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Regenerative dentistry has paved the way for a new era for the replacement of damaged dental tissues. Whether the causative
factor is dental caries, trauma, or chemical insult, the loss of the pulp vitality constitutes one of the major health problems
worldwide. Two regenerative therapies were introduced for a fully functional pulp-dentin complex regeneration, namely, cell-
based (cell transplantation) and cell homing (through revascularization or homing by injection of stem cells in situ or
intravenously) therapies, with each demonstrating advantages as well as drawbacks, especially in clinical application. The
present review is aimed at elaborating on these two techniques in the treatment of irreversibly inflamed or necrotic pulp,
which is aimed at regenerating a fully functional pulp-dentin complex.

1. Introduction

Dental tissue regeneration requires the presence of specialized
cells capable of the production of a tissue-specific extracellular
matrix (ECM) [1, 2]. Stem/progenitor cells used in regenera-
tive medicine are nonspecialized cells, demonstrating the
ability of self-renewal and multilineage differentiation [3].
The potential of stem/progenitor cells, whether endogenous
or exogenous, to adapt to various environmental niche could
be exploited in regenerative endodontics and pulp-dentin tis-
sue regeneration [4-6]. Therapeutic application of stem/pro-
genitor cells is mainly dependent on the utilization of the
transplanted cells, on suitable scaffolds and in combination
with various growth factors to generate fully functional biolog-
ical tissues [7]. Recently, the success demonstrated in animal
models to repair/regenerate dental structures has paved the
way for pulp-dentin organ regeneration approaches [8].

L.1. Cell-Based Transplantation for Pulp-Dentin Complex
Regeneration (Table 1 and Figure 1). A suggested approach
to address problems related to pulp-dentin tissue regenera-
tion relied principally on the use of various sources of stem/-
progenitor cells, combined with multiple scaffold systems
and growth factors [9]. Human mesenchymal stem/progeni-
tor cells (MSCs) have been extracted from many areas of the
human body, including the bone marrow, the skin as well as
the perivascular, the adipose, and the dental tissues [10-12].
Early trials and continuous animal studies were directed to
investigate the effectiveness of cell-based transplantation on
pulp healing and dentin regeneration [7, 13, 14]. Autologous
transplanted constructs of dental pulp stem/progenitor cells
(DPSCs) in combination with platelet-rich fibrin (PRF)
proved to promote the regeneration of pulp-dentin-like
tissue inside dogs’ root canals [15]. A further animal study
employing human DPSCs and platelet-derived growth factor
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Cell based transplantation

Sources of stem cells used for pulp-dentin complex regeneration

Dental tissues Bone marrow

sy
)

Stem cells +
Scaffolds +
Growth factors

Adipose tissue

Isolated stem cells

Perivascular Uterine & umbilical
tissue cord tissues

Regeneration of the
pulp-dentin complex

FIGURE 1: Cell-based transplantation method and sources of stem cells used for pulp-dentin complex regeneration.

(PDGF) constructs transplanted into the emptied root canals
of rats induced the creation of globular dentin-like structure
with odontoblastic cells and pulp-like tissues [16].

A trial to treat deliberately perforated pulp space of
premolars of dogs using autogenous DPSCs, embedded in tri-
calcium phosphate (TCP) or treated dentin matrix (TDM)
scaffolds, showed no dentin formation in all groups while
cementum and vascular connective tissues were evident in
all specimens [17]. A further study examined microvascular
endothelial cells (ECs) coimplanted with rat bone marrow
MSCs in pulpotomized rat models. Interestingly, after 14 days,
immunohistochemical examination demonstrated healing of
the pulp with complete dentin bridge formation in teeth
implanted with MSCs and ECs, while those implanted with
MSCs lacked the completion of the formed dentin bridge
[18]. A further noninvasive regenerative pulpal approach was
tested, using mobilized DPSCs freshly extracted from upper
canine teeth of dogs, followed by autologous DPSCs transplan-
tation in pulpectomized permanent teeth with apical closure.
The study revealed that pulp tissue was completely regener-
ated 90 days following cell transplantation [19]. A novel trial

