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ABSTRACT Pigeon paramyxovirus type 1 (PPMV-1)
is a globally distributed, virulent member of the avian
paramyxovirus type-1. The PPMV-1–associated disease
poses a great threat to the pigeon industry. The innate
immune response is crucial for antiviral infections and
revealing the pathogenic mechanisms of PPMV-1. In this
study, we evaluated the pathogenicity of a PPMV-1
strain LHLJ/110822 in one-month-old domestic pi-
geons, as well as the host immune responses in PPMV-1–
infected pigeons. We observed typically clinical sign in
infected pigeons by 3 dpi. The morbidity rate and the
mortality in pigeons inoculated with the PPMV-1 strain
were up to 100% and 30%, respectively. The virus could
replicate in all of the examined tissues, namely trachea,
lung, liver, spleen, and bursa of Fabricius. In addition,
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the infected pigeons had developed anti-PPMV-1 anti-
bodies as early as 8 dpi; and the antibody level increased
over the time in this study. The expression level of toll-
like receptor (TLR) 2, TLR3 TLR15, IFN-g, and IL-6
were significantly upregulated by the PPMV-1 infection
in some tissues of pigeons. By contrast, PPMV-1 infec-
tion results in downregulation of IL-18 expression in
most of investigated tissues except for bursa of Fabricius
in this study. The current results confirmed that this
virus could replicate in pigeons and induce host immune
responses, then leading to produce serum antibody titers.
Meanwhile, the PPMV-1 infection induces strong innate
immune responses and intense inflammatory responses
at early stage in pigeon which may associate with the
viral pathogenesis.
Key words: pigeon paramyxovirus type 1, pigeon, pathog
enicity, innate immune responses, inflammatory responses
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INTRODUCTION

Newcastle disease (ND) is caused by virulent strains of
avian paramyxovirus type 1 (APMV-1) serotype of the
genus Avulavirus belonging to the subfamily Paramyxo-
virinae, family Paramyxoviridae. The paramyxoviruses
isolated from avian species have been classified by sero-
logical testing and phylogenetic analysis into 10 sub-
types designated APMV-1 to APMV-10 (Miller et al.,
2010); ND virus (NDV) has been designated APMV-1
(Alexander and Senne, 2008). The virus has an intrace-
rebral pathogenicity index (ICPI) in day-old chicks
(Gallus gallus) of 0.7 or greater. In addition, multiple
basic amino acids have been demonstrated in the virus
(either directly or by deduction) at the C-terminus of
the F2 protein and phenylalanine at residue 117, which
is the N-terminus of the F1 protein. The term “multiple
basic amino acids” refers to at least 3 arginine or lysine
residues between residues 113 and 116, in accordance
with the OIE most recent definition (OIE, 2019).

Pigeon paramyxovirus type-1 (PPMV-1), which is
also known as NDV that infected the pigeons (Aldous
et al., 2004), is a negative-sense, nonsegmented, and
single-stranded RNA virus in the family of Paramyxovir-
idae (Chong et al., 2013). The virus is antigenically and
genetically distinguishable from other APMV-1 viruses
(Aldous et al., 2003). Usually, PPMV-1 is classified as
genotype VI of class II (Ujv�ari et al., 2003). In accor-
dance with the OIE most recent definition (OIE,
2019), most APMV-1 viruses that are pathogenic for
chickens have the sequence 112 R/K-R-Q/K/R-K/R-
R116 (Kim et al., 2008; Choi et al., 2010) at the C-termi-
nus of the F2 protein and F (phenylalanine) at residue
117, the N-terminus of the F1 protein, whereas the
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viruses of low virulence have sequences in the same re-
gion of 112G/E-K/R-Q-G/E-R116 and L (leucine) at res-
idue 117. Some of the PPMV-1 examined have the
sequence 112G-R-Q/K-K-R-F117, but give high ICPI
values (Meulemans et al., 2002). Thus, there appears
to be the requirement of at least one pair of basic amino
acids at residues 116 and 115 plus a phenylalanine at res-
idue 117 and a basic amino acid (R) at 113 if the virus is
to show virulence for chickens. However, some PPMV-1
may have virulent cleavage sites with low ICPI values
(Collins et al., 1994). This phenomena has been associ-
ated not with the fusion protein (Dortmans et al.,
2009), but with the replication complex consisting of
the nucleoprotein, phosphoprotein and polymerase
(Dortmans et al., 2010).

