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Abstract

Background: Reliable mapping of soil-transmitted helminth (STH) parasites requires rigorous statistical and
machine learning algorithms capable of integrating the combined influence of several determinants to predict
distributions. This study tested whether combining edaphic predictors with relevant environmental predictors
improves model performance when predicting the distribution of STH, Ascaris lumbricoides and hookworms at a
national scale in Zimbabwe.

Methods: Geo-referenced parasitological data obtained from a 2010/2011 national survey indicating a confirmed
presence or absence of STH among school children aged 10–15 years was used to calibrate ten species distribution
models (SDMs). The performance of SDMs calibrated with a set of environmental and edaphic variables was
compared to that of SDMs calibrated with environmental variables only. Model performance was evaluated using
the true skill statistic and receiver operating characteristic curve.

Results: Results show a significant improvement in model performance for both A. lumbricoides and hookworms for all
ten SDMs after edaphic variables were combined with environmental variables in the modelling of the geographical
distribution of the two STHs at national scale. Using the top three performing models, a consensus prediction was
developed to generate the first continuous maps of the potential distribution of the two STHs in Zimbabwe.

Conclusions: The findings from this study demonstrate significant model improvement if relevant edaphic variables
are included in model calibration resulting in more accurate mapping of STH. The results also provide spatially-explicit
information to aid targeted control of STHs in Zimbabwe and other countries with STH burden.
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Background
Soil-transmitted helminthiases are a group of neglected
tropical diseases (NTDs) caused by intestinal parasites
that are transmitted through faecal contaminated soil.
They include Ascaris lumbricoides, Trichuris trichiura,
Necator americanus and Ancylostoma duodenale [1–4].
These helminths are of a major concern to public health
in tropical and sub-tropical countries where their infec-
tion is associated with devastating morbidity rates [5, 6].
About 4.5 billion are at risk of infection worldwide [7, 8]
and more than 2 billion people are infected by STH [9].
The disease burden caused by these parasitic worms is

enormous. In 2014, Pullan et al. [10] estimated the
global numbers of people infected with hookworm, A.
lumbricoides, and T. trichiura, to be 438.9 million, 819.0
million and 464.6 million, respectively. Previous esti-
mates in 2003 by de Silva et al. [11] showed these num-
bers to be 740 million, 1221 million and 795 million
people, respectively. In 2010, the World Health
Organization (WHO) estimated that 875 million chil-
dren required annual treatment with preventive chemo-
therapy [12]. The burden of the disease is known to be
highly concentrated among the poorest socio-economic
groups [12–14]. Previous estimates showed that more
than 44 million pregnant women had clinical effects
from hookworm-associated anaemia [15]. Hookworm-
associated anaemia is known to result in the loss of 39
million disability-adjusted life years per year [16].
Based upon on the public health significance of STH,

the WHO has urged member states to ensure access to
essential drugs for treating STH infections in all health
services in endemic areas and groups at high risk of
morbidity. Such high risk groups include women and
children. A goal was set to attain a minimum target of
the regular administration of chemotherapy to at least
75% of all school-age children at risk of morbidity by
2010 [17]. However, to date this target has not been
achieved. This is partly due to limited number of medi-
cines and failure to precisely map the affected popula-
tions requiring treatment coupled with poor sanitation
coverage and lack of a safe water supply. Global mile-
stones for eliminating STH as a public-health problem
in children were drawn by the WHO to guide efforts of
member states in the fight against STH [18]. These mile-
stones included completion of country mapping of STH
by 2015. Annual mass drug administration achieving a
global coverage of at least 75% by 2020 was stipulated
[18]. Considering how widespread STH infection is
globally, it is therefore surprising that the disease still
remains neglected.
In sub-Saharan Africa, STHs have been found to be

widely distributed [19–21]. However, spatially explicit in-
formation on the distribution of specific parasitic nema-
todes at country level remains scarce. Previous research

has provided insight into the spatial epidemiology of the
STHs [22, 23]. It is known that the infective stage of
these nematodes is found in faecal contaminated
environments especially moist and warm soils [23].
Regarding A. lumbricoides, fertilised eggs are known to
undergo maturation in the soil for them to become in-
fective. Hookworm eggs also hatch in the moist soil and
the larvae moult twice to become infective larvae [24]
that move up to the upper layers of soil to infect human
hosts [7]. People typically become infected after ingest-
ing a fully developed A. lumbricoides egg and/or after
their skin is penetrated by third-stage hookworm larvae
[25, 26]. It follows that the density of infective eggs and
larvae in the soil correlates with STH exposure and risk.
Thus, accurate modelling and mapping of the spatial dis-
tribution of STHs should consider edaphic variables that
drive egg development for A. lumbricoides and are suit-
able for the survival of hookworm larvae.
Previous work used species distribution models

(SDMs) to explore the distribution of common STH par-
asites in various countries including Sierra Leone [27],
Kenya [28], Nigeria [22], China [29], Bolivia [30] and
Brazil [31]. While most SDMs used a combination of
several bioclimatic and social-economic variables as co-
determinants [23, 27, 32], edaphic variables were
overlooked, despite playing an important role in STH
ecology and infection. There are, however, a few stud-
ies which included edaphic variables to model STHs
[22, 29, 30]. In Zimbabwe, Chandiwana [33].
Described the distribution of soil-transmitted hel-
minths (STH) using samples collected for the para-
sitological diagnosis of Schistosoma mansoni. The
study reported a prevalence of 1.6% for hookworms
and of 0.5% for A. lumbricoides. Trichuris trichiura
was not reported [33]. The study further observed
that the majority of infected children were found in
the Northeast, the Zambezi Valley, the Central and
Southeast low-veld areas of the country. It was, how-
ever, highlighted that the data needed to be consid-
ered with caution since the stool specimens had been
collected for S. mansoni diagnosis and the method-
ology might not have been suitable for STH [33]. A
recent study by Midzi et al. [20] indicated a com-
bined prevalence of 5.5% for STH. At the species
level, hookworms, A. lumbricoides and T. trichiura
had the prevalence of 3.2%, 2.5% and 0.1%, respect-
ively. The distribution of STH followed the trend as
described previously [33].
Although these studies represent important progress

with regard to linking the ecological theory with SDM
techniques to better understand STH distribution, the
studies did not report on the relative importance of ed-
aphic variables, nor did they assess and quantify how
model performance changed with the inclusion of
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edaphic variables. This is an important research gap that
needs to be filled as a preamble to generating spatially
explicit information showing in-country variability in the
distribution of STHs to aid disease control and safeguard
public health.
Therefore, our study tested the hypothesis that the in-

clusion of edaphic variables such as soil moisture in SDMs
increases model performance in the spatial prediction of
the distribution of STHs. Using Zimbabwe as a case study,
the performance of ten SDMs comprising a set of environ-
mental plus edaphic variables was compared to that of
SDMs calibrated with environmental variables only. Since
spatial prediction varies depending on the choice of vari-
ables and modeling method selected [34], it was therefore
necessary to run multiple SDMs in search for the evidence
for and against the above hypothesis.

