the literature [24,25], the multi-objective integer linear programming model
constructed in Section 3 belongs to the NP-hard problem. When the problem size is small, tools
such as GLPK and CPLEX [10,11] can be used for an exact solution. When the problem size is large, it
is difficult to find the optimal solution within a limited time. To solve this problem, a novel two-stage
heuristic algorithm named VNE-TP was designed as in this section.

5.1. Node Embedding Algorithm

In the node embedding stage, firstly, the embedding sequence of virtual nodes is constructed
according to the topology potential and resource requirement of virtual nodes, and then the virtual
nodes are embedded sequentially onto the physical nodes with the best comprehensive ability.
The specific steps of the node embedding algorithm are as follows.

Step 1: Calculate the embedding weight of the virtual nodes. Considering that the virtual node
with higher topology potential and more resource requirement should be priority embedded because
of the limited resource of the physical nodes, the embedding weight of a virtual node is defined as
Formula (20).

EW(nv) = TP(nv) · R(nv) (20)
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where R(nv) represents the resource requirement of virtual node nv. The definition of R(nv) is shown
in Formula (21).

R(nv) = cpu(nv) · ∑
ev∈E(nv)

b(ev) (21)

where E(nv) represents the adjacent link set of virtual node nv.
Step 2: Construct the embedding sequence of virtual nodes. In order to make the virtual nodes

near each other in the virtual network remain close to each other after embedding onto the physical
nodes, which reduces the embedding cost in the link embedding stage, we construct the virtual node
embedding sequence as follows. First, we select the virtual node with maximum embedding weight
value as the root node and run the breadth-first search algorithm. Second, we sort the remaining
virtual nodes by the distances from themselves to the root node in ascending order. Finally, if there are
two virtual nodes with equal distance to the root node, then we sort them by the embedding weight in
descending order.

Step 3: Calculate the set of candidate physical nodes for the virtual node to be embedded. For the
i-th virtual node nv

i in the embedding sequence, according to the node constraints of Formulas ((9)–(13)),
select its set of candidate physical nodes, that is Ω

(
nv

i
)
.

Step 4: Complete the embedding of the i-th virtual node nv
i . For np ∈ Ω

(
nv

i
)
, considering

the topology attribute, resource ability attribute, and adjacency relationship, we introduce the node
embedding function (NEF) in this paper and embed the virtual node nv

i to the physical node whose
NEF value is maximum. The definition of NEF is as Formula (22).

NEF(np) =
TP(np) · R(np)

DS(np) + ε
(22)

where R(np) represents the resource capability of the physical node np, DS(np) represents the hops
from np to the physical nodes which have hosted the neighbors of nv

i , and ε = 10−4 is a parameter to
prevent the dividend being zero. The definition of R(np) is shown in Formula (23).

R(np) = cpu(np) · ∑
ep∈E(np)

b(ep) (23)

where E(np) represents the adjacent link set of the physical node np.
The reasons why NEF is selected as the physical node selection metric are mainly due to the

following points. First, a physical node with larger TP(np) value indicates that its topology potential
is higher, and selecting it for embedding the virtual node will facilitate the subsequent virtual link
embedding. Second, a physical node with larger R(np) value indicates that the node’s available
resource is higher, and embedding the virtual node onto it will balance the node stress of the physical
network. Finally, a physical node with smaller DS(np) value indicates that there are fewer hops
between it and the physical nodes that have hosted virtual nodes, and the embedding virtual node
onto it will reduce the embedding cost of the subsequent virtual link embedding.

Step 5: Skip to step 3 and continue if the embedding of all virtual nodes is not completed.
The detail pseudo-code of the node embedding algorithm is given by Algorithm 1.
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Algorithm 1 Node Embedding Algorithm of VNE-TP

Input: Physical network Gp, virtual network Gv

Output: Node_Embedding_List

1. for every virtual node nv ∈ Nv do
2. Calculate EW(nv)

3. end for
4. Construct the embedding sequence of virtual nodes by running the breadth-first search algorithm, and

record the result into VirtualNodeList
5. for i = 1 : |Nv| do
6. Calculate Ω

(
nv

i
)

for the i-th virtual node in the VirtualNodeList
7. if Ω

(
nv

i
)
⊆ ∅ then

8. return NODE_EMBEDDING_FAILED
9. else
10. for j = 1 :

