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Abstract

Motivation: Several molecular events are known to be cancer-related, including genomic aberra-

tions, hypermethylation of gene promoter regions and differential expression of microRNAs.

These aberration events are very heterogeneous across tumors and it is poorly understood how

they affect the molecular makeup of the cell, including the transcriptome and proteome. Protein

interaction networks can help decode the functional relationship between aberration events and

changes in gene and protein expression.

Results: We developed NetICS (Network-based Integration of Multi-omics Data), a new graph

diffusion-based method for prioritizing cancer genes by integrating diverse molecular data types

on a directed functional interaction network. NetICS prioritizes genes by their mediator effect,

defined as the proximity of the gene to upstream aberration events and to downstream differen-

tially expressed genes and proteins in an interaction network. Genes are prioritized for individual

samples separately and integrated using a robust rank aggregation technique. NetICS provides a

comprehensive computational framework that can aid in explaining the heterogeneity of aberration

events by their functional convergence to common differentially expressed genes and proteins.

We demonstrate NetICS’ competitive performance in predicting known cancer genes and in gener-

ating robust gene lists using TCGA data from five cancer types.

Availability and implementation: NetICS is available at https://github.com/cbg-ethz/netics.

Contact: niko.beerenwinkel@bsse.ethz.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Large-scale genomic studies have identified many aberrations in can-

cer genomes. However, in most cases it is not understood how the

genetic aberrations contribute to cancer progression. There are

many different types of genetic aberrations, including single-

nucleotide variants, small and large insertions and deletions, as well

as more complex genomic rearrangements (Holland et al., 2012).

Genetic aberrations can be highly diverse among tumors of the

same cancer type, and even among subclones of the same tumor

(Burrell et al., 2013). It is assumed that only approximately 0.1% of

the genetic aberrations in a tumor cell are actually driving cancer

progression (Vogelstein et al., 2013), such that their detection

among the large number of neutral passenger mutations is challeng-

ing. Moreover, it is difficult to detect cancer genes that are mutated

only in a small number of samples by using tools that are based only

on the population frequency of genetic aberrations (Lawrence et al.,

2013). A promising way to address this challenge is the integration

of different omics data types (Bersanelli et al., 2016) and the
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detection of combinatorial patterns of mutations such as mutual ex-

clusivity and co-occurrence (Dimitrakopoulos et al., 2016). Besides

genetic aberrations, other events such as epigenetic changes or

miRNA differential expression can also contribute to cancer pro-

gression. For example, tumor suppressor genes can be silenced and

inactivated by hypermethylation of their promoter region (Jones

et al., 2002). It is also known that miRNA can control the expres-

sion of their target mRNA to facilitate invasion, angiogenesis, tumor

growth and immune invasion (Choudhury et al., 2012; Stahlhut

et al., 2013). The up- or downregulation of miRNA can lead to the

upregulation or silencing of their mRNA targets.

Several studies have focused on detecting cancer genome alter-

ations and understanding how they affect the expression of the genes

they hit (Gatza et al., 2014), but only few investigated the changes

that the genetic aberrations and epigenetic changes can provoke in

other genes due to gene interactions. DriverNet (Bashashati et al.,

2012) captures the effects of genetic aberrations on transcription,

but takes into account only direct interactions between genetically

aberrant genes and their mRNA products. HotNet2 (Leiserson

et al., 2015) uses a network diffusion approach that captures the

global topology of the network and detects subnetworks that are sig-

nificantly mutated. However, it uses only genetic aberrations and

thus does not integrate other data types. TieDIE (Paull et al., 2013)

uses a network diffusion algorithm that detects how genetic aberra-

tions affect the expression of genes. Although TieDIE is able to per-

form this analysis per patient, it is not capable of deriving

conclusions about cancer driver genes on a patient population.

None of the above-mentioned methods has studied the effects of epi-

genetic changes or miRNA in the progression of cancer.