on a rat model for dental pulp regeneration employed pulpo-
tomized rat teeth, which were treated using buildups of rat
bone marrow mesenchymal stem cells (BMMSCs). The tested
buildups were implanted into the pulpotomized pulp cham-
bers for 3, 7, or 14 days and then examined immunohisto-
chemically. At 7 days, the pulp tissue was regenerated in
almost the whole implantation area and regeneration continued
to progress for 14 days with differentiation of odontoblast-like
cells beneath the dentin at the margin of the implanted area evi-
denced by a detected nestin expression. Also, quantitative gene
expression analysis disclosed the expression of sialophospho-
protein mRNA in the implanted area, suggesting the abundance
of odontoblasts [20]. Chitosan hydrogel scaffold containing
autologous DPSCs was further transplanted in the necrotic
immature permanent teeth of dogs, regenerating pulp- and
dentin-like tissues with complete root maturation radiographi-
cally and histologically [21]. However, not all the reported
studies were successful. Implanting DPCs in TCP and TDM
scaffolds, combined with transforming growth factor f3, ascor-
bic acid 2-phosphate, and ascorbic acid 3-phosphate, did not
promote the formation of a dentin bridge [17]. Also, porcine



DPC:s failed to heal or regenerate partial pulpotomy defects of
minipigs. Moreover, hyperemia in the residual pulp and exter-
nal root resorptions were evident in the radicular area of all
the treated teeth [22]. On the contrary, another investigation
demonstrates that when combining collagen scaffold with gran-
ulocyte colony-stimulating factor (G-CSF), a total recovery of
the pulp tissue was achievable in the pulpectomized teeth [19].

It was appealing to seek more uncommon supplemen-
tary derivatives to enhance stem/progenitor cells” activation
and differentiation, dragging attention towards nondental
medications. An animal study reported that a common drug
used to treat hyperlipidemia, Simvastatin (SIM), succeeded
in stimulating canine DPSCs, promoting pulp and dentin
regeneration following pulpotomy [23]. Further animal stud-
ies suggested using glycogen synthase kinase (GSK-3) antago-
nists, a drug usually applied for the treatment of neurological
disorders, which proved successful as a capping material of
the pulpal exposure site, promoting dentin formation [24,
25]. Another animal study proved that pulp regeneration
was enhanced in aged dogs’ teeth by trypsin pretreatment of
allogenically transplanted mobilized DPSCs [26].

A case report treating accidental root perforation of a
mature permanent tooth, utilizing allogenic umbilical cord
mesenchymal stem cells (UCMSCs) encapsulated in a platelet-
poor plasma- (PPP-) based bio scaffold, demonstrated a clini-
cally normal pulpal tissue in terms of vitality testing, palpation,
and percussion testing at six-month and one-year follow-ups
[27]. Moreover, two case reports showed a successful manage-
ment of periapical lesions in permanent teeth treated with
stem/progenitor cells from human exfoliated deciduous teeth
(SHED), with the treated teeth responding normally to electric
pulp testing and periapical tissue healing observed and main-
tained up to one year [28].

Collectively, cell-based therapeutic applications in the
dental field and specifically dentin-pulp tissue regeneration
still face a number of challenges. Future strategies should
be directed towards overcoming these challenges and obsta-
cles using an ideal combination of growth factors with prop-
erly matching scaffolds [17, 22]. Secure and controllable
practice must be strictly followed to translate stem/progeni-
tor cell research into human models, starting from protocols
of stem/progenitor cells’ tissue harvesting, the biocompati-
bility of the used scaffolds and biomaterials involved, and
the safety of the technique itself and the predicted outcome
[29, 30]. Finally, the endless mix and match trials between
scaffolds of different origins, as well as electing the suitable
growth factor/biological mediator, could govern the success
or failure of regenerating a specialized tissue when employ-
ing the stem cell-based therapy [31].

1.2. Stem/Progenitor Cell Homing. As mentioned above for
pulp-dentin complex regeneration, two strategies could be
applied, namely, the cell-based transplantation therapy or
the cell homing. In the latter, the regeneration is accomplished
via chemotaxis of host endogenous cells to the injured tissue
via biological signaling molecules. Stem/progenitor cell hom-
ing can be defined as the potential of stem/progenitor cells,
whether endogenous or exogenous, to migrate into an envi-
ronmental niche. MSCs can be delivered in situ or intrave-
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nously, or they can be recruited to sites of injury, through
migration and homing [32]. Clinically, cell homing for pulp-
dentin complex regeneration might be simpler and more
economical to perform compared to the cell-based therapy
and readily performed by clinicians without special training.