∣∣Ω(nv
i
)∣∣ do

11. Calculate NEF
(

np
j

)
for the j-th physical node in Ω

(
nv

i
)

12. end for
13. Embed nv

i to np with the largest NEF value, and record the result into Node_Embedding_List
14. end if
15. end for
16. return Node_Embedding_List

5.2. Link Embedding Algorithm

In the link embedding stage, the embedding sequence of the virtual links is constructed according
to the bandwidth requirement of the virtual links first in descending order, and then the virtual link is
embedded onto the physical path with the best comprehensive capability. The specific steps of the link
embedding algorithm are as follows.

Step 1: Construct the embedding sequence of the virtual links. According to the bandwidth
requirements, the virtual links are arranged in descending order. Thus, it is possible to preferentially
embed the virtual links which are difficult to be embedded.

Step 2: Calculate the set of candidate physical paths for the virtual link to be embedded. For the
i-th virtual link est

i in the embedding sequence, first delete physical links that do not satisfy bandwidth
constraint in the physical network, then select its set of candidate physical paths Ω

(
est

i
)

by adopting
the k-shortest path [26] algorithm.

Step 3: Complete the embedding of the i-th virtual link est
i . Considering that the virtual link

embedding should be helpful for coordinating the physical link resource consumption and reducing the
embedding cost, we introduce the path embedding function (PEF) in this paper and embed the virtual
link est

i to the physical path whose PEF value is maximum. The definition of PEF is as Formula (24).

PEF(p) =
b(p)

b
(
est

i
) · 1

hops(p)
(24)

where b(p) represents the available bandwidth of the physical path p, and hops(p) represents the hops
of the physical path p.

The reasons why PEF is selected as the physical path selection metric are as follows. First, the
physical path with larger b(p) value indicates that the path’s available resource is higher, and the
embedding virtual link onto it will balance the link stress of the physical network, thereby reducing
the number of bottleneck links in the physical network. Second, the physical path with smaller hops(p)
value indicates that the path has fewer hops, and the embedding virtual link onto it will reduce the
embedding cost.
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Step 4: Skip to step 2 and continue if the embedding of all virtual links is not completed.
The detail pseudo-code of the link embedding algorithm is given by Algorithm 2.

Algorithm 2 Link Embedding Algorithm of VNE-TP

Input: Physical network Gp, virtual network Gv, Node_Embedding_List
Output: Link_Embedding_List

1. Construct the embedding sequence of virtual links, and record the result into VirtualLinkList
2. for i = 1 : |Ev| do
3. Calculate Ω

(
est

i
)

for the i-th virtual link in the VirtualLinkList
4. if Ω

(
est

i
)
⊆ ∅ then

5. return LINK_EMBEDDING_FAILED
6. else
7. for j = 1 :

∣∣Ω(est
i
)∣∣ do

8. Calculate PEF
(

pj

)
for the j-th physical path in Ω

(
nv

i
)

9. end for
10. Embed est

i to p with the largest PEF value, and record the result into Link_Embedding_List
11. end if
12. end for
13. return Link_Embedding_List

6. Performance Evaluation

6.1. Simulation Environments

6.1.1. Network Settings

In this paper, similar to literature of ref. [20], we use the GT-ITM tool [27] to generate the topologies
of the physical and virtual networks. The physical network is set to have 100 nodes and 500 links, and
the positions of the physical nodes follow a random distribution in a scope of 1000×1000. The initial
CPU resource and bandwidth resource of the physical nodes and links are uniformly distributed
between 50 and 100.

For each VNR, the number of virtual nodes is uniformly distributed between four and eight, and
the average link connectivity rate is set to be 50%. The positions of the virtual nodes follow a random
distribution in the scope of 1000 × 1000. The CPU resource requirement and bandwidth resource
requirement of virtual nodes and links are uniformly distributed between 1 and 50. The arrival rate
of VNRs follows a Poisson process, and the lifetime of each VNR follows an exponential distribution
with an average of 500 time units. The total time of every simulation is 30,000 time units. In order
to reduce the influence of random factors on the experimental results, each simulation is carried out
10 times, and the average values are taken as the final results.