The PPMV-1 was first discovered in 1978 in Iraq from
diseased pigeons (Tantawi et al., 1979). During the
1980s, multiple disease outbreaks of pigeon in Great
Britain were initiated by PPMV-1 (Alexander et al.,
1985). Now, PPMV-1 had spread worldwide and caused
extensive infections in domestic and feral pigeons
(Aldous et al., 2014). The incidence and mortality of
PPMV-1 infection for pigeon are higher than those of
NDV. The pigeons can be infected with PPMV-1 in
any season with different ages. Central nervous system
symptoms and digestive tract symptoms are often
observed when the pigeons infected with PPMV-1
(Aldous et al., 2004). If the infection occurred in the
course of moulting or breeding, increased deformed
feathers or embryo mortality could be observed
(Alexander et al., 1984). In addition, PPMV-1, like other
NDV isolates, will replicate in vaccinated chickens
(Stone, 1989) and laboratory back passage of PPMV-1
in chickens increased their virulence for chickens
(Alexander and Parsons, 1984).

Pigeon paramyxovirus type-1 infection in poultry
was controlled by full statutory measures including
stamping out and trade restrictions (Aldous et al.,
2014). This may result in considerable economic losses.
Vaccination of pigeons is necessary to ensure that dis-
ease outbreaks are contained and their impact is mini-
mized. However, the cross-HI assay indicated that
PPMV-1 had an obvious antigenic difference with len-
togenic vaccine strain La Sota, which could result in
escape variants and subsequent vaccine failure (Cho
et al., 2007; Umali et al., 2014; Wang et al., 2015;
Akhtar et al., 2016). Even though birds that vacci-
nated with inactivated vaccines produce higher humor-
al antibody levels, they do not develop a strong
cell-mediated response and thus could not provide
complete protection against PPMV-1 infection
(Dimitrov et al., 2017). Besides, the vaccines formu-
lated with the more virulent vaccine strains would
not provide lifelong immunity and that additional vac-
cinations would be necessary in layers and breeders
(Dimitrov et al., 2017). In addition, reinfection of
vaccinated birds could produce a virus of epizootic po-
tential (Seal et al., 2000). The widespread distribution
of PPMV-1 infection in pigeon and the high number of
annual outbreaks (Alexander, 2011; Aldous et al.,
2014) demonstrate that current ND vaccines and vacci-
nation practices alone cannot control the disease
(Dimitrov et al., 2017). Therefore, other methods to
prevent and control of PPMV-1 in pigeon need to be
sought.
The first line of host defense against virus infection

was innate immunity, which depends on the pattern
recognition receptors (PRR) recognizing pathogen-
associated molecular patterns of the viral component
(Amimo et al., 2014; Yan et al., 2017). Several studies
have demonstrated that NDV infection induces strong
innate immune responses such as changes of toll-like re-
ceptors (TLR) and cytokines mRNA in tissues of gooses
and chickens (Rue et al., 2011; Xu et al., 2016). In
response to inoculation of NDV strain La Sota to pi-
geons, the cDNA levels of inflammatory cytokines and
chemokines in the spleen were markedly upregulation
(Xiong et al., 2015). However, there is very limited infor-
mation regarding the immune mechanism of pigeon
against PPMV-1.
To better understand the host immune response

against the PPMV-1 infection in domestic pigeon, inves-
tigate the PPMV-1 pathogenesis and potentially high-
light the prevention and control of PPMV-1 infection
in domestic pigeon, the domestic pigeons were infected
with PPMV-1 strains isolated from pigeon and then
quantitative measuring of PRR and cytokine mRNA
levels was conducted in this study.
MATERIALS AND METHODS

Ethics

This study was conducted in accordance with the an-
imal welfare guidelines of the World Organization for
Animal Health. All animal protocols were reviewed
and approved by the Agricultural Animal Care and
Use Committee of Heilongjiang Province, China.
Virus Strain

The PPMV-1 strain pi/CH/LHLJ/110822 (LHLJ/
110822) which was isolated from kidney and trachea
samples in a diseased pigeon from China’s Heilongjiang
Province in 2011 was used in this study (Guo et al.,
2013). The ICPI and MDT values of the virus were
1.19 and 63 h, respectively. The viral stock of strain
LHLJ/110822 was propagated by inoculating the allan-
toic cavity of 9- to 11-day-old specific-pathogen-free
(SPF) embryonated chicken eggs, as described previ-
ously (Liu et al., 2013). The allantoic fluids from infected
eggs were harvested and centrifuged at 5,000 ! g for
5 min, and then the suspensions were collected and
stored at 270�C until use. The viral titer was deter-
mined by inoculating 10-fold serial dilutions into groups
of five 9-day-old SPF embryonated chicken eggs. The
50% embryo infectious dose (EID50) was calculated us-
ing the method of Reed and Muench (1938).
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Pigeon (Columba livia)