1.3. Stem/Progenitor Cell Homing Mechanisms (Figure 2).
Homing approaches can be either systemic or nonsystemic.
In nonsystemic homing, MSCs are locally transplanted at
the selected tissue and are then directed to the region of
injury through a chemokine gradient. Oppositely, in systemic
homing, MSCs are delivered or recruited endogenously into
the circulation and then undergo a series of processes, leaving
the bloodstream and moving towards the site of injury. These
complex processes involve tethering and rolling, activation,
arrest, transmigration or diapedesis, and migration [33, 34].
Tethering is mediated by selectins on endothelial cells. MSCs
exhibit CD44, which binds to the selectins and starts rolling
along blood vessels [35]. This is followed by chemokine-
mediated activation [36]. MSCs express the chemokine recep-
tors CXCR4 [37] and CXCR7 [38, 39]. The stromal cell-
derived factor (SDF-1) is the ligand to these receptors, where
it binds to them to enhance homing to different tissues. Then,
comes the process of arrest mediated by integrins, mainly by
CD49d («4f31), which unites with VCAM-1 (CD106) present
on endothelial cells [40]. In order to cut across the endothelial
basement membrane, a process known as diapedesis or trans-
migration, MSCs produce matrix metalloproteinases (MMPs)
mainly MMP-1, which plays a crucial role in tissue infiltration
by MSCs [41]. Finally, MSCs migrate to injury sites. This step is
regulated by chemotactic signals, produced as a reaction to
tissue impairment. Numerous growth factors, such as insulin-
like growth factor IGF-1 and platelet-derived growth factor
(PDGF), can act as chemokines for MSCs [42]. Moreover,
tumor necrosis factor (TNF-«) increases MSCs movement
towards chemokines by increasing their expression of CCR3,
CCR4, and CCR?2 receptors [4, 43, 44]. In addition, the inflam-
matory cytokine interleukin- (IL-) 8 was proved to enhance
migration of MSCs towards regions of injury [45, 46] and
further promotes them to produce regenerative growth factors,
such as vascular endothelial growth factor (VEGF) [47].

1.4. Routes of Administration and Delivery Methods. One
important point in MSCs transplantation and their conse-
quent therapeutic efficiency is the route of administration to
provide the ultimate regenerative benefits with the least
adverse effects. The most common delivery methods for MSCs
are either by intravenous (IV) or intra-arterial infusion (IA) or
by direct intratissue injection [48]. Several experimental stud-
ies proved the superiority of IA and IV delivery modes over
other delivery routes [49, 50]. The IV route was proved to be
the most convenient route for MSCs transplantation. It is
less traumatic and reproducible and enhances widespread
distribution in the affected regions, enhancing various bio-
logical effects [51]. However, this delivery method in nearly
all cases causes entrapment of MSCs in the lungs, causing
undesirable adverse effects, including embolisms. The rea-
son for this lung entrapment relies probably on the amal-
gamation of physiological and mechanical factors, such as
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FIGURE 2: MSC homing mechanisms and different approaches for enhancing MSC homing.

the small size of blood capillaries, the vast network of cap-
illaries, and the great adhesive characteristics of MSCs. It
was also demonstrated that some cells could produce cal-
cium deposits within the capillaries [52].

On the contrary, the IA route can be more efficient, as it
provides a straightforward route to the injury site with an
increased degree of cellular endurance and engraftment
[53, 54]. Several studies proved the superiority of IA delivery
route over the IV one. They demonstrated enhanced func-
tional and histological results in IA delivery compared with
IV injection of MSCs [49, 55]. IA transplantation of MSCs
increases cellular migration, cellular density, and the num-
ber of homing MSCs to the target tissue, when compared
to IV injection [56, 57]. Du et al. in a comparative study
demonstrated greater angiogenesis and increased functional
recovery with IA transplantation compared to IV injection
utilizing human BM-MSCs in a rat model of ischemia [58].
Lundberg et al. confirmed these findings in a model of trau-
matic brain injury [59]. The main reason for the superiority
of IA transport over IV mode is that the IA approach can
bypass the pulmonary circulation and filtering organs, such
as liver and spleen [60], thereby avoiding MSCs entrapment
in lungs and liver [54], with a significant rise in number of
cells with a more consistent cellular dissemination in target
tissues [61, 62]. This will eventually lead to increased cell
homing and improved therapeutic outcomes [58].

