
Predicting Binding within Disordered Protein Regions to
Structurally Characterised Peptide-Binding Domains
Waqasuddin Khan1,2, Fergal Duffy1,3,4, Gianluca Pollastri1,5, Denis C. Shields1,3,4*, Catherine Mooney1,3,4

1 Complex and Adaptive Systems Laboratory, University College Dublin, Dublin, Ireland, 2 Hussain Ebrahim Jamal Research Institute of Chemistry, International Center for

Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan, 3 Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin,

Ireland, 4 School of Medicine and Medical Science, University College Dublin, Dublin, Ireland, 5 School of Computer Science and Informatics, University College Dublin,

Dublin, Ireland

Abstract

Disordered regions of proteins often bind to structured domains, mediating interactions within and between proteins.
However, it is difficult to identify a priori the short disordered regions involved in binding. We set out to determine if
docking such peptide regions to peptide binding domains would assist in these predictions.We assembled a redundancy
reduced dataset of SLiM (Short Linear Motif) containing proteins from the ELM database. We selected 84 sequences which
had an associated PDB structures showing the SLiM bound to a protein receptor, where the SLiM was found within a 50
residue region of the protein sequence which was predicted to be disordered. First, we investigated the Vina docking scores
of overlapping tripeptides from the 50 residue SLiM containing disordered regions of the protein sequence to the
corresponding PDB domain. We found only weak discrimination of docking scores between peptides involved in binding
and adjacent non-binding peptides in this context (AUC 0.58).Next, we trained a bidirectional recurrent neural network
(BRNN) using as input the protein sequence, predicted secondary structure, Vina docking score and predicted disorder
score. The results were very promising (AUC 0.72) showing that multiple sources of information can be combined to
produce results which are clearly superior to any single source.We conclude that the Vina docking score alone has only
modest power to define the location of a peptide within a larger protein region known to contain it. However, combining
this information with other knowledge (using machine learning methods) clearly improves the identification of peptide
binding regions within a protein sequence. This approach combining docking with machine learning is primarily a predictor
of binding to peptide-binding sites, and is not intended as a predictor of specificity of binding to particular receptors.
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Introduction

Thousands of proteins expressed in cells carry out their specific

intracellular and extracellular functions by interacting with each

other (protein-protein interactions). These interactions have been

acknowledged to play fundamental roles in almost every biological

event. Significant biological processes such as protein signalling,

trafficking and their synchronised degradation [1,2], DNA

repairing, replication and gene expression [3,4] require interaction

between protein-protein interfaces to perform their tasks. The

extent of complexity, co-operativity and diversity for these

interactions is enormous, and itself is coordinated by intricate

regulatory networks that will ultimately determine the behaviour

of biological systems. Many interactions are mediated between the

two domains of globular proteins (domain-domain interactions)

which tend to be stable (contact surfaces are flat) and require an

average size of 1,500–3,000 Å2 [5,6]. Others are intended for fast

response to stimuli (domain-motif interactions (DMI)/domain-

peptide interactions/peptide-mediated interactions) [7] that occur

when a globular domain in one protein recognises a short linear

peptide from its corresponding protein partner, creating a

comparatively small interface with an average size of 350 Å2 [8].

An estimated 15–40% of all interactions in the cell are protein-

peptide interactions [4,9]. These peptide regions are ideal for

signalling transduction networks because they are specific,

transient and have low-affinity (1–150 mM) [10].

Typically, the peptides involved in DMI or protein-peptide

interactions are categorised by a simple sequence pattern, that is, a

short linear motif (SLiM) [11], also referred to as linear motifs,

minimotifs [12], pre-structured motifs (PreSMos) [13], Eukaryotic

Linear Motifs (ELMs) [14] or molecular recognition features

(MoRFs) [15]. These peptide regions can vary in their length from

3 to 12 amino acid, typical of SLiMs, through to much longer

regions of up to 70 amino acids [16]. In general, SLiMs can be

expressed as regular expressions, a consensus motif with specific

conserved residues restricted to particular positions recognised by

a binding domain, with a set of similar residues or even arbitrary

ones at other locations [17]. Structurally, SLiMs are frequently

found in disordered regions at protein termini or between domains

[18] with the ability to adopt a variety of conformations [15,19].