All domestic pigeons at the age of 1 wk from the
Experimental Animal Center of Harbin Veterinary
Research Institute of the Chinese Academy of Agricul-
tural Sciences that were clinically healthy and serologi-
cally negative for NDV-specific hemagglutination
inhibition (HI) antibodies through HI test. One week
before experimental infection, all pigeons were housed
in isolators under negative pressure. The food and water
were provided ad libitum. Before the experiments were
performed, healthy status of pigeons was observed for
a period of nearly 20 d. In addition, 5 pigeons were
selected randomly and euthanized at 30 d of ages, and
examined carefully for lesions in each of tissues and or-
gans. Brain, trachea, lung, digestive tract, liver, spleen,
bursa of Fabricius, and kidney tissue samples were
collected and examined by histopathology to confirm
that the birds used in this study were clinically healthy.
The samples tested for RT-PCR and PCR were pro-
cessed differently and NDV (Gohm et al., 2000), IBV
(Liu et al., 2009), the AIV subtypes H5, H7, and H9
(Chaharaein et al., 2009), and avian metapneumovirus
(Cavanagh et al., 1999) were tested by RT-PCR, and
fowl adenovirus (Li et al., 2016), Mycoplasma synoviae,
and Mycoplasma galliscepticum (Moscoso et al., 2004)
were tested by PCR using the collected samples. The
birds were shown to be free of these pathogen infections
(data not shown). Blood samples were collected from the
remaining birds. None of them had NDV-, or H5-, H7-, or
H9-specific HI antibodies at 30 d of age, and none had
antibodies against infectious bursal disease virus, avian
leucosis virus, reticuloendotheliosis virus, chicken infec-
tious anemia virus, fowl adenovirus, M. synoviae, or
M. galliscepticum in accordance with ELISA (IDEXX
Corporation).
All animal experimental procedures were approved by

the Ethical and Animal Welfare Committee of Heilong-
jiang Province, China.
Experimental Design

One-month-old healthy domestic pigeons (n 5 40)
were inoculated with 0.1 mL of 105.5 EID50 of the
PPMV-1 strain by the intraocular and intranasal routes.
Another group (n 5 28) pigeons were inoculated with
0.1 mL phosphate-buffered saline via the same route
and served as the negative control group. At 1, 3, and
7 d postinfection (dpi), 10 and 6 inoculated pigeons in
the experimental and control groups were humanely
euthanized, respectively, and brain, trachea, lung, liver,
spleen, bursa of Fabricius, and kidney were collected for
the subsequent experiment. The remaining pigeons (n5
10) in each group were monitored daily for clinical symp-
toms of disease, morbidity rate, and mortality. Blood
samples were collected to measure serum antibody levels
every 4 d from the eighth day to 28th dpi. The dead birds
during monitored day were inspected for gross lesions,
the main organs of brain, trachea, lung, liver, spleen,
and kidney were collected and fixed in 40% neutral
buffered formalin for pathological analysis. At the
same time, choose a pigeon in the control group taken
the same treatments as control. Sections were stained
with haematoxylin and eosin for microscopic examina-
tion. The experiment was terminated on 28 dpi. All of
the samples were stored at 270�C until required.
Detection of Specific Antibody Against
PPMV-1 Virus

The specific antibody titers of serum against PPMV-1
were monitored at 8, 12, 16, 20, 24, and 28 dpi using HI
assay. The PPMV-1 strain LHLJ/110822 was used as
antigen in HI test and the 4 hemagglutinating units of
antigen was evaluated by HA assay as described previ-
ously (Alexander, 2009), using peripheral red blood cells
from SPF chickens.

Real-time RT-PCR was used for detecting the viral
RNA of the PPMV-1 strain LHLJ/110822 in the tissue
samples of pigeons as described previously (Guo et al.,
2014). The primers were designed based on the L gene
sequence as reported previously (Guo et al., 2014). The
primers were as follows:

forward, 50-GAGCTAATGAACATTCTTTC-30;
reverse, 50-AAYAGGCGRACCACATCTG-30;