6.1.2. Comparison Methods

In this paper, we set the position constraint to be D(ns) = 400 and compared three algorithms
that are listed in Table 1. VNE-TP is our proposed algorithm, VNE-TOPSIS and VNE-MCRR are the
algorithms proposed in the literature [20] and [19] respectively.
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Table 1. Algorithm comparison.

Notation Description

VNE-TP
In the node embedding stage, the topology potential, the resource capability and the distance
attribute are considered to rank the nodes. In the link embedding stage, the available
bandwidth and the hops of the paths are considered, and a k-shortest path algorithm is used.

VNE-TOPSIS In the node embedding stage, five novel node attributes are proposed, and the nodes are
ranked based on TOPSIS. In the link embedding stage, a shortest-path based algorithm is used.

VNE-MCRR
In the node embedding stage, the Markov Reward Model is introduced, and the nodes are
ranked based on Markov Reward Processes. In the link embedding stage, a shortest-path
based algorithm is used.

6.2. Evaluation Results

6.2.1. Performance Comparison

When the arrival rate of VNRs follows a Poisson process with a mean arrival rate of 0.06 VNR per
each time unit, the comparison results of the three algorithms are shown in Figure 1.
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Figure 1. Comparison between our algorithm and the existing algorithms: (a) Acceptance ratio over
time; (b) Revenue to cost ratio over time. VNE-TP is our proposed algorithm, VNE-TOPSIS and
VNE-MCRR are the algorithms proposed in the literature [20] and [19] respectively.

As shown in Figure 1a, the VNE-TP algorithm has the highest acceptance ratio during the entire
simulation time. In the initial time period, the acceptance ratio of the three algorithms is relatively
high, because the available resources of the physical network are initially abundant. With increasing
simulation time and the arriving of the VNRs, the available resources of the physical network gradually
decrease, and the acceptance ratio of the three algorithms decreases gradually and tends to be stable
after about 10,000 time units. When the simulation time reaches 30,000 time units, the acceptance ratio
of the VNE-TP algorithm is 75.06%, which is about 9.4% and 13.9% higher than that of VNE-MCRR
and VNE-TOPSIS algorithms respectively. Compared with other algorithms, the VNE-TP algorithm
takes more consideration of the topology attributes of the nodes in the node embedding stage, and
takes a comprehensive consideration of the bandwidth and hops of the path in the link embedding
stage. These measures make the node embedding more reasonable and the link embedding more
optimized, so the acceptance ratio is increased.

As can be seen from Figure 1b, the VNE-TP algorithm has the highest revenue to cost ratio during
the entire simulation time. In the initial stage of the simulation, with the increase of time, the revenue
to cost ratio of the three algorithms is decreased. The reason is that the available resources of the
physical network is decreased with the increased number of arrived VNRs, and the virtual links have
to be embedded onto the physical paths with more hops, which make the embedding cost increase.
When the simulation time is longer than 10,000 time units, the arrival rate and leave rate of VNRs tend
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to be the same, so the available resources of the physical network tend to be stable, and the revenue to
cost ratio also tends to be stable. In the stable situation, the revenue to cost ratio of VNE-TP algorithm
is about 38.54%, which is about 14.1% and 10.9% higher than that of VNE-MCRR and VNE-TOPSIS
algorithms respectively.

6.2.2. Evaluation with Different Arrival Rate of VNRs

In order to further verify the performance of the proposed algorithm, we investigated the influence
of the arrival rate of VNRs on the performance of it. When the arrival rate of VNRs follows a Poisson
process with a mean arrival rate of 0.02, 0.04, 0.06, 0.08, 0.10, 0.12, and 0.14 VNR per each time unit,
respectively, the performance of the three algorithms compared in this paper can be seen in Figure 2.
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Figure 2. The influence of arrival rate of virtual network requests (VNRs): (a) Acceptance ratio with
arrival rate; (b) Revenue to cost ratio with arrival rate.