Methods
Study area
The parasitological data used in this study were collected
from primary school age children (age range 10–14 years)
living in 71 districts distributed among Zimbabwe’s eight
rural and two metropolitan provinces [20]. A sample of
15,818 children was calculated using EPI Info 6 statistical
package (Epi Info version 6, Centers for Disease Control
and Prevention, Atlanta, GA 30333) using 37% as the as-
sumed mean prevalence of schistosomiasis and the error
margin of 0.75% (see [20] for detailed information about
study areas, subjects and sampling).
To optimise health delivery, the Ministry of Health

and Child Care (MOHCC) classifies 63 of the country’s
89 administrative districts as rural-based districts. The
remainder are contained in the two metropolitan prov-
inces, Harare and Bulawayo. However, it should be noted
these 63 rural districts are part of the 89 districts recog-
nised by the Government of Zimbabwe as political
boundaries for enhancing local governance. Thus, the
parasitological data used in this study was collected in
almost all rural districts which comprise the spatial plan-
ning domain for disease surveillance and management at
national scale. When writing this manuscript, the au-
thors considered all the 89 administrative districts in
order to demonstrate the important role of remote
sensing and GIS technology in predicting the risk of
transmission/infection with STH in which case the para-
sitological data could be ascribed to 71 districts where it
was collected in the previous study [20]. Zimbabwe
stretches from latitudes 15°37′–22°24′S and lies between
longitudes 25°14′–33°04′E (Fig. 1). The country is
390,575 km2 in area. It borders with Zambia,
Mozambique, Botswana and South Africa in the north,
east, west and south, respectively. The total population
was estimated at 13,061,239 in the recent census survey

[35]. Altitude ranges from 300 m to 2500 m above sea
level [36].
Zimbabwe has a subtropical climate, with mean

monthly maximum temperature ranging from 15 °C in
July to 24 °C in November. Total annual rainfall ranges
from 400 mm to 1000 mm [37]. The country has assort-
ment variety of soil types ranging from sodic and sallia-
tic soils in the north, ferrialistic soils in the south,
paraferrallistic and ortheferrilitic in the east, to regosols
and Kalahari sands in the west [38, 39]. The vegetation
is dominated by dry miombo woodlands in the central
and east regions of the country [40]. Mopane woodlands
dominate in the lowveld regions located in the northern
and southern areas [41].

STH occurrence data
Geo-referenced data for A. lumbricoides and hookworms
collected during a national cross-sectional survey at ran-
domly selected schools in Zimbabwe during 2010–2011
[20] were used to calibrate the SDMs. The survey tar-
geted primary schools located in 71 of the recognised 89
administrative districts in Zimbabwe including the major
urban centres of Harare, Chitungwiza and Bulawayo
[20]. The prevalence of STHs was determined using the
formol ether concentration and the Kato-Katz smear
techniques as explained in [20]. A positive result for A.
lumbricoides and hookworm eggs from either of the two
techniques was used as an indicator for presence of
these parasites among sampled school children [20].

Environmental and socio-economic variables
A total of six environmental and demographic variables
were used to model the spatial distribution of A. lumbri-
coides and hookworms in Zimbabwe. These environmen-
tal variables were: the moderate resolution imaging
spectroradiameter (MODIS) monthly daytime and night-
time land surface temperature (LST), annual average pre-
cipitation (AVP), MODIS normalised difference vegetation
index (NDVI), human population density (HPD) and the
distance from perennial water bodies (DPW). These envir-
onmental variables were selected as they have been found
useful for predicting the distribution of STH [22, 29].
In brief, monthly LST daytime and night-time datasets

were derived from infrared radiances measured with the
MODIS aqua and terra sensors for the period January to
December (both years). The datasets were accessed from
the Land Processes Distributed Active Archive Centre
(LP DAAC) operated by the United States Geological
Survey (USGS) at https://lpdaac.usgs.gov/. Monthly LST
daytime and night-time datasets were separately clipped
by the polygon map of Zimbabwe, added together and
divided by 12 to obtain the annual average monthly LST.
AVP was calculated from gridded monthly rainfall data
for the years 2010 and 2011. These rainfall data were
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downloaded as raster grids from the Climate Hazards
Group InfraRed Precipitation with Station data (CHIRPS)
archive at http://chg.geog.ucsb.edu/data/chirps/. The rain-
fall data were available at a 5 km spatial resolution. To
capture the potential effect of vegetation on STH parasites
distribution, MODIS monthly NDVI was used as a proxy
for vegetation cover [42]. MODIS monthly NDVI
(MOD13A3) was in the format of cloud-free imagery and
was downloaded for the months January to December for
2010 and 2011 from LP DAAC at https://lpdaac.usgs.gov/.
The monthly NDVI images covering the whole of
Zimbabwe were averaged by year to match the temporal
window at which STH parasitological data were collected
in the field during the national survey.
The distance from perennial water bodies was used as

a proxy for moisture availability [27]. Spatial data layers
indicating the distribution and spatial extend of surface
water bodies were downloaded from the Diva GIS web-
site (diva-gis.org). These layers were projected from a
geographical coordinate system (WGS 84) to a metric
coordinate system (WGS 84/UTM zone 35). Then,
DPW was calculated using the built in Euclidean

distance function in ArcMap 9.3 [43]. The output map
was projected back to a geographical coordinate system
(WGS 84) to match the map projection used by other
environmental variables. HPD was used to represent the
potential influence of the distribution of human popula-
tion (the host) on the occurrence of STH parasites [27].
The gridded human population density (version 4) for
the year 2010 was downloaded from the Socioeconomic
and Data Application Center (SEDAC) accessible at
http://sedac.ciesin.columbia.edu/data/ [44]. The popula-
tion density was mapped at a spatial resolution of 1 km.