The total RNAs were extracted from the collected
samples using RNAiso Plus reagent (TaKaRa, Dalian,
China). To evaluate RNA quality, the optical densities
of RNA at 260 and 280 nm (OD260 and OD280, respec-
tively) were examined. The OD260/OD280 ratios were
within 1.8 to 2.0 (data not shown). Then the real-time
RT-PCR was performed using a One-Step SYBR Prime-
Script RT-PCR Kit II (TaKaRa, Dalian, China)
following the manufacturer’s instructions. All of the pro-
cesses were performed in triplicates under RNase-free
conditions.
Detection of Host Innate Immune-Related
Genes Using Real-Time RT-PCR

The host mRNA expressions of immune-related genes
of pigeons in the trachea, lung, liver, spleen, and bursa of
Fabricius were quantified by real-time RT-PCR analysis
in this study. We measured mRNA expression levels of 5
groups categorized as follows: antiviral response (TLR2,
TLR3, TLR5, TLR7, and TLR15), inflammatory cyto-
kine (IL-6), chemokine (IL-8 and IL-18), Th1-type cyto-
kine (IFN-g), and stable reference gene (b-actin). The
primers of b-actin and TLR15 were based on previously
reported target sequences (Li et al., 2015). The primers
of other genes were designed by aligning the nucleotide
sequences of respective genes from pigeons using soft-
ware of DNA Star (Lasergene Corp, Madison, WI).
The accession numbers of these genes are shown in
Table 1. Real-time RT-PCR was performed using the
One Step SYBR PrimeScript RT-PCR Kit II (TaKaRa,
Dalian, China). Briefly, the assays were performed using



Table 1. Primers used in the real-time RT-PCR.

Target mRNA Sense primer (50-30) Antisense primer (50-30) Product size (bp) GenBank accession no.

b-actin AGGCTACAGCTTCACCACCAC CCATCTCCTGCTCAAAATCCA 95 AB618546
PPMV-1 GAGCTAATGAACATTCTTTC AAYAGGCGRACCACATCTG 161 JX486554.1
TLR2 GATTGTGGACAACATTATTGACTC AAGGCTCCTTTCAAGTTTTCCC 294 XM_005500842
TLR3 CCAGTACATTTGCAACACCCCCCC GGCATCAAAATCAAATTCTTC 256 XM_005500210
TLR5 CCTTGTGCTTTGAGGAAAGAGA CACCCGTCTTTGAGAAACTGCC 124 XM_005511337
TLR7 TTCTGGCCACGGATGTGACC CCCTCAGCTTGGCAGCGCAG 219 XM_005512700
TLR15 GTTCTCTCTCCCAGTTTTGTA

AATAGC
GTGGTTCATTGGTTGTTTTTA
GGAC

262 KR018385

IFN-g CAGACTGGACAGAGAGAAATG GCTTTGCCAGATCCTTGAG 189 NM_001282845.1
IL-6 AGATGGTGATCAATCCCGATGA CAGTTTTCTCCATAAATGAAGT 150 XM_013369893.2
IL-8 CCACCTAAAGCCATTCAAGAC CAGAATTGAGTTGAGCCTTGGC 169 NM_001282837.1
IL-18 AGGAGATGAAATCTGGCAGTG TCTTGTACCTGGATGCTGAACG 103 XM_021285239.1
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2 mL of total RNA in a 25 mL reaction on a LightCycler
480II RT-PCR system (Roche, Basel, Switzerland) in
accordance with the previous study (Xu et al., 2015).
The standard plasmid containing these genes were pre-
pared as described previously (Li et al., 2015). Serial
10-fold dilutions of standard plasmids were prepared to
produce standard curves. The quantification of these
genes were calculated using standard samples. The
b-actin was selected as the most stable reference gene
across all samples from pigeons. The mRNA levels of
each target gene were normalized to the levels of b-actin
in the same samples. All of the processes were performed
in triplicates under RNase-free conditions.

Statistical Analysis

The results are expressed as means6 standard errors.
Statistical analysis were performed using IBM SPSS 19.0
statistical software (IPSS, Inc., Chicago, IL), and P-val-
ue,0.05 was considered to be statistically significant.
RESULTS

Clinical Signs and Pathological
Observations

Obviously clinical signs were observed by 3 dpi, as
most of the infected pigeons displayed depression,
open-mouth breathing, consumed less food and water,
paralysis and hard to stand up. Until 28 dpi, the
morbidity rate was up to 100%. Three birds died at 18,
19, and 27 dpi, respectively. Pigeons in the negative con-
trol group did not shown any apparent clinical signs.