However, a probable limitation for the IA route is the
possibility of vascular blockage in small arterioles and capil-
laries resulting in strokes. This may be attributed to the exis-
tence of large MSCs in the 20-50u size range [63, 64].
Several attempts have been performed to enhance the safety
of TA transplantation via regulating infusion velocity and cell
dosage [63, 65]. Moreover, real-time MRI could provide a
useful tool in making the procedure more accurate and pre-
dictable, which is of ultimate importance for translation to
clinical practice [66].

Direct injection delivery mode has the advantage of accu-
rate localization of cells, despite being invasive. However, it
has been proved that aside from the delivery route, only
1~5% of delivered cells disseminate within the target region
for regeneration. The count of cells in the target region may
thus be enhanced by maximizing the injection volume or
enriching the cell concentration in the injectable volume
[67-69]. In addition, the expression of adhesion molecules
can promote homing of delivered MSCs [70, 71]. In this
context, several approaches have been made to enhance
MSC homing efficacy.

1.5. Enhancing MSC Homing (Figure 2). Cellular homing relies
principally on specialized molecular interactions, not just pas-
sive diffusion. One of the main challenges facing MSCs thera-
peutic applications is enhancing their homing abilities [72].



Among the challenges is the fact that the expression of homing
molecules, as CXCR4, is relatively low on MSCs [37, 73], and
the in vitro expansion of MSCs further decreases the expres-
sion of their homing molecules [74, 75]. Thus, numerous
approaches have been suggested to enhance MSC homing.
Among these is targeted delivery, which relies on direct deliv-
ery of MSCs into the target region, employing nonsystemic
rather than systemic homing [76]. In addition, magnetic
guidance of MSCs to target tissues proved greater homing effi-
ciency [77]. Furthermore, genetic modifications of MSCs via
overexpression of homing factors such as VLA-4 and CXCR4
through viral transduction proved increased efficiency [78, 79].
Cell surface engineering approaches were suggested to modify
the selectin ligand CD44, via transforming it into HCELL (the
ligand for E- and L-selectin that MSCs utilize for homing), as
MSCs normally express CD44, but not HCELL [80]. It was
turther demonstrated that coating MSCs with hyaluronic acid
could upregulate CD44 expression [81]. Moreover, hypoxic
conditions enhance hypoxia-inducible factor- (HIF-) la,
which upregulates the expression of CXCR4 [82], CX3CR1
[83], and CXCR7 [84, 85].

A further strategy addressed modifying the target tissues,
via overexpression of chemokines or via implantation of
chemokine-coated scaffolds [86]. This allows tissues to be a
more appealing target for homing MSCs. Moreover, irradia-
tion of target tissues increases the expression of SDF-I,
upregulating in MSC engraftment [87, 88] and homing
[89]. Pulsed ultrasound applied to the target tissue may also
enhance MSC homing [90], via altering gene expression of
cytokines as bone morphogenic protein-2 (BMP-2), inter-
leukins (IL-1a, IL-6, and IL-10), TNF-a, and growth factors
such as epidermal growth factor (EGF), fibroblast growth
factor (FGF), VEGF, and PDGF [91], causing disorganiza-
tion of endothelial linings, enhancing vascular permeability,
increasing secretion of SDF-1 on the tissue of interest, and
upregulating CXCR4 expression [92].