Edaphic variables
A suite of edaphic variables which included soil organic
carbon, soil pH and soil moisture, was also used to fur-
ther characterise the environmental niche of STH. The
selection of these edaphic variables was based on previ-
ous literature on STH distribution as well as their rela-
tive importance to the biology of STH parasites [22, 30].
Data for organic carbon, bulk density, clay content, soil
pH for the topsoil (0–30 cm) were downloaded from the
ISRIC-WISE soil database as spatial layers [45]. These

Fig. 1 Location of Zimbabwe. A. lumbricoides and hookworm data are overlaid as solid circles within administrative district boundaries
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edaphic variables were made available at a spatial reso-
lution of 5 km [46]. Long-term average soil moisture
data with a coarse spatial resolution of 30 km were
downloaded from Africa Soil Information Services web-
site [47]. The information in Table 1 indicates the units,
spatial resolution and sources of data for the environ-
mental and edaphic variables used to predict STHs
throughout Zimbabwe. Prior to modelling, all variables
were re-sampled from their native resolution to a com-
mon 1 km spatial resolution using the nearest neighbour
technique so that they could be overlayed. Thus, the dis-
tribution of STHs was modelled and mapped at a spatial
resolution of 1 km.

Modelling distribution of STHs
To test for collinearity, pairwise correlations between
predictor variables in raster data format were calculated
in the R statistical package (Studio, 2012) using Pearson’s
product moment correlation test. The folklore threshold
value of r > 0.7 between predictor variables was used to
eliminate correlated variables and to create a parsimoni-
ous model [48]. Elevation and bulk density were dropped
from the modelling exercise because the latter was nega-
tively correlated with organic carbon (r = −-0.80) and the
former was also negatively correlated with night-time
LST (r = -0.74).
Ten species distribution modelling techniques, namely

the random forest (RF), gradient boosted model (GBM),
surface range envelope (SRE), artificial neural network

(ANN), generalised linear model (GLM), generalised
additive models (GAM), classification tree analysis
(CTA), multiple adaptive regression splines (MARS),
flexible discriminant analysis (FDA) and MAXENT were
used to separately predict the geographical distribution
of A. lumbricoides and hookworms in Zimbabwe. All the
models were run in the R statistical package using the
BIOMOD2 package [49]. Each model was run twice, first
as a full model containing all eight predictors and sec-
ondly, as a reduced model comprising five variables
without the edaphic variables.

Model evaluation
BIOMOD2 was tuned to split presence data with 80%
being used for model calibration while 20% were set
aside for model validation [50]. Each SDM model was
evaluated using the true skill statistic (TSS) and the area
under the curve (AUC) of the receiver operating charac-
teristic (ROC) curve. A model’s performance was consid-
ered poor if the ROC value was less than 0.6, good if
ROC was within the 0.61–0.80 range and excellent if
ROC value was > 0.80 [51]. ROC and TSS values were
plotted against each other on a scatterplot to visualise
variations in model performance under different sets of
variables. Models that included and excluded edaphic
variables were annotated as 1 and 2, respectively. The
change in ROC and TSS model evaluation scores follow-
ing the inclusion of edaphic predictors was separately
calculated as a percentage for all the ten SDMs.

Table 1 Characteristics of environmental variables considered important in predicting the distribution of STH in Zimbabwe

Variable Units Spatial resolution (km) Data source Accessible at

Gridded monthly
CHIRPS precipitation

mm per month ~5.5 Climate Hazards Group http://chg.geog.ucsb.edu/data/chirps/

MODIS monthly daytime
land surface temperature
(MOD11C3)

Kelvin ~5.5 NASA’s Land Processes
Distributed Active Archive
Center (LP DAAC)

https://lpdaac.usgs.gov/

MODIS monthly night-time
land surface temperature
(MOD11C3)

Kelvin ~5.5 NASA’s Land Processes
Distributed Active Archive
Center (LP DAAC)

https://lpdaac.usgs.gov/

MODIS normalized
difference vegetation
index (MOD13A3)

dimensionless
(-1 to 1)

1 NASA’s Land Processes
Distributed Active Archive
Center (LP DAAC)

https://lpdaac.usgs.gov/

Gridded human
population density

number of persons/km2 1 Socioeconomic and Data
Application Centers

http://sedac.ciesin.columbia.edu/data/

Distance from
perennial rivers

m 1 Calculated in a GIS

Long-term average
soil moisture

% 30 Africa Soil Information
Services

africasoils.net

Soil pH – 5 International Soil
Reference Centre
(ISRIC)

http://www.isric.org

Soil organic carbon
(C) content topsoil
(0–30 cm)

% C 5 International Soil
Reference Centre
(ISRIC)

http://www.isric.org
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The TSS and ROC values for the ten modelling
techniques were tested for normality using the Shapiro
Wilk’s test. TSS and ROC scores for A. lumbricoides
followed a normal distribution whilst those for
hookworms did not follow a normal distribution.
Therefore, to test for significant differences in model
performances under different variable sets, an inde-
pendent t-test was used for A. lumbricoides, whereas
the Mann-Whitney U-test was used for hookworm
data. The TSS and ROC were the response variables
and model type was the categorical explanatory
variable. Category (1) models comprised of model
evaluation scores obtained using a set of variables
which included the edaphic predictors. Category (2)
comprised of model evaluation scores obtained from a
variable set that excluded edaphic predictors.

Consensus modelling of STH
Models with TSS and ROC greater than 0.5 and 0.7
respectively, were identified and used to build a con-
sensus model for predicting the continuous distribu-
tion of A. lumbricoides and hookworms throughout
Zimbabwe. Specifically, for each species, a consensus
model was created by combining the predictions of
the top three performing models with ROC > 0.7 and
TSS > 0.5. The spatial predictions of the consensus
distribution model were exported to geographical in-
formation system software (Arc Map 9.3) to display
the distribution throughout Zimbabwe as a continu-
ous map. The continuous probability of presence map
was classified into five distinct thematic classes based
on the natural breaks in the data to enhance visual
contrast. To zoom in on potential presence, a thresh-
old value of TSS ≥ 0.5 was used to generate a binary
map showing potential presence of A. lumbricoides
and hookworms for ease of communication and to
aid the management of STH in Zimbabwe.

Assessing variable importance
BIOMOD2 was calibrated to automatically compute
variable importance. Variable importance was assessed
only for the top three performing models. The goal was
to check whether the inclusion of edaphic variables was
as hypothesised. A variable was considered to be import-
ant when its value was > 0.10.