Gross lesions, such as hemorrhage in the proventricu-
lus, edema in the brain, tracheorrhagia, and cheese-like
substances in the trachea, and enlarged kidneys were
observed in the dead pigeons. Pigeons inoculated with
the PPMV-1 strain LHLJ/110822 presented apparent
histopathological changes in various tissues, as gliosis
were found in brain (Figure 1 A2), congestion and mild
edema occurred in the trachea, and a small amount of in-
flammatory cell infiltration was observed in the mucosa
lamina propria as well (Figure 1 B2). In addition, exuda-
tion was observed in the lung (Figure 1 C2), hepatocyte
atrophy occurred in the liver (Figure 1 D2), the spleen
was congestion, slight reduction of white pulp lympho-
cytes, red blood cell accumulation in the red pulp
(Figure 1 E2), congestion and inflammatory cell infiltra-
tion occurred in the kidney, and degeneration and necro-
sis of partial renal tubular epithelial cell were seen
(Figure 1 F2). By contrast, no histopathological changes
were observed in respective tissues of the control pigeons
(Figure 1 A1-F1).
Detection of Specific Antibody Against
PPMV-1 and Viral Distribution in Pigeons
Infected With the PPMV-1 Strain LHLJ/
110822

To understand the severity of pathology in the early
infection period, the viral copy numbers were
measured by quantitative RT-PCR analysis in pigeon
tissues after PPMV-1 infection, including the brain,
trachea, lungs, liver, spleen, bursa of Fabricius, and
kidney. As expected, samples from the control pigeons
were negative. By contrast, the virus was detected as
early as 1 dpi in all of tissues investigated of infected
pigeons, with the viral copy numbers recorded in the
spleen being the highest at 7 dpi (Figure 2A). It is
noted that high levels of the viral copy numbers were
also observed in the liver at 3 dpi and bursa of Fabri-
cius at 1 dpi (Figure 2A).
All pigeons inoculated with the PPMV-1 strain

LHLJ/110822 showed a positive serum antibody
response as early as 8 dpi, and the antibody level
increased over the time (Figure 2B).
mRNA Expression Levels of TLR in
Response to the PPMV-1 Strain LHLJ/
110822 Infection

To gain information about the signaling pathways
induced by PPMV-1 infection, we investigated the
mRNA expression levels of TLR (2, 3, 5, 7, and 15) in
the trachea, lung, liver, spleen and bursa of Fabricius
of pigeons in response to PPMV-1 infection (Figure 3).
It is demonstrated that the liver of infected pigeons
showed a significant upregulation of both TLR2 and
TLR3 at 3 dpi relative to those of pigeons in control,
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Figure 1. Histopathology in tissues of domestic pigeons infected with PPMV-1 strain LHLJ/110822, and the pathological change in each picture is
indicated by an arrow, circle, or star. Congestion not marked. (A2) Gliosis in the brain. (B2) Congestion in the trachea, mild edema, and a small
amount of inflammatory cell infiltration in the lamina propria mucosa. (C2) Exudation in the lung. (D2) Congestion in the liver, hepatocyte atrophy.
(E2) Congestion in the spleen, slight reduction of white pulp lymphocytes, red blood cell accumulation in the red pulp. (F2) Congestion in the kidney,
inflammatory cell infiltration, partial degeneration, and necrosis of renal tubular epithelial cells. Pigeons in the negative control group did not show any
apparent histopathological changes in tissues investigated (Figure 1 A1-F1).
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or infection at 1 and 7 dpi (P , 0.05). However, there
was little statistical difference in expression of the TLR
gene over time in the other tissues of pigeons between
infected and the control (P . 0.05) (Figure 3). Gener-
ally, the PPMV-1 infection had little significantly effect
on the expression levels of both TLR5 and TLR7 in any
of the tested tissues of pigeons. It is noted that the
mRNA expression levels of the TLR5 in liver at 3 dpi
and 7 dpi was downregulated, whereas TLR7 in the tra-
chea were upregulated at 3 dpi comparing with those of
control birds despite lack of significant difference (P .
0.05). Interestingly, the expression of TLR15 was
induced in most of these tissues of PPMV-1-infected pi-
geons, except for the liver, whereas little expression of
TLR15was detected in any of tested tissues of control pi-
geons in the present experiment. Meanwhile, we
observed that the expression level of TLR15 was signifi-
cantly upregulated in trachea at 1 dpi, in the lung at 3
dpi, in the spleen at both 1 dpi and 3 dpi, and in the
bursa of Fabricius at 7 dpi, compared with those of the
control pigeons (P , 0.05).