SLiMs may also originate from loops within a structured domain,

exposing them to potential binding partners including many of the
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disordered interaction hubs [20,21] explaining the many func-

tional roles for these regions. The small binding areas which

SLiMs constitute result in weak binding [9] making them suitable

for short-lived interactions [22]. However, regardless of their short

length, these motifs bind their target protein with sufficient

strength to establish a functional relationship [23].

Several databases exist to capture instances of SLiMs, for

example, Minimotif Miner [12] and the ELM server [14] and a

variety of methods are available for novel SLiM discovery.

Primarily, these methods which seek to identify over-represented,

convergently evolved, motifs in protein sequences [24,25],

however, the motif may be over-represented in a protein by

chance [26]. To avoid identifying false positives many methods

employ evolutionary information at the local and global level to

filter potential SLiM instances [27]. Profile based methods may be

able to improve on this but are unable to identify motifs that occur

with low frequency or as single occurrences [28]. Recently, a

number of de novo prediction methods that are not dependent on

evolutionary information have been developed [29–31]. These

methods use the physicochemical properties of the protein

sequence and predicted structural features to predict protein

binding regions, however, until now there has been no publicly

available prediction method which exploits protein-peptide

structures available in the Protein Data Bank (PDB) [32].

At present, the estimated number of protein-peptide interac-

tions in the proteome is not reflected in the number of protein-

peptide structures available in the PDB. However, the rapid

increase in protein structural data in the PDB does provide an

excellent opportunity to investigate how this information might be

exploited to predict potentially SLiM mediated protein-peptide

interactions in a novel manner. As the number of PDB protein

structures available is limited, methods that can provide useful

information about protein-peptide interactions in the absence of

structural information, for example in the case where one of the

interactors is unstructured or disordered, are desirable. A possible

solution is to use protein-peptide docking in order to infer

interaction information, such as the likely binding regions, when a

PDB structure is available for only one of the interacting pairs.

Computational docking is a technique that uses protein three-

dimensional structural information to predict ligand binding poses.

There are two main kinds of docking: protein-ligand docking,

where a flexible small-molecule compound is ‘‘docked’’ to a known

or suspected protein-binding pocket; and macromolecular dock-

ing, where two rigid protein (or other biological macromolecule,

such as DNA) structures are docked, with the goal of identifying

protein-protein interaction interfaces. Both protein-ligand and

macromolecular docking have been used successfully to predict

binding poses. Protein-ligand docking is commonly used as an

early step in small-molecule drug screening campaigns, where it

has been shown to have the ability to accurately retrieve the

known binding poses of diverse sets of small molecule-protein

complexes, although this does depend somewhat on the protein

family, and the characteristics of the binding site [33]. Recently,

two high-throughput macromolecular docking experiments have

been reported that demonstrated the use of a general docking

method to detect interacting partners. Mosca et al [34] used

docking to identify pairs of proteins that accurately interact with

each other in the Saccharomyces cerevisiae interactome by sampling

from a large set of alternative possibilities. Wass et al [35]

successfully distinguished between interacting (native) and non-

interacting (non-native) protein partners. A disadvantage of

macromolecular docking is the requirement for structural data

for both proteins. In general, docking programs are not optimised

for peptide docking and are most successfully used with small

molecules. Unconstrained peptides are flexible and tend to adopt

several conformations by rotating within the given search space of

the receptor site adding complexity to the docking protocol as the

number of rotatable bonds increases. Despite this, peptide docking

experiments have recently been used to successfully predict the

interaction site of elastin-binding protein and an elastin peptide

motif [36], confirming the potential of peptide docking.

Here, we investigated if docking, with AutoDock Vina [37], can

be used to identify protein-peptide interactions with the objective

of evaluating if the docking score could be used to discriminate a

peptide binding region from adjacent non-binding regions within a

defined stretch of protein sequence. First, we generated a non-

redundant dataset of protein receptor and SLiM containing

peptide interacting structures from the ELM database [14]. We

then performed high throughput docking of sets of overlapping

peptides generated by moving a sliding window along a 50 residue

region from the parent protein sequence which is centred around

the SLiM containing peptide. We compared these results to those

obtained by submitting the same sequences to SLiMPred [30],

MoRFpred [29] and ANCHOR [31]. Finally, we trained a

bidirectional recurrent neural network (BRNN) to predict the

peptide binding region within a protein sequence, using as input

the protein sequence, predicted secondary structure, predicted

disorder and Vina docking score.