Results
Prevalence of STH in Zimbabwe
Results used in preparing this manuscript were ob-
tained from the national survey conducted by Midzi
et al. [20]. Of the estimated sample size (n = 15,818)
for the national survey, 12,252 (77.5%) participants
were screened for infection with any of the soil-

transmitted helminthes (hookworms, Trichuris tri-
chiura and Ascaris lumbricoides). Results from the
study by Midzi et al. [20] showed the overall
combined prevalence of STH of 5.5%, ranging be-
tween 0 and 18.3% in provinces, 0–45% in districts
and 0–78.7% in schools. There was no significant
difference in the prevalence of STH between males
(7.5%) and females (6.9%) (Fisher’s exact test, P = 0.231).
The prevalence of STH was highest in Binga district
(45.5%, 95% CI: 38.46–52.67%) followed by Mutoko
(43.5%, 95% CI: 35.55–51.72%) and Murehwa district
(40.6%, 95% CI: 34.07–47.46%). Overall, STHs were pre-
dominantly distributed in the northern, northeastern and
eastern regions and scantly distributed in the western
region of Zimbabwe [20].

Performance of SDMs for predicting STHs distribution in
Zimbabwe
Data based on modelling of edaphic variables
Model performance varied among the ten modelling
techniques as illustrated in Figs. 2 and 3. Models
which included edaphic variables performed better in
predicting the distribution of A. lumbricoides com-
pared to models that excluded edaphic variables
(Fig. 2). The same pattern was observed for hook-
worms as illustrated in Fig. 3. Specifically, the results
reveal that for both A. lumbricoides and hookworms,
models that contained environmental plus edaphic
variables yielded superior results (TSS > 0.5 and ROC
> 0.75) compared to those which had environmental
predictors only.
Figure 2 also illustrates that GBM, GLM, SRE out-

performed other modelling techniques in predicting
the distribution of A. lumbricoides with TSS and ROC
values greater than 0.50 and 0.75, respectively. By con-
trast, ANN, GAM and CTA performed poorly. For
hookworms, the GLM, MAXENT and GBM were the
best performing models. The ANN, SRE and RF per-
formed poorly (Fig. 3). Thus for both A. lumbricoides
and hookworms, the GLM and GBM consistently per-
formed well whereas the ANN performed poorly for
both species with TSS < 0.3.
For A. lumbricoides, the results of the t-test con-

firmed significant differences in model performance
between the two sets of models, i.e. the models
trained with environmental variables only versus
those trained with environmental plus edaphic
variables (TSS: t(18) = 3.1, P = 0.006 and for ROC:
t(18) = 2.48, P = 0.023). Similarly, hookworms results
for the Mann-Whitney U-test indicated significant
differences in model performance between these two
sets of SDMs (TSS: U = 17.5, P = 0.01 and for ROC:
U = 21.5, P = 0.029).
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Changes in model performance
The percentage change in model performance varied
among the ten modelling techniques as summarised in
Table 2. The largest improvement in model performance
was obtained for SRE following the inclusion of edaphic
variables with a percentage increase of 160 and 53% for
TSS and ROC evaluation techniques, respectively. By
contrast, the lowest percentage change in model per-
formance was obtained for GLM and GBM with the
former recording a 20% change when evaluated using
TSS whilst the latter recorded 1.3% change using the
ROC evaluation technique.
Results in Table 3 also show that percentage change in

model performance varied amongst the ten SDMs used
to model the distribution of hookworms. The SRE
recorded the largest percentage increase in model
performance (9900%) following the inclusion of edaphic
predictors when evaluated using the TSS. The ANN was
also characterised by the largest increase in model

performance (5000%) when evaluated using the ROC.
The lowest percentage change in model performance
was recorded for RF with values of 5% and 2.6% for TSS
and ROC, respectively.

Predicted geographical distribution of STHs in Zimbabwe
The predicted probability of the presence of A. lumbri-
coides varied among the 89 administrative districts of
Zimbabwe. The districts characterised by the highest
probability of presence were located in the eastern parts
of the country with a probability > 0.8. These included
Chimanimani (3), and Mutasa (10) shown in Fig. 4. The
districts located in the western, southern and the central
watershed regions such as Harare (4), Gokwe South (5),
Insiza (7), Masvingo (8) and Chikomba (2) were charac-
terised by moderately high probabilities of presence. In
contrast, districts at the southern, western, and northern
extents of the country which included Beitbridge (1),

Fig. 2 Scatterplot of TSS and ROC illustrating the performance of ten modelling techniques used to predict the distribution of A. lumbricoides
in Zimbabwe

Fig. 3 Scatterplot of TSS and ROC illustrating the performance of ten modelling techniques used to predict hookworms distribution in Zimbabwe
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Hwange (6) and Mbire (9) were characterised by low
predicted probabilities of the presence for A. lumbricoides.
Similar to A. lumbricoides, the predicted distribution

pattern for hookworms indicated the highest probabil-
ities of presence for districts in the eastern areas of the
country. The districts characterised by highest probabil-
ities included Rusape (10), Murehwa (8), Chitungwiza
(5), Guruve (6) and Bulawayo (3) as illustrated in Fig. 4.
The districts situated in the western parts of the country
including Binga (2), Nkayi (9) and Umzingwane (11)
were characterised by moderately high probabilities of
presence. Low probabilities of presence for hookworms
were predicted for districts located in the eastern and
southern regions of the country such as Mudzi (7),
Chiredzi (4) and Beitbridge (1).

Spatial pattern of STHs occurrence in Zimbabwe
Ascaris lumbricoides was predicted to be occurring in 66
districts stretching from the northern to the eastern
parts of the country (Fig. 5). Districts characterised by
high A. lumbricoides presence included Chipinge (1),
Zvimba (7) and Harare (3). The predicted presence for
hookworms was more widespread in the country com-
pared to A. lumbricoides with the species predicted as
occurring in 74 districts, predominantly districts in the
northern, eastern and southern parts of the country,
particularly Shamva (7), Shurugwi (8), Chivi (3) and
Bulawayo (1).

Variable importance
The results in Table 4 reveal that NDVI was consistently
identified as the most important predictor for all the
three top performing models. Soil pH was also an im-
portant variable for GLM and GBM followed by HPD
selected as important by GBM and SRE. It was observed
that for each of the top three performing models, at least
one of the three edaphic variables was considered an im-
portant predictor for modelling the distribution of A.
lumbricoides.
With regard to hookworms, soil organic matter was

identified as the most important variable for predicting
hookworms by GLM, GBM and MAXENT. Similar to
the results for A. lumbricoides, at least one of the three
edaphic variables was considered important for model-
ling the distribution of hookworms in Zimbabwe. HPD
was selected twice as an important variable for both
STHs modelled. Thermal variables, in particular LST
(day) and LST (night), also appeared to be influential in
predicting both A. lumbricoides and hookworms. NDVI
was also a key variable for predicting hookworms when
using GLM and GBM.