Expressions of IFN-g Gene in Response to
the PPMV-1 Strain LHLJ/110822 Infection

The expression of IFN-g was induced in most of tested
tissues of pigeons by the PPMV-1 strain infection, except
for the bursa of Fabricius (Figure 4). The highest upregu-
lation of the IFN-g expression was observed in the trachea
at 3dpi, compared with those of the control pigeons or
infection at the other time points (P , 0.05). In addition,
the PPMV-1 strain infection showed significantly upregu-
lation of the IFN-g expression in both the lung and spleen
at 1 dpi, and in the liver at 7 dpi, compared with those of
the control pigeons or infection at the other time points (P
, 0.05). However, we did not detect any expression of
IFN-g in the bursa of Fabricius of pigeons from both the
control and infection in this study.
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Figure 2. (A) Viral RNA copy numbers in the tissues of domestic pigeons in response to PPMV-1 strain LHLJ/110822 infection. Viral RNA copy
numbers in the tissues from domestic pigeons in each group were measured by real time RT-PCR at 1, 3, and 7 dpi. The results represent the mean of 3
independent experiments with 3 replicates per experiment. The results are expressed as means6 standard errors (SEM). Statistical analysis was per-
formed using IBM SPSS 19.0 statistical software (IPSS, Inc., Chicago, IL). a,bThe values with different letters are significantly different (P, 0.05). (B)
Serum samples were collected to measure serum antibody levels of pigeons inoculated with the PPMV-1 strain LHLJ/110822. Antibodies were exam-
ined byHI every 4 d from the eighth day to 28th day. Values are presented asmean6 SEM (statistical significance: *P, 0.05). The data were analyzed
by using IBM SPSS 19.0 statistical software (IPSS, Inc., Chicago, IL). Abbreviations: HI, hemagglutination inhibition; PPMV-1, pigeon paramyxo-
virus type 1.
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Expressions of Inflammatory and
Chemokines Cytokines in Response to the
PPMV-1 Strain LHLJ/110822 Infection

To better understand the host innate immune
response to PPMV-1 infection, we selected IL-8, IL-18,
and IL-6 representing different branches of the innate
immune response. The expression patterns of IL-8, IL-
18, and IL-6 were measured by quantitative RT-PCR
analysis in the trachea, lung, liver, spleen, and bursa of
Fabricius of pigeons infected with the PPMV-1 strain.
As shown in Figure 5, no significant differences were
found between control and infected pigeons with regard
to IL-8 expression level in any of the tested tissues,
although the expression levels of the IL-8 were upregu-
lated at a stepwise pattern in the liver, while downregu-
lated at various degrees in the trachea and lung of the
pigeons after PPMV-1 infection, compared with those
of the control group (P . 0.05). In contrast to the
expression patterns of IL-8, the expression of IL-18
was significantly downregulated in the trachea (3 dpi
and 7 dpi), liver (1 dpi, 3 dpi, and 7 dpi), and spleen (1
dpi, 3 dpi, and 7 dpi) of PPMV-1–infected pigeons,
compared with those of the control. However, no obvious
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IL). a,bThe values with different letters are significantly different (P , 0.05). Abbreviation: PPMV-1, pigeon paramyxovirus type 1.
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changes in the expression of IL-18 were observed in both
the lung and bursa of Fabricius of PPMV-1–infected pi-
geons, as compared with respective controls. It is noted
that significantly higher expression level of IL-18 was
observed in the lung of PPMV-1–infected pigeons at 1
dpi than that of 7 dpi (P , 0.05). The expression level
of IL-6 showed a general trend of upregulation in most
of the tested tissues of PPMV-1–infected pigeons,
compared with the control pigeons. Compared with the
control pigeons, the expression level of IL-6 was signifi-
cantly upregulated in the bursa of Fabricius at 7 dpi of
PPMV-1 infected pigeons (P , 0.05). In addition, we
also observed an increase in the expression of IL-6 in
the trachea at 1 and 3 dpi, the lung at 1dpi, the liver
at both 3dpi and 7 dpi, the spleen at 1 dpi, and the bursa
of Fabricius at both 1dpi and 3 dpi of PPMV-1–infected
pigeons, despite the lack of significant difference
(P . 0.05).
DISCUSSION