Results

We evaluated if the Vina docking score could be used to identify

peptide binding regions in protein sequences. Specifically, if we

have the 3D structure of a peptide binding domain could we

predict regions within an unstructured protein sequence that

might interact with it?

For each of our 84 ELM instances we selected a window of 50

residues around each ELM, where the ELM is in the centre of the

region, unless it is found within the 25 residues closest to the N or

C terminus, in which case the 50 N or C terminal residues are

selected. We prepared sets of overlapping peptides of lengths three

residues by sliding a window along these 84 regions of the protein

sequence. We docked each tripeptide to the respective PDB

receptors. The best Vina score for each peptide was normalised

and the results displayed as ROC curves (Figure 1). The results

(AUC of 0.58) show only very modest discrimination between

peptides involved in binding and non-binding peptides. Given this

poor performance we investigated if the docking scores could be

used as input to a BRNN and if this would improve the predictive

power. We used the same set of 50 residue sequence regions to

train seven BRNN in ten-fold cross-validation using a similar

approach to that used to train SLiMPred [30]. The predictors

were trained using as input the 50 residue sequence, and either

predicted secondary structure, predicted disorder or Vina score, or

a combination of two, or all three of these features. We plotted

ROC curves for the performance of the training set in ten-fold

cross-validation for each of the seven predictors and the AUCs are

shown in Table 1. The BRNN does in fact improve the predictive

power, from an AUC of 0.58 when the Vina scores are assessed, to

an AUC of 0.68 using only the Vina score and the sequence to

train the BRNN. However, we found that the combination of all

three features provided the highest AUC (0.72) (Figure 1),

compared to using only secondary structure and disorder

predictions without Vina (AUC 0.63). We refer to this method

as PepBindPred (Peptide Binding-region Predictor).

In order to bench mark PepBindPred we generated an

independent test set of 21 disordered sequence regions which are

shown to interact with protein receptors in the PDB (see Materials

Predicting Binding in Disordered Protein Regions
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and Methods). We submitted these to PepBindPred, SLiMPred,

MoRFpred and ANCHOR, and also compared the results to the

Vina docking scores for overlapping tripeptides using the same

method as described above. Again we see that the Vina docking

scores do not discriminate well between binding and non-binding

residues (AUC 0.53) (Figure 2 (A)). While the performances of

ANCHOR is not strong (Figure 2 (B)), this is not surprising, since it

is designed to identify larger scale regions involved in protein

binding, rather than to identify specific residues within such

binding regions that bind to peptide-binding domains. MoRFpred

aims at shorter sequences (5–25 residues), which may explain why

its performance is better (Figure 2 (C)), but less efficient than

SLiMPred which targets shorter sequences (Figure 2 (D)). The

results for these alternative methods are included as a reminder to

use the appropriate computational tool when addressing a specific

question, since PepBindPred substantially out performs AN-

CHOR, MoRFpred, Vina and SLiMPred (AUC 0.75) (Figure 2

(E)).

To test how specific the predictions for a binding region, or

SLiM, are to a particular receptor we repeated the predictions for

the 21 sequence in the independent test set but we ‘‘shuffled’’ the

receptors. That is, we submitted each sequence to the Pep-

BindPred server, however we selected a receptor other than the

native receptor, making sure that the new receptor was not in the

same class as the native receptor (i.e. care was taken not to submit

a SH3 ligand containing sequence to another SH3 domain). The

results were almost identical (AUC 0.75). Although the lack of

receptor specificity is surprising in some respect, it is also

important to remember that it is the nature of many SLiMs to

bind with moderate rather than high affinity [38], and that all the

receptors here are peptide binding domains, and therefore have

some inherent similarity. In the light of this, we conclude that,

PepBindPred is a peptide binding region predictor, not a receptor

specificity predictor, and users must remember this when

interpreting results. The docking information from Vina is

providing an additional layer of information that is not available

from the primary sequence alone, regarding the propensity of

regions to bind to peptide-binding domains. The precise nature of

this additional structural information is not clear, and may in

future become clearer as the training sets become larger and more

informative.