Discussion
The results of this study provide empirical support to the
hypothesis that the inclusion of edaphic variables im-
proves model performance when predicting the distribu-
tion of STHs at country scale. A consistent improvement
in model performance was achieved among a wide variety
of modelling techniques when edaphic variables such as
organic matter content were combined with other envir-
onmental variables to make spatial predictions of A. lum-
bricoides and hookworms presence in Zimbabwe.
Furthermore, the observed statistically significant percent-
age increases in model performance demonstrate that in-
clusion of edaphic predictors enhances models to
determine the distribution of soil-transmitted helminths.
While the inclusion of edaphic variables in modelling
STH occurrences has been undertaken in China [29],
Bolivia [30] and Nigeria [22], this study is the first (to our
knowledge) to report superior results when comparing

Table 3 Percentage change in model performance among ten
modelling techniques used to predict hookworms distribution
in Zimbabwe

Model TSS(2)a TSS (1)a % change ROC (2)a ROC (1)a % change

ANN 0.00 0.02 1900 0.01 0.51 5000

CTA 0.32 0.49 53 0.71 0.73 3

FDA 0.42 0.47 12 0.76 0.78 3

GAM 0.38 0.51 34 0.69 0.77 12

GBM 0.42 0.51 21 0.74 0.77 4

GLM 0.42 0.61 45 0.76 0.84 11

MARS 0.39 0.50 28 0.66 0.79 20

MAXENT 0.34 0.53 6 0.68 0.76 12

RF 0.40 0.42 5 0.76 0.78 3

SRE 0.00 0.10 9900 0.48 0.55 15
aEvaluation scores for models with environmental variables only are denoted
TSS (2) and ROC (2) and those derived from a set of environmental variables
plus edaphic variables are denoted TSS (1) and ROC (1)

Table 2 Percentage change in model performance among ten
modelling techniques used to predict A. lumbricoides
distribution in Zimbabwe

Model TSS (2)a TSS (1)a % change ROC (2)a ROC (1)a % change

ANN 0.10 0.24 140 0.55 0.58 5

CTA 0.20 0.38 90 0.56 0.72 29

FDA 0.34 0.46 35 0.69 0.78 13

GAM 0.23 0.37 12 0.57 0.67 18

GBM 0.45 0.60 33 0.75 0.76 1

GLM 0.45 0.54 20 0.73 0.74 1

MARS 0.32 0.48 50 0.66 0.74 12

MAXENT 0.32 0.42 31 0.67 0.71 6

RF 0.33 0.42 27 0.68 0.74 9

SRE 0.20 0.52 160 0.49 0.75 53
aEvaluation scores for models with environmental variables only are denoted
TSS (2) and ROC (2) and those derived from a set of environmental variables
plus edaphic variables are denoted TSS (1) and ROC (1)

Midzi et al. Parasites & Vectors  (2018) 11:47 Page 8 of 13



models calibrated using environmental plus edaphic vari-
ables to those that exclude the latter. Thus, studies that
exclude edaphic variables could be either under- or over-
estimating the distribution of STHs [27, 28, 32]. Although
model performance consistently improved following the
inclusion of edaphic predictors on all the ten SDMs and
for both STH parasites, the level of improvement varied
with each modelling technique. This result confirms the
widely observed discrepancy among different modelling
techniques and justifies the need to run several SDMs to
better characterise the niche space of a target species.

In this study DPW, soil moisture, soil pH, HPD, AVP,
NDVI, daytime LST and night-time LST were found to
be important variables for predicting the distribution of
A. lumbricoides. This result corroborates a previous
study which documented the important role that moist
and warm conditions play in promoting quick embryo-
nation of A. lumbricoides [24]. The high importance at-
tached to NDVI in this study suggests that the
occurrence of A. lumbricoides is also influenced by vege-
tation cover. This may not be surprising as previous re-
search reported that eggs of A. lumbricoides die when

Fig. 4 The predicted spatial distribution of A. lumbricoides and hookworms across Zimbabwe
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exposed to direct sunlight [52]. The observation that at
least one of the edaphic variables proved to be important
for each of the top performing models implies that
edaphic variables are critical when modelling the distri-
bution of A. lumbricoides. Similarly, previous studies
[22, 27, 30] noted that soil pH, HPD, AVP, LST (day)
and LST (night) were relatively important in predicting
the distribution of A. lumbricoides after factoring in
collinearity among predictor variables.
The observed consistency of high importance values

for soil organic matter in all the top performing models

are in line with the ecology of hookworms as the para-
sites feed on organic matter [53–55]. Thus, leaving out
this edaphic variable in modelling the distribution of
hookworms, likely leads to under-representation of the
environmental niche within which these parasites thrive.
Considering that with the advances in GIS and remote
sensing technology, spatial data layers of organic matter
content and other edaphic variables are now available in
the public domain to modellers, the findings of this
study open up opportunities to increase the accuracy of
STH mapping at country scale. It is also important to

Fig. 5 The predicted presence of A. lumbricoides and hookworms within and across the administrative districts of Zimbabwe
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note that DPW, HPD, NDVI, LST day and LST night
were identified as important variables. This is in concur-
rence with previous studies which reported their import-
ance in predicting the distribution of hookworms in
different regions of the world [29, 30]. What makes this
study different from others is the emphasis on edaphic
variables, particularly soil pH and soil organic content,
when predicting the distribution of hookworms in differ-
ent geographical regions of the world.
From a disease management perspective, results of

our study indicate a wide geographical distribution of
A. lumbricoides and hookworms in Zimbabwe. High
probabilities of presence values for A. lumbricoides
were found in the northern and eastern districts in
the country characterised by warm and moist condi-
tions for the greater part of the year, which give rise
to high vegetation cover if other factors, such as
anthropogenic disturbance that change land cover,
remain constant. In the case of hookworms, a wider
distribution compared to that of A. lumbricoides was
presented with highest probabilities of presence being
reported in the northern, eastern and central districts
of the country. Low probabilities of A. lumbricoides
presence were found for districts in the southern-
most, westernmost and northernmost districts. Since
the parasitological results from Midzi et al. [20] were
used in our study, it is not surprising that the find-
ings in we observed some similarities in the distribu-
tion trend with the previous observations made at a
national scale, i.e. that STH were predominantly
distributed in the northern, northeastern and eastern
regions, and scantly distributed in the western and
south-western regions of Zimbabwe [20]. The para-
sitological data used by this study were from primary
school children aged 10–15 years [20].