Pigeon paramyxovirus type 1 is a globally distributed,
virulent member of the APMV-1 and the PPMV-1–asso-
ciated disease poses a great threat to the pigeon industry
(Isidoro-Ayza et al., 2017). In this study, we evaluated
the pathogenicity of PPMV-1 strain LHLJ/110822 in
one-month-old domestic pigeons via intraocular and
intranasal route. Consistent with previously studies
(Kommers et al., 2001; Dortmans et al., 2011; Guo
et al., 2014; Wang et al., 2017; Xiang et al., 2019),
infected pigeons exhibited typically clinical signs by 3
dpi. The current result demonstrated that the morbidity
rate and the mortality in pigeons inoculated with the
PPMV-1 strain were up to 100% and 30%, respectively,
although the morbidity was in the range 30–70% but
mortality is usually ,10% in pigeons after PPMV-1
infection in previous study (Marlier and Vindevogel,
2006). Consistent with the present study, higher
morbidity and mortality in pigeons on infection with
PPMV-1 were also observed in multiple studies (Guo
et al., 2014; Wang et al., 2017). The differences in
PPMV-1 strains, the infective dose, the age, and host
immune response may be responsible for the pathoge-
nicity of PPMV-1 in different reports. Furthermore, con-
tributions of other factors, such as bacterial infections or
concomitant parasitic infections could not be excluded
as well. Thus, additional studies are needed to further
investigate the virus-host relationship. In consistent
with previous studies (Guo et al., 2014; Isidoro-Ayza
et al., 2017; Olszewska-Tomczyk et al., 2018), gross le-
sions and histologic lesions most commonly associated
with PPMV-1 infection were also observed in multiple
tissues and organs of PPMV-1–infected pigeons in this
study.
A higher level of viral RNA entailed increased effi-

ciency of virus production, leading to faster death of
infected cells. In this study, the viral load was detected
as early as 1 dpi in all of tissues investigated of PPMV-
1–infected pigeons. This might be the reason for more
pronounced lesions in these organs of infected pigeons.
The correlation between the virus load and intensity of
histopathological lesions has also been observed in other
studies (Ecco et al., 2011; Olszewska-Tomczyk et al.,
2018).
It is well known that antibodies neutralize viruses to

protect the host organism from viral damage
(Kapczynski et al., 2013; Wang et al., 2017). Consistent
with previous reports, the infected pigeons had devel-
oped anti-PPMV-1 antibodies as early as 8 dpi; and
the antibody level increased over the time in this study.
The current results confirmed that this virus could repli-
cate in pigeons and induce host immune responses, then
leading to produce serum antibody titers.
Of the PRR, TLR are perhaps the most extensively

studied. Toll-like receptors play pivotal roles in the initi-
ation of innate immune responses (Thompson et al.,
2011). In our previous study, 5 TLR have been identified
in pigeons, namely, TLR2, TLR3, TLR5, TLR7, and
TLR15. Furthermore, it is demonstrated that both
TLR3 and TLR7 were induced in the spleen and some
target tissues, whereas TLR15 was induced only in a
target tissue (lungs) of PPMV-1–infected pigeons (Li
et al., 2015). Partly consistent with the report, both
TLR2 and TLR3 were induced only in the liver, whereas
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TLR15 were induced in most of investigated tissues of
PPMV-1–infected pigeons, except for the liver in this
study. This difference may partly ascribe to different
age of pigeons used in these 2 studies. Similarly, previous
study also demonstrated that both TLR3 and TLR15
were induced in tissues of NDV-infected chickens
(Zhang et al., 2019), as well as NDV-infected geese
(Xu et al., 2016). These results revealed that TLR, espe-
cially TLR2, TLR3, and TLR15 may play a more signif-
icant role in managing infection, and contribute to host
defense in these avian species.
It has been well established thatTLR responds to viral

RNA to capture signals derived from viral particles and
subsequently induces signal transduction to yield an in-
flammatory cytokine response (Iwasaki and Medzhitov,
2004; Tsai et al., 2009). Our results demonstrated that
PPMV-1 infection resulted in IFN-g induction in most
of tested tissues of pigeons. Similarly, it is showed that
the mRNA expression of IFN-g was enhanced in the
spleen of NDV-infected chickens, as well as in NDV-
infected peripheral blood mononuclear in vitro (Degen
et al., 2005; Ahmed et al., 2007; Liu et al., 2012;
Kapczynski et al., 2013). IFN-g belongs to the type II
interferon and could induce specific immunity response,
especially the cell-mediated immunity (Wang et al.,
2006; Liu et al., 2012). The acute viral infection charac-
terized by an elevated expression of the signature cyto-
kine IFN-g in tissues of pigeons or chicken, highlighted
the role of IFN-g in fighting against PPMV-1 or NDV
infection. It is noted that the PPMV-1 infection elevated
the expression levels of IFN-g in the trachea of pigeons,
in line with the expression pattern of TLR7 in that tis-
sues, despite lack of statistical difference in this study.
It is revealed that TLR7may contribute to the secretion
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of IFN-g, and then induce proinflammatory and anti-
viral response in the trachea of PPMV-1–infected
pigeons.