1.6. Cell Homing for Pulp-Dentin Complex Regeneration
(Revascularization) (Table 2 and Figure 3). Regenerative
endodontics represents an alternative to root canal treatment,
which is aimed at replacing the inflamed and necrotic pulp
tissue with regenerated pulp-like tissue [93]. In this context,
revascularization approaches of affected dental pulp were
suggested as an innovative strategy to overcome the drawbacks
associated with classical root canal treatment methods (e.g.,
fracture of the teeth and loss of vitality) [94]. A human study
on mature necrotic teeth with large radiolucency concluded
that the regenerative endodontic approaches have a success
rate similar to nonsurgical endodontic treatment as a thera-
peutic alternative for mature necrotic teeth with radiolucency
[95]. It could maintain the pulp vitality, leading to a reduction
of apical periodontitis and enhance the periapical healing
mechanism [96]. Basically, pulp revascularization is the rees-
tablishment of angiogenesis inside the root canal but without
the repopulation of odontoblasts, while the pulp regeneration
means angiogenesis with presence of odontoblastic layer
lining the dentinal surface, nociceptive as well as parasympa-
thetic and sympathetic nerve fibers, interstitial fibroblasts,
and stem/progenitor cells, which replenish the pulp cells in
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the newly regenerated pulp tissue [97]. According to American
Association of Endodontists’ (AAE) Clinical Considerations
for a Regenerative Procedure, the primary goal should be the
resolution of clinical symptoms/signs and elimination of apical
periodontitis. The secondary goal should address the canal
wall thickening and/or continued root maturation [98].

Pulp revascularization could be considered a type of cell
homing strategy for pulp-dentin complex regeneration. This
clinical procedure depends on the delivery of a blood clot
(scaffold) inside the root canal, growth factors (mainly from
platelets and dentin), and stem/progenitor cells. The stem/-
progenitor cells of interest in revascularization are SCAP
(stem cells of apical papilla) because of their anatomical
positioning immediately adjacent to the termination of the
root canal system, permitting easy cell delivery to the root
canal [99, 100] and the greater superiority for dentin-like tis-
sue formation [101, 102]. The root canal system is first dis-
infected with a combination of antibiotics or calcium
hydroxide. In the second visit, the irrigation protocol during
this clinical procedure is very critical as for the regeneration
procedure to be successful; the irrigants should have bacter-
icidal/bacteriostatic properties as well as an ability to pro-
mote survival and proliferative capacity of the patient’s
stem/progenitor cells. The irrigation protocols that include
17% EDTA promoted SCAP survival and attachment to
the root canal dentinal wall [103].

Animal studies were performed to examine the tissues
formed after revascularization, demonstrating ingrowth of
cellular cementum-like tissues, formation of pulp-like tissue,
thickening of the canal walls, closure of the root apex, and dis-
appearance of periapical radiolucency [104, 105]. Histological
sections were also performed in humans after fracture of a
revascularized immature tooth (3.5 weeks after revasculariza-
tion), showing that the canal was filled with loose connective tis-
sue and a layer of flattened odontoblast-like cells lined along the
predentin. Layers of epithelial-like cells, similar to the Hertwig’s
epithelial root sheath, further surrounded the root apex [106].

Alternative endodontic therapy is now possible, using
the patient’s own blood samples, where PRF and PRP are
introduced inside the root canal. Easier and successful efforts
for pulp revascularization and pulp tissue regeneration were
reported by using evoked bleeding (EB), where the blood
clot acts as a protein scaffold and interacts with endogenous
stem cells and growth factors already abundant in the adja-
cent bone marrow tissues [107]. The highest reported cyto-
kines and growth factors found in PRF are IL-1p, IL-6, IL-
4, TNF-a, PDGF, VEGF, IGF-1, EGF, and transforming
growth factor 1 (TGFp1) [108], while PRP contains FGF,
PDGF, VEGF, IGF-1, EGF, and TGFf1 [109]. The superior-
ity of PRP came from releasing an elevated number of
proteins at early time intervals whereas PRF showed a sus-
tained production of bioactive molecules throughout a
duration of 10 days [110]. In the blood clot technique, the
growth factors are released from the dentin matrix after
conditioning of the dentin using EDTA (ethylene diamine
tetra acetic acid) 17%-pH 7.2 during the revascularization
technique. Thus, the dentin matrix acts as a reservoir of bio-
active molecules, which provides a vital source of cell signal-
ing molecules for initiating repair, including TGFf1, bone
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Bone marrow stem cells (BMSCS)

BMMSC:s are able to differentiate towards
connective tissue, bone, adipose, muscle
tissues, cartilage and endothelium and
also towards other lineages such as renal,
lung, hepatic and neural cells.