Overall, this work underlines the importance of mod-
elling for policy decisions as this can assist in risk assess-
ment at low cost whilst producing quick results.
Specifically, geospatial technology used in this study
facilitated the production of the first continuous distri-
bution maps for two problematic STHs in Zimbabwe.
These continuous distribution maps have an advantage
of showing variations within and across districts in the
distribution of STH parasites including some of the
districts which were not sampled during the 2010/11 na-
tional survey namely Gweru, Kwekwe, Chegutu, Shurugwi,
Sanyati and Mhondoro-Ngezi. Thus, the current results
complement previous work in which STH prevalence was
mapped using point data [20]. The results also show that
the districts of Chimanimani, Nyanga, Mhondoro-Ngezi,
Epworth, and Chitungwiza need to be added to the list as-
sociated with high A. lumbricoides prevalence. Likewise,
in the case of hookworms, seven districts including
Rusape, Hwedza, Nyanga, Chegutu, Mberengwa and a
metropolitan province, Bulawayo, could be considered as
high prevalence areas.
Although the findings from our study appear stable

considering that ten modelling techniques were
employed and model evaluation was based on two met-
rics, a limitation of the study is that other common STH
species which are prevalent in Zimbabwe were not con-
sidered due to a lack of geo-referenced occurrence data.
Thus, as these spatial data become available, it would be
worthwhile to also test the effect of including edaphic
variables on model performance when predicting the
distribution of other STH such as Trichuris trichiura.
This study was also conducted at a national scale with
the aim to bolster policy formulation and hence fine
scale variations in the distribution of STHs could have
been missed. For instance, only distance from permanent
water bodies was used to characterise the aquatic habitat
of STHs but at the local scale, there are areas that get
wet during parts of the year and depending on soil type
and livelihoods activities (such as vegetable gardening)
can provide suitable conditions for hookworms,
especially in areas with poor sanitary conditions.
Another limitation of this study is that whilst the com-

parison of population densities in urban areas vs rural
areas would act as a proxy of for the other related vari-
ables including sanitation and access to clean water, in
this study we did not choose to analyse for these aspects
for the following reasons: (i) a better analysis could have
been accomplished if the data on these variables had
been collected at the time of the study, and (ii) in
Zimbabwe there are several development partners
undertaking health development projects in some dis-
tricts including water and sanitation provision. It is,
however, unknown how these facilities are used by the
communities of diverse cultures.

Table 4 Variables identified as important for modelling the
geographical distribution of A. lumbricoides and hookworms in
Zimbabwe

Variable A. lumbricoides Hookworms

GLM GBM SRE GLM GBM MAXENT

DPW 0.147* 0.062 0.071 0.153* 0.075 0.000

Soil moisture 0.078 0.069 0.183* 0.062 0.025 0.001

Soil pH 0.551* 0.144* 0.076 0.062 0.004 0.556*

Soil organic content 0.089 0.026 0.044 0.159* 0.211* 0.131*

HPD 0.030 0.266* 0.206* 0.048 0.365* 0.261*

AVP 0.111* 0.034 0.152* 0.000 0.037 0.081

NDVI 0.379* 0.132* 0.190* 0.460* 0.233* 0.000

LST(day) 0.193* 0.079 0.161* 0.295* 0.088 0.148*

Abbreviations: GLM generalised linear model, GBM gradient boosted model,
SRE surface range envelope, Maxent maximum entropy, DPW distance from
perennial water body, HPD human population density, AVP average annual
precipitation, LST land surface temperature
*Important predictors
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Conclusions
This study has shown that inclusion of edaphic predic-
tors enhances model performance when predicting the
geographical distribution of STHs. In addition, the study
produced the first continuous distribution maps for two
widely occurring STHs in Zimbabwe thus, confirming
their wider distribution than previously thought.

Acknowledgements
We would like to express our gratitude to the Permanent Secretaries for the
Ministry of Health and Child Care of Zimbabwe, Brigadier General (Dr) G. Gwinji,
and the Secretary for Primary and Secondary Education, Dr. S Utete-Masango,
for the support and encouragement during the mapping of schistosomiasis
and STH in Zimbabwe. Special acknowledgements go to the National Institute
of Health Research, formerly the Blair Research Laboratory, for the expertise and
commitment to quality research demonstrated by the research output in this
manuscript. Our acknowledgements also go to parents and children for their
approval and participation in the National schistosomiasis and STH survey
respectively. Acknowledgements are also due to the World Health Organization
for the technical support during the implementation of Phase 1 of the National
Plan of Action for the Control of Schistosomiasis and STH in Zimbabwe whose
results have been useful in conducting additional analysis performed in this study.

Funding
This study was funded by UNICEF, Helen Keller Foundation and the Ministry
of Health and Child Care.

Availability of data and materials
Data supporting the conclusions of this article are included in the article. The
datasets used and/or analysed during the current study are available from
the corresponding author upon reasonable request.

Authors’ contributions
Conceived and designed the study and experiments: NM, GM, PM, IP, MJC, MM,
BK, CT, SLM, SMM, SSM, LC and AN. Performed the experiments: NM, PM, IP, MJC,
CT, SLM, WS, MJM, EM, JM and AN. Analyzed the data: BK and MM. Wrote the
paper: NM, BK, MM and MJM. All authors read and approved the final manuscript.