Here, we present NetICS (Network-based Integration of Multi-

omics Data), a cancer gene prioritization method that provides a

general computational framework for integrating diverse data types

on a directed functional interaction network. NetICS is able to inte-

grate different types of aberration events with differential expression

data on the transcriptome and proteome level. It predicts how the

aberration events evoke expression changes through gene inter-

actions and predicts cancer genes that orchestrate a large number of

these changes. NetICS uses a per-sample bidirectional network dif-

fusion process and derives a robust population-level gene ranking by

aggregating individual sample rankings (Fig. 1).

We tested NetICS on five cancer types using TCGA data. We

demonstrate that it is superior in prioritizing cancer genes and gener-

ates more robust gene lists when compared to network-based meth-

ods that perform network diffusion on the pooled set of aberrations

across samples, such as, for example, TieDIE. We identified genes

that are functionally homogeneous and participate in similar cancer-

related pathways. NetICS provides a comprehensive framework that

assists in understanding how sample-specific aberration events can

affect the same gene targets in different ways and in explaining

inter-patient mutational heterogeneity.

2 Materials and methods

2.1 Interaction network
We downloaded functional interactions from three different sources

in order to construct a directed functional interaction network. The

three sources included the databases Signor (Perfetto et al., 2016),

Signalink (Fazekas et al., 2013) and the functional directed inter-

action network defined by Wu et al. (2010), who combined inter-

actions reported in various databases, including Kegg (Kanehisa

et al., 2017), Panther (Mi et al., 2017), NCI (Schaefer et al., 2009)

and others, offering a large coverage of validated functional inter-

actions. We also downloaded miRNA-gene interactions from

miRTarBase (Chou et al., 2016), a database that contains experi-

mentally validated interactions between miRNA and target genes. In

order to ensure the creation of a highly confident interaction net-

work, we only used interactions supported by experimental evi-

dence. If an interaction was present in any of the four databases, we

subsequently included the interaction in the final network.

The directionality of the interactions is essential for our method

as it can help in explaining how aberration events in one gene lead

to expression changes in other genes in the network. The network

edges cover a variety of interaction types at different cellular levels,

including (de)phosphorylation, expression/repression and activa-

tion/inhibition. By using only the interactions supported by experi-

mental evidence, we covered 13 110 genes in total. In order for

network diffusion to converge to a unique solution (steady state),

we only used the largest connected component of the network,

which contains 9260 genes and 351 724 interactions. We excluded

self-interactions.

2.2 NetICS
NetICS predicts mediator genes, i.e. genes that are affected by prox-

imal upstream-located aberrant genes or miRNA and affect prox-

imal downstream-located differentially expressed genes. In the first

step, aberration scores are diffused from the aberrant genes of the

sample following the directionality of the network interactions.

Fig. 1. Overview of NetICS. NetICS predicts how aberrant genes or miRNAs

(orange/red vertices) affect the expression of other genes (blue vertices) due

to gene interactions (solid directed edges). Aberrant genes are affected by

events which lead to the acquisition of cancer-related properties by the tumor

cells such as uncontrolled cell proliferation. These events may include genetic

aberrations, differential methylation of the gene promoter region, and inter-

action with differentially expressed miRNAs. A bidirectional network diffusion

process that can capture the directionality of interactions (dashed lines) is

used. The method attempts to detect mediator genes (green vertices) that or-

chestrate the expression changes downstream and are located between aber-

rant and differentially expressed genes. A ranked list of genes is generated

for each sample separately based on the scores they acquire through network

diffusion. These sample-specific lists are then fused into an overall ranked

gene list representative of all samples (Color version of this figure is available

at Bioinformatics online.)
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In the second step, differential expression scores are diffused from

the differentially expressed genes of the sample in the opposite direc-

tion of the network edges (Fig. 1). Aberration and differential ex-

pression scores are defined as the normalized vector of aberration

events or differential expression indicator variables (see below). An

aberration event can disrupt a gene in different ways. It can be (i) a

genetic aberration (somatic mutation or copy number variation), (ii)

differential methylation in the gene’s promoter region or (iii) a dif-

ferentially expressed miRNA that interacts with the corresponding

gene and changes its mRNA expression significantly. We include

these events only if both the miRNA and the target gene are signifi-

cantly differentially expressed between tumor and normal tissue.