From Figure 2a, we can see that the VNE-TP algorithm has the highest acceptance ratio in all
the arrival rates of VNRs. For example, when the arrival rate is 0.14 VNR per each time unit, the
acceptance ratio of VNE-TP algorithm is about 45.39%, which is about 11.4% and 14.9% higher than that
of VNE-MCRR and VNE-TOPSIS algorithms respectively. In addition, we can see that the acceptance
ratio of the three algorithms is decreased with the increase of the arrival rate of VNRs. This is because
the higher arrival rate of VNRs, the larger amount of arrived VNRs within the same time, and the
available resources of the physical network are limited. All of these will result in a large amount of
VNRs which cannot be embedded successfully.

From Figure 2b, we can see that the VNE-TP algorithm has the highest revenue to cost ratio in
all the arrival rates of VNRs. For example, when the arrival rate is 0.14 VNR per each time unit, the
revenue to cost ratio of VNE-TP algorithm is about 36.49%, which is about 10.2% and 10.0% higher
than that of VNE-MCRR and VNE-TOPSIS algorithms respectively. When the arrival rate of VNRs is
less than 0.10 VNR per each time unit, the revenue to cost ratio of the three algorithms decreases with
the increase of the arrival rate of VNRs. However, when the arrival rate of VNRs is more than 0.10
VNR per each time unit, the revenue to cost ratio of the three algorithms tends to be stable. The reasons
for this result are as follows:

(1) As the arrival rate of VNRs increases, the number of arrived VNRs increases. In order to accept
as many VNRs as possible, the virtual links have to be embedded onto the physical paths with
more hops, which make the revenue to cost ratio decrease.

(2) When the arrival rate of VNRs increases to a certain extent, the number of VNRs that the physical
network can host no longer increases as the arrival rate of VNRs increases. Therefore, the revenue
to cost ratio tends to be stable.
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6.2.3. Evaluation with Different Access Control Conditions

The VNE-TP algorithm has greedy characteristics in nature, which accepts all the VNRs that
satisfy the constraints. If the revenue to cost ratio of a VNR is too low, it will take up more physical
resources, thereby affecting the acceptance ratio and the revenue to cost ratio of subsequent VNRs.
Therefore, in order to further optimize the performance of VNE-TP algorithm, in this paper we studied
the impact of access control conditions on the performance of the VNE-TP algorithm by considering
the revenue to cost thresholds as the access control conditions. The strategy of the access control is to
proactively reject the VNRs whose revenue to cost ratios are lower than the threshold. The simulation
results are listed in Figure 3.
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Figure 3. The influence of access control conditions: (a) Acceptance ratio with threshold; (b) Revenue
to cost ratio with threshold.

From Figure 3a, we can see that the acceptance ratio of the VNE-TP algorithm increases a little
with the increase of the revenue to cost threshold first and then decreases rapidly. When the revenue to
cost threshold is 0.25, the VNE-TP algorithm has the highest acceptance ratio of about 78.15%, which is
about 4.1% higher than that of the VNE-TP algorithm without considering the access control.

From Figure 3b, we can see that the revenue to cost ratio of the VNE-TP algorithm increases with
the increase of the revenue to cost threshold. When the revenue to cost threshold is 0.25, the VNE-TP
algorithm has a revenue to cost ratio of about 40.94%, which is about 6.2% higher than that of the
VNE-TP algorithm without considering the access control.

7. Conclusions

In this paper, the VNE problem was investigated by introducing field theory in physics.
A multi-objective integer linear programming model for VNE was constructed and a two-stage
coordinated heuristic VNE algorithm, named VNE-TP, proposed. Simulation results show that the
acceptance ratio and the revenue to cost ratio of the VNE-TP algorithm are about 10% higher than
the existing VNE algorithms in all of the simulation conditions. The influence of the access control
condition on the performance of VNE-TP algorithm was analyzed, and it was concluded that by
selecting an appropriate revenue to cost threshold, the acceptance ratio and the revenue to cost ratio of
the VNE-TP algorithm can be further improved.

However, we did not consider the reliability of the physical network in this paper. In the real
world, the nodes and links of the physical network may fail during the working process. Therefore, in
the next step, focusing on the sudden failure of the physical network, we will introduce reliability into
the VNE process, and study the reliable VNE algorithm.
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