Ethics approval and consent to participate
The proposal to conduct the national schistosomiasis and STH survey was
approved by the national ethical review board, the Medical Research Council
of Zimbabwe. The ethical approval number for the study MRCZ/A/1207
dated 11th March 2010. The Secretary for Education Sport Arts and Culture
also approved the study. Written informed consent was sought from the
parents/guardian of the study participants. UNICEF delivered parental/
guardian informed consent forms addressed to each school by the Secretary
for Education Sport Arts and Culture throughout the country in advance to
allow school heads sufficient time to liaise with parents/guardians for their
consent. On the day of sample collection, only the assenting children whose
consent forms were signed by their parents/guardians participated in the
study. Enrollment into the study was voluntary and participants were free to
withdraw from the study at any time.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Medical Microbiology, College of Health Sciences, University
of Zimbabwe, P.O. A178, Avondale, Harare, Zimbabwe. 2Department of
Geography and Environmental Science, University of Zimbabwe, P. O. Box
MP 167, Mount Pleasant, Harare, Zimbabwe. 3Ministry of Health and Child
Care, P.O. Box, CY 1122 Causeway, Harare, Zimbabwe. 4National Institute of

Health Research, P.O. Box 573 Causeway, Harare, Zimbabwe. 5University of
Kwazulu Natal, Durban 4000, South Africa. 6Biomedical Research and Training
Institute, P.O. Box CY 1753 Causeway, Harare, Zimbabwe. 7World Health
Organization, PO Box CY 348 Causeway, Harare, Zimbabwe. 8Ministry of
Primary and Secondary Education, P.O. Box CY1343, Causeway, Harare,
Zimbabwe.

Received: 3 August 2017 Accepted: 11 December 2017

References
1. Nokes C, Grantham-McGregor SM, Sawyer AW, Cooper ES, Bundy DAP.

Parasitic helminth infection and cognitive function in school children. Proc
R Soc Lond B Biol Sci. 1992;247:77–81.

2. Hall A, Hewitt G, Tuffrey V, De Silva N. A review and meta-analysis of the
impact of intestinal worms on child growth and nutrition. Matern Child
Nutr. 2008;4:118–236.

3. Uneke CJ. Soil-transmitted helminth infections and schistosomiasis in school
age children in sub-Saharan Africa: efficacy of chemotherapeutic
intervention since world health assembly resolution 2001. Tanzan J Health
Res. 2010;12:86–99.

4. World Health Organization. Accelerating work to overcome the global
impact of neglected tropical diseases: a roadmap for implementation.
Geneva: WHO/HTM/NTD; 2012.

5. Augusto G, Magnussen P, Kristensen TK, Appleton CC, Vennervald BJ. The
influence of transmission season on parasitological cure rates and intensity
of infection after praziquantel treatment of Schistosoma haematobium-
infected schoolchildren in Mozambique. Parasitology. 2009;136:1771–9.

6. World Health Organization. The prevention and control of schistosomiasis
and soil-transmitted helminthiasis. Report of a WHO expert committee.
WHO technical report series no.912. Geneva: WHO; 2002.

7. Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, Diemert D, Hotez
PJ. Soil-transmitted helminth infections: ascariasis, trichuriasis, and
hookworm. Lancet. 2006;367:1521–32.

8. Hotez PJ, Brindley P, Bethony JM, King CH, Pearce EJ, Jacobson J. Helminth
infections:the great neglected tropical diseases. J Clin Invest. 2008;118:1311–21.

9. World Health Organization. Soil-transmitted helminthiases: eliminating soil-
transmitted helminthiases as a public health problem in children progress
report 2001–2010 and strategic plan 2011–2020. Geneva: WHO/HTM/NTD/
PCT; 2012.

10. Pullan RL, Smith JL, Jasrasaria R, Brooker SJ. Global numbers of infection and
disease burden of soil-transmitted helminth infections in 2010. Parasit
Vectors. 2014;7:37.

11. de Silva NR, Brooker S, Hotez PJ, Montresor A, Engels D, Savioli L. Soil-
transmitted helminth infections: updating the global picture. Trends
Parasitol. 2003;19(12):547–51.

12. Anonymous. Soil-transmitted helminthiases: number of children treated in
2010. Wkly Epidemiol Rec. 2012;87(23):225–32.

13. WHO. Conducting a school deworming day: a manual for teachers. Geneva:
World Health Organization; 2013.

14. Gabrielli A, Montresor A, Engels D, Savioli L. Preventive chemotherapy in
human helminthiasis: theoretical and operational aspects. Trans R Soc Trop
Med Hyg. 2011;105:683–93.

15. Bundy DAP, Chan MS, Savioli L. Hookworm infection in pregnancy. Trans R
Soc Trop Med Hyg. 1995;89:521–2.

16. Utzinger J, Keiser J. Schistosomiasis and soil-transmitted helminthiasis:
common drugs for treatment and control. Expert Opin Pharmacother. 2004;
5:263–85.

17. Fifth-fourth World Health Assembly. 2001; http://apps.who.int/gb/archive/
pdf_fi les/WHA54/ea54r19.Pdf accessed 30 July 2017.

18. WHO. Investing to overcome the global impact of neglected tropical diseases:
third WHO report on neglected tropical diseases. Geneva: WHO; 2015.

19. Midzi N, Sangweme D, Zinyowera S, Mapingure MP, Brouwer KC, Munatsi A, et
al. The burden of polyparasitism among primary schoolchildren in rural and
farming areas in Zimbabwe. Trans R Soc Trop Med Hyg. 2008;102:1039–45.

20. Midzi N, Mduluza T, Chimbari MJ, Tshuma C, Charimari L, Mhlanga G, et al.
Distribution of schistosomiasis and soil-transmitted helminthiasis in
Zimbabwe: towards a national plan of action for control and elimination.
PLoS Negl Trop Dis. 2014;8:e3014.

21. Harhay MO, Horton J, Olliaro PL. Epidemiology and control of human
gastrointestinal parasites in children. Expert Rev Anti-Infect Ther. 2010;8:219–34.

Midzi et al. Parasites & Vectors  (2018) 11:47 Page 12 of 13

http://apps.who.int/gb/archive/pdf_fi
http://apps.who.int/gb/archive/pdf_fi


22. Oluwole AS, Ekpo UF, Karagiannis-Voules DA, Abe EM, Olamiju FO, Isiyaku S,
et al. Bayesian geostatistical model-based estimates of soil-transmitted
helminth infection in Nigeria, including annual deworming requirements.
PLoS Negl Trop Dis. 2015;9(4):e0003740.

23. Brooker S, Clements AC, Bundy DA. Global epidemiology, ecology and control
of soil-transmitted helminth infections. Adv Parasitol. 2006;62:221–61.

24. Chiodini PL, Moody AH, Manser DW, Jeffrey HC. Atlas of medical
helminthology and protozoology. Edinburgh: Churchill Livingstone; 2001.

25. Luong TV, MCIWEM, Water, Environment and Sanitation (WES) Programme.
Prevention of intestinal worm infections through improved sanitation and
hygiene. Thailand: UNICEF East Asia and Pacific Regional Office Bangkok;
2002. p. 1–26.