PepBindPred Web Server
As an example of the possible use of PepBindPred we used

SLiMSearch [39] to identify CORNR box motif instances in the

human proteome. 67 instances of the motif (L[̂P]2,2[HI]I[̂-

P]2,2[IAV][IL]) were found in 65 Proteins. The ELM server

identified two of these as true positives (O75376 and Q9Y618),

both of which were ranked highly by SLiMSearch, using

conservation analysis. We investigated if PepBindPred would be

able to suggest some other potential true positive candidates in this

set of CORNR box motif instances. The PepBindPred server takes

as input the UniProt [40] identifier of the sequence, the residue to

start the search at (we set this to 25 residues before the start of the

motif instance), the PDBID and the chain ID (for this example

3N00 and B respectively). We averaged the PepBindPred

predictions over the nine motif residues for the 67 instances and

have listed them in order in Table 2. The score distribution is

skewed, with two of the true positives in the tail (Figure 3), which

suggests that some of the other top ranked motif instances could be

worth further investigation. The O75376 true positive instance is

ranked highest, however this is not surprising as the sequence is in

our training set. The second highest ranked sequence, P05160, we

Table 1. AUC calculated from ROC curves for BRNN trained
with seven different input options.

BRNN Input AUC

Sequence, secondary structure and disorder 0.63

Sequence and secondary structure 0.64

Sequence and disorder 0.64

Sequence and Vina 0.68

Sequence, secondary structure and Vina 0.71

Sequence, disorder and Vina 0.71

Sequence, secondary structure, disorder and Vina 0.72

Predictors trained with either secondary structure, disorder or Vina score along
with the protein sequence, or a combination of two, or all three of these
features.
doi:10.1371/journal.pone.0072838.t001

Figure 1. ROC curves – Training set. ROC curves plotting the true
positive rate of peptide binding residue identification against the false
positive rate, with thresholds for a positive identification decreasing
from 1 to 0, tested on the training set of 84 ELM containing examples
(A) normalised Vina scores (B) ten-fold cross-validation PepBindPred
predictions.
doi:10.1371/journal.pone.0072838.g001

Predicting Binding in Disordered Protein Regions

PLOS ONE | www.plosone.org 3 September 2013 | Volume 8 | Issue 9 | e72838



think is a false positive as the motif is found in a signal peptide.

However the third ranked sequence we believe may be worth

further investigation as a possible true positive (Figure 4). This

protein, Melanoma-associated antigen C2 (Q9UBF1 (MAG-

C2_HUMAN)), has a subcellular location of ‘‘Cytoplasm.

Nucleus.’’ which is compatible with the function of the CORNR

box motif binding to nuclear receptors. The ROC curve for the

independent test set results (Figure 2 (E)) suggests that 0.4 is a good

threshold to choose as a cut-off as the false positive rate is still low

(approximately 3%), while allowing for the capture of more true

positives (approximately 20%, compared to ,10% at a threshold

of 0.5).

There are many other biological application of this method

beyond the example given. PepBindPred is computationally more

intensive than ANCHOR, MoRFpred or SLiMPred, so we would

suggest using one, or all, of these methods on your protein, or

proteins, of interest first to predict peptide binding regions.

PepBindPred can then be used to refine the regions identified by

these methods, as it has been shown to be more accurate than any

of these methods individually. PepBindPred is especially useful

where some experimental information is available which would

lead the user to believe that the sequence of interest binds to, or

interacts with, a particular structured protein domain for which

there is a PDB structure available.

Discussion

Disordered regions of proteins often bind to structured domains,

mediating interactions within and between proteins. We have

presented a computational analysis of the performance of peptide

docking with AutoDock Vina to assess if the Vina docking scores

could be used to predict protein-peptide interactions. As Vina is

designed for small-molecule docking with a restriction on the

number of rotatable bonds (#32), it is generally assumed that it is

not suitable for docking peptides which have many more internal

degrees of freedom. Previously, however, we have shown that

there is a correlation between the Vina docking scores of

dipeptides with ACE and experimentally determined ACE

inhibition (IC50) [41]. Extensive preliminary work [42] which

attempted to dock the full peptide sequence to the peptide binding

domain showed that there is a direct correlation between the

peptide length and the number of rotatable bonds in the peptide.