BMMSCs are the most experimented and
successful source of MSC for periodontal
and bone regeneration in respect with

other cell sources.

DFSCs
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F1Gure 3: Different sources of stem/progenitor cells in the oral cavity and steps of revascularization.

morphogenetic proteins (BMPs), and VEGF [111]. PRF has
proved to be an appropriate substitute to the blood clot tech-
nique, especially in cases where bleeding was very difficult to
be obtained [107]. PRP and blood clotting technique used as
scaffolds in immature traumatized permanent teeth with
necrotic pulps also gave very good results [112]. In a clinical
study on 30 patients with maxillary necrotic permanent
immature central incisors, treating one group with PRP
and the other with PRF scaffolds, teeth survived during the
12-month follow-up period. The teeth revealed marginal
increase in radiographic root width and length, an increased

periapical bone density, and a narrowing in apical diameter
[113]. Other studies compared the effect of PRF, PRP, and
the blood clot technique in the revascularization of necrotic
teeth with open apex, demonstrating continued root devel-
opment and maintenance of functionality, following differ-
ent follow-up periods, yet with some teeth not responding
to vital testing [2, 5, 6, 114-122]. A further investigation
induced bleeding in root canals and used PRF in mature
necrotic teeth, showing a regain in pulp sensibility [123].
In a further study, Kim et al. were able to regenerate tooth-
like structure using cell homing approach [124].
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Still, one of the drawbacks of the revascularization found
among cases treated with this approach is the occasional
intracanal calcification, which in some cases may progress
to complete obliteration of root canals, affecting the normal
function of the dental pulp tissues. This drawback could be
attributed to multiple contributing factors such as the type
of medicaments and the induction of intracanal bleeding
[125, 126]. A recent review article evaluated the long-term
outcomes of the apexification and the regenerative tech-
niques in treating traumatized immature teeth with pulp
necrosis and apical periodontitis, showing that the endodon-
tic regenerative techniques appeared superior to apexifica-
tion techniques in terms of root lengthening and root wall
thickening [127].

1.7. Cell-Free Approach for Pulp-Dentin Complex Regeneration.
Relying on “cell homing” concept, the cell-free approach is
aimed at regeneration by enhancing proliferation, migration,
and differentiation of intuitive stem/progenitor cells present
near the root apex [128]. It was proposed that stem/progenitor
cells’ niches could initiate an appropriate microenvironment
by releasing immunoregulatory molecules and enhancing
paracrine effects to promote the differentiation of endogenous
stem cells [129, 130]. Additionally, natural molecules and
bioactive compounds have been proved to promote dentino-
genesis [131, 132].

Conditioned medium (CM) can be described as the mole-
cules released from living cells into the surrounding extracellu-
lar environment [133]. CM was found to stimulate cellular
immunomodulation, proliferation, migration, and tissue regen-
eration [133-135] as it contains abundant amounts of proteins,
lipids, nucleic acid, growth factors, cytokines, chemokines, and
extracellular vesicles [136]. A recent study combined hDPSC
conditioned medium with MTA for direct vital pulp therapy.
It was assumed that the abundance of angiogenic growth factors
such as PDGF, FGF, and VEGF [137] and immunomodulatory
cytokines such as IL-6 and IL-8 [138] secreted by DPSCs and
collected in hDPSCs’ conditioned medium could modulate
the inflammatory and regenerative processes in the dental pulp
tissue, improve the orientation of the newly formed hard tissue,
and enhance formation of dentin bridges [139].