26. Ayanda OS, Ayanda OT, Adebayo FB. Intestinal nematodes: a review. Pac J
Sci Tech. 2010;1:466–77.

27. Koroma JB, Peterson J, Gbakima AA, Nylander FE, Sahr F, Magalhães RJS, et
al. Geographical distribution of intestinal schistosomiasis and soil-
transmitted helminthiasis and preventive chemotherapy strategies in Sierra
Leone. PLoS Negl Trop Dis. 2010;4:e891.

28. Pullan RL, Gething PW, Smith JL, Mwandawiro CS, Sturrock HJ, Gitonga CW,
et al. Spatial modelling of soil-transmitted helminth infections in Kenya: a
disease control planning tool. PLoS Negl Trop Dis. 2011;5:e958.

29. Lai Y-S, Zhou X-N, Utzinger J, Vounatsou P. Bayesian geostatistical modelling
of soil-transmitted helminth survey data in the People’s republic of China.
Parasit Vectors. 2013;6:359.

30. Chammartin F, Scholte RG, Malone JB, Bavia ME, Nieto P, Utzinger J,
Vounatsou P. Modelling the geographical distribution of soil-transmitted
helminth infections in Bolivia. Parasit Vectors. 2013;6:152.

31. Scholte RGC, Schur N, Bavia ME, Carvalho EM, Chammartin F, Utzinger J,
Vounatsou P. Spatial analysis and risk mapping of soil-transmitted helminth
infections in Brazil, using Bayesian geostatistical models. Geospat Health.
2013;8:97–110.

32. Karagiannis-Voules D-A, Biedermann P, Ekpo UF, Garba A, Langer E, Mathieu
E, et al. Spatial and temporal distribution of soil-transmitted helminth
infection in sub-Saharan Africa: a systematic review and geostatistical meta-
analysis. Lancet Infect Dis. 2015;15:74–84.

33. Chandiwana SK. 1989. The problem and control of gastrointestinal
helminths in Zimbabwe. Eur J Epidemiol. 1989;5(4):502–15.

34. Elith J, Leathwick JR. Species distribution models: ecological explanation and
prediction across space and time. Ann Rev Ecol Evol Syst. 2009;40:677–97.

35. Zimbabwe Statistical Agency (ZIMSTAT). Census: National Report. Harare;
2012.

36. Gwitira I, Murwira A, Zengeya FM, Masocha M, Mutambu S. Modelled habitat
suitability of a malaria causing vector (Anopheles arabiensis) relates well with
human malaria incidences in Zimbabwe. Appl Geogr. 2015;60:130–8.

37. Shekede MD, Murwira A, Masocha M, Zengeya FM. Decadal changes in
mean annual rainfall drive long-term changes in bush-encroached southern
African savannas. Austr Ecol. 2016;41:690–700.

38. Nyamapfene KW. The soils of Zimbabwe. Harare: Nehanda Publishers; 1991.
39. Scoones I. The dynamics of soil fertility change: historical perspectives on

environmental transformation from Zimbabwe. Geogr J. 1997;163(3):161–9.
40. Mapfumo RB, Murwira A, Masocha M, Andriani R. The relationship between

satellite-derived indices and species diversity across African savanna
ecosystems. Int J Appl Earth Obs Geoinfor. 2016;52:306–17.

41. Masocha M, Dube T. Relationship between native and exotic plant species at
multiple savannah sites. Afr J Ecol. 2017; https://doi.org/10.1111/aje.12420.

42. Ngui AN, Apparicio P, Fleury MJ, Lesage A, Gregoire JP, Moisan J, Vanasse A.
Spatio-temporal clustering of the incidence of schizophrenia in Quebec,
Canada from 2004 to 2007. Spat Spatiotemporal Epidemiol. 2013;6:37–47.

43. Esri I. ArcGis version 9.3. Redlands: ESRI; 2008.
44. Socioeconomic Data and Applications Center. Data Center in NASA's Earth

Observing System Data and Information System (EOSDIS). Hosted by CIESIN at
Columbia University. 2013. sedac.ciesin.columbia.edu. Accessed 30 July 2017.

45. ISRI. Keep up with ISRIC - World soil information resource centre. 2012.
www.isric.org. Accessed 30 July 2017.

46. Batjes NH. ISRIC-WISE global data set of derived soil properties on a 0.5 by 0.5
degree grid (version 3.0). Wageningen: ISRIC-World Soil Information; 2005.

47. Africa Soil Information Service. AfSIS newsletter; 2012. p. 2. africasoils.net.
Accessed 30 July 2017

48. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, et al.
Collinearity: a review of methods to deal with it and a simulation study
evaluating their performance. Ecography. 2013;36:027–46.

49. Thuiller W, Georges D, Engler R. biomod2: ensemble platform for species
distribution modelling. R package version 3.0.3. 2013; http://CRAN R project
Orgpackage Biomod2.

50. Thuiller W, Lafourcade B, Engler R, Araujo MB. BIOMOD - a platform for
ensemble forecasting of species distributions. Ecography. 2009;32:369–73.

51. Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modelling of
species geographic distributions. Ecol Model. 2006;190:231–59.

52. Katz N, Chaves A, Pellegrino J. A simple device for quantitative stool thick-
smear technique in Schistosoma mansoni. Rev Inst Med Trop Sao Paulo.
1972;14:397–400.

53. Goldberg WM, Lymburner R. Strongyloidiasis. Can Med Assoc J. 1951;65:152.
54. Donaldson RJ. Parasites and western man. Springer Science & Business

Media: Lancaster; 2012.
55. Mabaso MLH, Appleton CC, Hughes JC, Gouws E. Hookworm (Necator

americanus) transmission in inland areas of sandy soils in KwaZulu-Natal,
South Africa. Tropical Med Int Health. 2004;9:471–6.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Midzi et al. Parasites & Vectors  (2018) 11:47 Page 13 of 13

http://dx.doi.org/10.1111/aje.12420
http://sedac.ciesin.columbia.edu
http://www.isric.org
http://africasoils.net

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Study area
	STH occurrence data
	Environmental and socio-economic variables
	Edaphic variables
	Modelling distribution of STHs
	Model evaluation
	Consensus modelling of STH
	Assessing variable importance

	Results
	Prevalence of STH in Zimbabwe
	Performance of SDMs for predicting STHs distribution in Zimbabwe
	Data based on modelling of edaphic variables
	Changes in model performance
	Predicted geographical distribution of STHs in Zimbabwe
	Spatial pattern of STHs occurrence in Zimbabwe
	Variable importance


	Discussion
	Conclusions
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