As the number of rotatable bonds increase so does the RMSD

between the docked peptide pose and the native peptide pose.

Following this analysis we attempted to dock much shorter peptide

fragments (2–5 residues in length) to the peptide binding domain

and determined that tripeptides gave the best results [42].

Here, we investigated the binding of known SLiM-containing

peptides from within disordered protein regions to peptide binding

domains and investigated the docking of adjacent overlapping

peptides from the peptide’s protein sequence. We found that we

were unable to discriminate between binding and non-binding

peptide regions based on the Vina docking scores alone in this

context. We then trained a BRNN using the peptide sequence,

predicted secondary structure, predicted disorder and Vina score

as inputs. Our analysis shows that when the Vina docking score

was used as an input to our BRNN, in combination with predicted

Figure 2. ROC curves – independent test set. ROC curves plotting
the true positive rate of peptide binding residue identification against
the false positive rate, with thresholds for a positive identification
decreasing from 1 to 0, tested on the independent test set of 21
examples (A) Vina (B) ANCHOR (C) MoRFpred (D) SLiMPred (E)
PepBindPred.
doi:10.1371/journal.pone.0072838.g002

Predicting Binding in Disordered Protein Regions
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Table 2. PepBindPred predictions, averaged over the nine motif residues, and evolutionary conservation p-value for the motif
instance.

UniProt AC Motif PepBindPred Score Evolutionary conservation p-value

O75376* LADHICQII 0.715 0.048

P05160 LTFIIILII 0.680 0.969

Q9Y618* LEAIIRKAL 0.557 0.026

Q9UBF1 LLIIILSVI 0.543 1

Q96BZ9 LIDIILLIL 0.520 0.208

Q8NI22 LINIIDGVL 0.486 0.214

Q07325 LLGIILLVL 0.467 0.396

Q5SVZ6 LKLIIENIL 0.434 0.329

Q96AH8 LKLIIVGAI 0.425 0.75

Q9HAU8 LTFIISSIL 0.401 0.436

Q9NRU3 LEDIIEEII 0.384 0.393

P53618 LMTIIRFVL 0.363 0.321

O75376* LEDIIRKAL 0.362 0.044

Q8IWF6 LRTHIDAII 0.350 0.197

Q8NHV5 LFFIIMGII 0.341 1

Q9UPM8 LRLHIIEII 0.338 0.3

Q9Y618* LAQHISEVI 0.335 0.055

Q96N64 LDHIIEDAL 0.333 0.562

O95477 LSRIIWKAL 0.332 0.614

O00273 LASHILTAL 0.327 0.546

Q7Z3J2 LQLIIKKVI 0.325 0.096

Q09161 LNYHIVEVI 0.306 0.799

Q08AE8 LGIIIYKAL 0.294 0.164

Q8TDJ6 LNNHIHDIL 0.287 0.115

P07384 LYQIILKAL 0.283 0.518

Q5MIZ7 LYEIIRGIL 0.282 0.295

Q8TDR0 LHDIITEVI 0.282 0.43

Q96PN6 LKNIITVVI 0.276 0.645

Q8TCG5 LGQHIEDAL 0.274 0.294

Q6ZMV5 LYEIIKGIL 0.272 0.321

Q8IX04 LQYIITNVL 0.267 0.539

Q93100 LVIHIGWII 0.267 0.81

Q8TDL5 LKNIITEII 0.267 0.617

Q9C093 LVDIIVNAI 0.266 0.086

Q7RTX7 LARIIRVIL 0.262 0.345

Q9UIA9 LVYIIGAVI 0.257 0.104

Q8NEG5 LCKHICWVL 0.257 0.114

Q9Y6X3 LLGHIFYVL 0.232 0.885

Q8IZQ1 LAQIILDAI 0.221 0.708

P35556 LNNHIRYVI 0.216 0.145

Q14185 LLSHILEVL 0.209 0.067

O95801 LKAIIRGAL 0.199 0.732

A6NHC0 LYQIIRKAL 0.193 0.817

P56192 LGNIIGCVL 0.189 0.542

A6NES4 LTSIIVAVI 0.184 1

O95714 LCTHIGDIL 0.183 0.034

Q8NF50 LVGIILDAL 0.182 0.629

O95450 LGAHINVVL 0.174 0.364

Predicting Binding in Disordered Protein Regions
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secondary structure and disorder, the AUC increased from 0.63 to