Extracellular vesicles (EVs) derived from MSCs function
as paracrine mediators in tissue regeneration and repair and
resemble to a great extent the therapeutic efficacy of parental
MSCs [140]. Extracellular vesicles (EVs) are defined by the
MISEV2014 and the updated MISEV2018 as “particles natu-
rally released from the cell that are delimited by a lipid
bilayer membrane and are incapable of self-replication, i.e.,
do not contain a functional nucleus.” EVs are a collective
name including many subtypes of cell-released, membra-
nous particles, known as microvesicles, microparticles, exo-
somes, oncosomes, ectosomes, and apoptotic bodies. EVs
are characterized by the presence of luminal and transmem-
brane proteins and attenuation of extracellular or cellular
non-EV proteins [141, 142]. The term “exosomes” usually
refers to EVs that are formed by the endosomal system,
opposite to ectosomes (microparticles and microvesicles)
that bud from the plasma membrane. Particularly, intralum-
inal vesicles are unleashed into the extracellular environ-
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ment as exosomes when the multivesicular body coalesces
with the plasma membrane [143]. Exosomes are identified
by their small diameter (40-100 nm) [144]. Moreover, they
possess large amounts of tetraspanins (CD81, CD9, and
CD63) and annexins, which are commonly used for their
characterization [145].

Additionally, exosome vesicles were claimed to possess the
ability to induce odontogenesis and augment dental pulp
regeneration [146]. Accordingly, a study based on extracted
exosome-like vesicles from rat Hertwig’s epithelial root sheath
(HERS) was tested. Dental pulp cells (DPCs) were united with
HERS cell-derived exosome-like vesicles in an in vivo tooth
root slice model, triggering the regeneration of hard reparative
dentin-like tissue and soft tissue rich in blood vessels and neu-
rons [147]. Moreover, in an interesting study, when SCAP-
derived exosomes (SCAP-Exo) were put into a root slice con-
taining BMMSCs and transplanted into immunocompro-
mised mice, dentin and dental pulp-like tissues were formed
in the root canal. Besides, when SCAP-Exo were evaluated
in vitro, it was reported that dentin sialophosphoprotein
expression and hard tissue deposition in BMMSCs treated
with SCAP-Exo were significantly upregulated [148]. In
another study, EVs were derived from DPSCs and EVs-
fibrin gel constructs were manufactured as an in situ delivery
system. Afterwards, DPSCs and endothelial cells were cocul-
tured in the constructs. It was reported that EVs-fibrin gels
promoted dental pulp regeneration by stimulating collagen
deposition and enhancing angiogenesis through upregulating
the expression of VEGF [149].

It is further well established that the usage of MSC-derived
EVs possesses numerous advantages. First, it overcomes the
ethical issues that limit the clinical translation of MSCs.
Second, transplanting cells, which might have mutated DNA,
can be avoided. Third, the dose of delivered MSCs rapidly
declines posttransplant, in contrast to MSC-derived vesicles,
which could attain a higher dose. Fourth, EVs are relatively
small and can circulate easily, opposite to MSCs, which are
too large to circulate smoothly via capillaries. However, the
main disadvantage of utilizing MSC-derived vesicles is that
they are static and cannot be produced in vivo. Moreover,
the efficacy of EVs requires standard parameters to produce
EVs of known content, develop storage techniques that
preserve vesicle efficacy, and assess their therapeutic potential
in well-controlled clinical trials [140].

2. Conclusion

Regenerative dentistry is no longer a dream, thanks to the cur-
rent efforts to imply stem/progenitor cell-based techniques to
enhance the regeneration of the pulp-dentin complex and to
replace conventional endodontic pulp therapy. Yet, such novel
therapies dictate careful testing first in vitro and in animal
models, prior to human clinical translation [150]. Cell-based
therapies still face many challenges, mainly economical and
ethical concerns. Thus, efforts started to target cell homing
for pulp-dentin complex regeneration as a simpler, safer, and
reasonably priced approach compared to the cell-based trans-
plantation therapy. However, the success and safety of MSCs
administered via IV or IA routs, as well as directing such cells
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towards the injured tissues, are not always guaranteed. Despite
the great advancements in pulp-dentin complex regeneration
through cell homing in the past years, they require further
investigations and development. Cell homing techniques need
to be examined in more realistic models, starting with animals
then humans. Moreover, clinical trials are crucial to point out
possible indications and contraindications. Thus, numerous
aspects still need to be resolved to make it applicable and with
predictable outcomes in clinical dental practice. The perspec-
tive of replacing conventional endodontic therapy, while
retaining the tooth vitality in a practical and relatively safe
way, provides hope for the clinical dental practice. Finally,
any minor step towards the future is counted as an additional
profit that must be preciously handled and searched thor-
oughly to be utilized later in the field of regenerative dentistry.
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