In addition to IFN-g, innate host responses to viral
infection also include secretion of proinflammatory cyto-
kines such as IL-6 and IL-8 (Goodbourn et al., 2000;
Manuse and Parks, 2010). It has been demonstrated
proinflammatory and chemokines are involved in the
in vivo response to NDV infection in chicken (Rue
et al., 2011; Zhang et al., 2019), duck (Kang et al.,
2015), and goose (Xu et al., 2016). Our recent study
showed that IL-6 is the only proinflammatory
cytokines involved in the in vivo response to NDV
infection in chicken (Zhang et al., 2019). In addition, ex-
pressions of IFN-g, IL-8, and IL-18 were significantly
upregulated among cytokines analyzed in goose infected
by NDV in our another study (Xu et al., 2016). Consid-
ering limited space, as well as our previous findings, we
chose IL-6/8/18 as the detection target in this study.
Our results showed that PPMV-1 infection resulted in
an obvious increase in expression of IL-6 in most of the
tested tissues of PPMV-1. Meanwhile, the IL-8 expres-
sion was also upregulated at a stepwise pattern in the
liver, despite lack of statistical difference. This finding
was generally consistent with the previous studies re-
ported which is studied with NDV infected chickens
(Ecco et al., 2011; Zhang et al., 2019). It is noted that
the tendency of both IL-8 and IL-6 expression in the
liver is similar to that of TLR3 at both 1 dpi and 3dpi.
This observation could be explained by a previous
demonstration that overexpression of TLR3 results in
higher mRNA levels of IL-6 and IL-8 of chicken by syn-
thetic dsRNA and NDV challenge (Cheng et al., 2014).
These findings suggested that TLR3 plays a role in the
recognition of the innate proinflammatory response after
viral infection and leads to the consequent antiviral cyto-
kine/interferon secretion. It is noted that PPMV-1 infec-
tion results in downregulation of IL-18 expression in
most of investigated tissues except for the bursa of Fab-
ricius in this study. By contrast, IL-18 expression was
increased in tissues of NDV infected chickens or geese
in previous studies (Ecco et al., 2011; Xu et al., 2016;
Zhang et al., 2019). These observations suggest that ef-
fect of viruses on expression of IL-18 depends on the
breed of birds or viral strains (Ecco et al., 2011; Zhang
et al., 2019). However, the underlying molecular mecha-
nisms need to be further investigated. In general, the cur-
rent results demonstrated that expression levels of
cytokines investigated were associated with the amount
of viral RNA expression in this study. Cytokines is a
known inducer of specific immune response to prevent
infection on virus invasion. However, overproduction of
cytokines as a result of virus infection may result in a
cytokine storm, thus amplifying the detrimental effect
of inflammation on the host (Tisoncik et al., 2012).

It is noted that the copy number of PPMV in different
organs, as well as different day, is not corresponding with
the innate immune level in this study. The possible
reason may be that both the innate and adaptive host re-
sponses are triggered by pathogens at mucosal surfaces
of the host. However, the relevance and importance of
these responses may differ, depending on the pathogen
as well as the time and location of immune responses.
For example, innate responses play an important role
early in the process of an infection, as some of these re-
sponses may prevent the initial viral replication or
they may send appropriate signals to initiate other
innate mechanisms as well as adaptive responses. On
the other hand, the presence of the virus in different tis-
sues is going through various phases of their replication.
In other words, while the virus has already established
latency in some tissue, it may just be entering their lytic
phase in others. It suggests that these responses were not
adequate to contain virus replication. This finding has
also been widely reported in our previous studies, as
well as others (Krishnamurthy et al., 2006; Ecco et al.,
2011; Li et al., 2015; Xu et al., 2016; Zhang et al.,
2019; Zhao et al., 2020). Although useful, the expanding
knowledge of host immune response to PPMV-1 is
insufficient to understand the nature of the host response
to PPMV-1 in vivo or to relate the underlying host im-
mune mechanisms to viral pathogenesis.
In conclusion, the results demonstrated that the

PPMV-1 infection results in obviously clinical signs
and gross lesions in targeted tissues in pigeons. The cur-
rent results confirmed that this virus could replicate in
pigeons and induce host immune responses, then leading
to produce serum antibody titers. Meanwhile, the
PPMV-1 infection induces strong innate immune re-
sponses and intense inflammatory responses at early
stage in pigeon which may associate with the viral
pathogenesis.
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