0.72, compared to using only predicted secondary structure and

disorder. We have shown that this method, PepBindPred,

performs better on an independent test set than three other

publicly available ab initio methods, ANCHOR, MoRFpred and

SLiMPred. This approach emphasises the potential for including

structural information when developing methods for refining the

location of peptide binding residues within disordered protein

regions.

In this study we have evaluated only one docking method,

AutoDock Vina. The Vina docking program has many advantag-

es, it is easy to install and run locally, it is extremely fast and is very

suitable for high-throughput docking which is essential for

implementation as a web server of this kind. It is possible,

however, that other methods, for example, DynaDock [43], which

has been developed more specifically for the docking of peptides

into flexible binding sites, may provide better results in individual

cases. Unfortunately, this method is slower than Vina, so it is not

suitable for high-throughput docking in this context. Another

method, the Rosetta FlexPepDock server [44], refines docking

conformations against a given PDB file and an estimated peptide

conformation, however, FlexPepDock is computationally intensive

as the protocol samples a significant conformational space and

therefore, similar to DynaDock, is also not suitable for our use.

We are not entirely sure why the Vina docking score is unable to

discriminate between binding and non-binding residues. The Vina

scoring function (see [37] for details) uses a weighted sum of

interactions to predict a binding pose. Values for the weights were

determined by fitting the scoring function to the PDBBind refined

dataset. It is possible that the dataset used to fit the scoring

function is biased towards small molecules rather than peptides.

This could possibly explain why the binding site cannot be

predicted using only the Vina docking score. Furthermore,

although there is no fixed limit, it has been shown that Vina can

Figure 3. Histogram showing the distribution of PepBindPred
scores. The scores have been averaged over the 9 CORNR box motif
residues, for each of the 67 instances.
doi:10.1371/journal.pone.0072838.g003

Table 2. Cont.

UniProt AC Motif PepBindPred Score Evolutionary conservation p-value

Q8N485 LRHIIAQVL 0.174 0.898

Q8TCG1 LKMHIAKIL 0.173 0.55

Q6R327 LDHIIQKAI 0.162 0.067

Q5T215 LCGIIRGAL 0.160 0.131

Q8WZ26 LSTHICVVL 0.159 1

P51124 LTFHIKAAI 0.158 0.658

Q99698 LNSIIDQAL 0.156 0.672

Q562E7 LSDITYYVY 0.156 0.94

Q9UJ70 LGRHIVAVL 0.153 0.136

Q0VDD8 LDKHIKSAI 0.152 1

Q8N1T3 LFGIIASVL 0.151 0.326

P17655 LFKIIQKAL 0.148 0.804

P52743 LHVIIDFIL 0.147 1

Q6PGP7 LEDIIGFAL 0.146 0.128

Q13572 LLNHIATVL 0.134 0.551

O15072 LGVHINVVL 0.128 0.362

Q8WXS8 LGVHINIAL 0.110 0.585

Q9UG01 LVEHITAAL 0.107 0.082

P30307 LGGHIQGAL 0.061 0.072

PepBindPred predictions, averaged over the nine motif residues, and evolutionary conservation p-value for the motif instance, calculated using SLiMSearch [39], for the
67 CORNR box motif instances in the human proteome. Scores closer to 1 indicate that PepBindPred is more confident that regions is peptide binding, whereas
SLiMSearch p-values closer to 0 indicate that the motif is more likely to be a true positive due to conservation. Two of the sequences have two instances of the motif,
O75376 and Q9Y618. *True positives identified on the ELM server.
doi:10.1371/journal.pone.0072838.t002

Predicting Binding in Disordered Protein Regions
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handle ligands with up to 32 rotatable bonds [37], and tripeptides

would be on the high end of this scale. Finally, even with small

peptides, in this case tripeptides, the search space is large, and

difficult to search, although we never exceed the maximum search

space recommended (i.e 30|30|30Å).

Docking of tripeptides was chosen by us as a compromise

between computational efficiency and potential informativeness as

tripeptides appeared to perform slightly better than other longer

peptide fragments in preliminary experiments [42]. Using longer

peptides would likely require alternative strategies starting with

many more initial configurations of the peptides, in order to

adequately sample the conformational space prior to seeking to

identify minima. This would substantially increase the computa-

tional burden of docking peptides along the sequence. It is also

possible that alternative docking methods or scoring functions may

contribute to improved performance, unfortunately this is beyond

the scope of this work at present, however, they will be of interest

for future work. While it is possible that the initial docking may be

improved over that used, we consider it likely that the kind of

machine learning step we introduced here is still likely to improve

on the docking in discriminating between binding and non-

binding adjacent regions along a protein sequence.

PepBindPred is available as part of our web server for SLiM

discovery and annotation. The user submits the protein sequence

that they wish to predict peptide binding regions within, and the

PDB ID of the protein structure they wish to predict interactions

with. At present the PDB structure is required to have a bound

peptide, and the user must provide the chain ID of the bound

peptide so that the search space for Vina can be defined around it.

Predictions take approximately one hour per protein. Our server is

freely available for academic users at http://bioware.ucd.ie/

pepbindpred.

Methods

Datasets
1,358 true positive LIG (ligand binding) ELM instances were

downloaded from the ELM server [14]. 208 of these were

annotated as having a structure in the PDB. Using the FASTA

sequence of these 208 ELM containing sequences we predicted

the disorder using IUPred [45]. We retained 135 sequence which

had an average IUPred score of .0.5 (i.e. disordered) over a 50

residue window around the ELM. We internally reduced this set to

make it non-redundant using BLAST [46] with an e-value of

0.001, to less than 30% sequence similarity between any two

sequences, leaving 122 sequences. In some cases the exact ELM

motif was not found in the bound peptides of the PDB structures

and these structures were removed. The PDB chain ID of the 84

matches that were found were noted and used to define the centre

of search space for Vina, which was then extended to cover the

bound peptide [37]. The peptide chain was then removed from

the PDB structure in order to allow for docking to this site.

AutoDock 4.2 [47] was then used to prepare the PDB files as

‘‘receptors’’ for Vina.

All possible peptides were generated by scanning a sliding

windows of three residues along the 50 residue section of the

84 ELM containing protein sequence. Peptides were converted

into the SMILES format using CycloPs [48], and from SMILES to

PDB format using Open Babel [49]. AutoDock 4.2 [47] was used

to prepare the peptides as ligand files for Vina.

An independent test set was generated in a similar manner using

the sequences in the SLiMPred ‘‘SteinAloy’’ independent test set,

which was derived from analysis of peptide-mediated interactions

within PDB structure by Stein and Aloy [50], see [30] for more

details. The original dataset was redundancy reduced to less that

30% sequence similarity to our training set leaving 46 sequences

with a peptide region which is known to interact with a PDB

structure, 21 of these are in regions which are predicted to be

disordered.

Anchor [31], MoRFpred [26] and SLiMPred [30] were used to

predict protein binding regions, and Distill [51] was used to

predict secondary structure, for the full protein sequence. The

predictions in the 50 residue window around the ELM were then

extracted.

Analysis of Docking Results
The output generated by Vina for each peptide was processed

and the binding conformation having the lowest binding affinity

(i.e the top ranked Vina docking score) was selected for further

investigation. To evaluate the ability of Vina to discriminate

between binding peptides and adjacent non-binding peptides

extracted from the same protein sequence, we measure the TPR

and FPR. First, we normalise the Vina docking scores for each

peptide so they fall between 0 and 1:

Normalised (vi)~
vi{Vmin

Vmax{Vmin

ð1Þ

where Vmax is the absolute value of the minimum Vina binding

score (i.e. {10) and Vmin is zero. We measure the sensitivity or

true positive rate (TPR) and specificity or false positive rate (FPR)

as we increase the discrimination threshold from 0 to 1. We plot

the TPR against the FPR as Receiver Operating Characteristic

(ROC) curves, which are calculated as follows:

TPR~
TP

TPzFN

FPR~
FP

FPzTN
ð2Þ

R [52] was used to plot the curves, and calculate the AUC. The

AUC is a number between 0 and 1 inclusive, where 0.5 indicates a

random model and 1 is perfect, which is equivalent to the

Figure 4. PepBindPred output for Q9UBF1 (MAGC2_HUMAN). Melanoma-associated antigen C2; Motif: LLIIILSVI, residues 229–237.
doi:10.1371/journal.pone.0072838.g004
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probability that a randomly chosen positive instance will rank

higher than a randomly chosen negative instance [53].

Implementation of BRNN
BRNN have recently been used successfully for the prediction of

peptide binding regions using the protein sequence, predicted

secondary structure, structural motifs, solvent accessibility and

disorder as inputs [30]. We use a similar model here using the

protein sequence, predicted secondary structure, predicted disor-

der and Vina score as input. See [54] for a detailed explanation of

the BRNN model.

These networks take the form:

oj~N (O)
ij ,h

(F )
j ,h

(B)
j

� �

h
(F )
j ~N (F )

ij ,h
(F )
j{1

� �

h
(B)
j ~N (B)

ij ,h
(B)
jz1

� �

j~1, . . . ,N ð3Þ

where ij (respectively oj ) is the input (respectively output) of the

network in position j, and h
(F )
j and h

(B)
j are forward and backward

chains of hidden vectors with h
(F )
0 ~h

(B)
Nz1~0. We parametrise the

output update, forward update and backward update functions

(respectively N (O)
, N (F )

and N (B)
) using three two-layered feed-

forward neural networks.

Input ij associated with the j-th residue contains primary

sequence information and predicted structural information (sec-

ondary structure, disorder and Vina score):

ij~(i
(E)
j ,i

(T)
j ) ð4Þ

where, assuming that e units are devoted to sequence, and t to

structural information:

i
(E)
j ~(i

(E)
j,1 , . . . ,i

(E)
j,e ) ð5Þ

and:

i
(T)
j ~(i

(T)
j,1 ,i

(T)
j,t ) ð6Þ

Hence ij contains a total of ezt components.

We use e~21: the 20 standard amino acids are considered,

while the 21st input encodes the length of the sequence. We use

t~5 for representing structural information. The first three

structural input units contain the predicted three-class secondary

structure representing the predicted probability of the j-th residue

belonging to either helix, strand or coil and the final two inputs are

the predicted disorder and Vina score. Hence the total number of

inputs for a given residue is ezt~26.

Training, Ensembling
Training is conducted by ten-fold cross-validation, i.e. ten

different sets of training runs are performed in which a different

tenth of the overall set is reserved for testing. The ten fifths are

roughly equally sized, disjoint, and their union covers the whole

set. The training set is used to learn the free parameters of the

network by gradient descent. Three models are trained indepen-

dently for each fold and ensemble averaged to build the final

predictor. Differences among models are introduced by varying

the size of the input window considered by network from 7 to 9 to

11 residues. 10,000 epochs of training are performed for each

model and the learning rate is halved every time we do not observe

a reduction of the error for more than 50 epochs.

Acknowledgments

The authors acknowledge the Research IT Service at University College

Dublin and the SFI/HEA Irish Centre for High-End Computing (ICHEC)

for providing high performance computing (HPC) resources that have

contributed to the research results reported within this paper. The authors

thank Kevin Rue for technical assistance. W. Khan gratefully acknowl-

edges the award of a European Commission (EC) Erasmus Mundus

Europe Asia (EMEA) Split-Doctoral Scholarship Scheme in University

College Dublin (UCD), Ireland.

Author Contributions

Conceived and designed the experiments: DCS CM. Performed the

experiments: WK CM. Analyzed the data: WK DCS CM. Contributed

reagents/materials/analysis tools: FD. Wrote the paper: WK DCS CM.

Designed the BRNN: GP.

References

1. Castro A, Bernis C, Vigneron S, Labbé J, Lorca T (2005) The anaphase-
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