For network diffusion, we used the insulated heat diffusion as

described in Leiserson et al. (2015). We define the normalized adja-

cency matrix W of the adjacency matrix A of the interaction net-

work as

W ¼ AD�1; (1)

where D is the diagonal matrix of the out-degrees of nodes, and

Aij¼1 if there is a directed edge from gene j to gene i and Aij¼0

otherwise. We define the diffusion matrix

F ¼ b½I � ð1� bÞW��1; (2)

which represents the connectivity between nodes j and i in entry Fij

for a given restart probability b. For b, the degree of diffusion in the

network, we do not know its optimal value for the network in ad-

vance. Hence, we assessed the performance of the methods for dif-

ferent values of b ranging from 0.001 to 1 and subsequently

averaged over all the estimates. The value in Fij reflects the network

proximity between nodes i and j (local topology) and the way that it

is embedded in the entire network (global topology). The connectiv-

ity scores between the aberrant genes and all network genes of a

sample are

EM ¼ FSM; (3)

where SM is the initial state vector of aberration scores. In order to

find the influence scores of differential expression, we calculate

ED ¼ F0SD; (4)

where

F0 ¼ b½I � ð1� bÞW 0
out�
�1; (5)

W 0
out ¼ AT

outD
0�1
out (6)

and D0out is the diagonal matrix with the out-degrees of the nodes of

AT
out in the diagonal, and SD is the initial state vector of differential

expression scores.

The vectors SM and SD are initialized with uniform scores 1
M and 1

D

respectively, where M is the number of the aberrant genes of the sam-

ple and D the number of the differentially expressed genes of the sam-

ple. The way the vectors SM and SD are defined we do not favor

differentially expressed genes versus aberrant genes even if the number

of the former is much higher compared to the number of the latter.

The final scores for all genes are computed as the Hadamard

product

E ¼ EM
� ED: (7)

The vector E determines the mediator effect for each gene.

A large entry in EM at position i means that gene i is proximal to

many upstream-located aberrant genes or miRNA, and a large entry

in ED at position i means that gene i is proximal to many

downstream-located differentially expressed genes. The diffused ma-

trix F is asymmetric and is able to capture the directionality of the

network interactions. The directionality of the interactions is im-

portant in order to capture the situation where an upstream aberrant

gene or miRNA leads to an expression change of its direct or indir-

ect downstream interaction partners.

For each sample, a ranked list of all genes is generated according to

the entries in the vector E. The sample-specific ranks of each gene are

combined into a global ranking reflecting the importance of the gene

across all samples. We expect a cancer gene to be highly ranked across

many samples as this would indicate that it is functioning as a mediator

gene. We model this by computing the area under the curve that con-

nects the ranks of specific genes across different samples. To rank the

genes, we used the sum of the per-sample ranks, which is proportional

to the area under this curve (Supplementary Fig. S5). A small area

implies a high number of low ranks. When more than one source of dif-

ferential expression measurements are available, we use Fishers method

(Mosteller and Fisher, 1948) to combine the P-values as

X ¼ �2
Xk

i¼1

log pi; (8)

where pi is the P-value computed from the ith experiment and k the

total number of independent experiments. The random variable X

follows a chi-square distribution with 2k degrees of freedom. In our

application of NetICS, the different data sources are RNA-seq-based

gene expression measurements and protein abundance measured

with the reverse phase protein array (RPPA) technique.

2.3 Evaluating performance in predicting known cancer

genes
We defined the sets of known cancer genes for each cancer type by

using two publicly available databases (Supplementary Section S1.1).

In our classification problem, positives are the known cancer genes

and negatives are all other network genes not in the positive set. For

evaluating and comparing the performance of NetICS, we used the

partial ROC measure, which accounts for the number of true positives

that score higher than the nth highest scoring negative, measured for

all values from 1 to n. It is defined as

AUCn ¼
1

nT

Xn

i¼1

Ti; (9)

where T is the total number of known cancer genes and Ti is the

number of positives that score higher than the ith highest scoring

negative (Scott et al., 2007). We use the partial ROC measure, be-

cause we are interested in comparing methods at low false positive

rates (i.e. small n).

2.4 Pathway enrichment
For computing the enrichment of a given pathway in mediator, aber-

rant or differentially expressed genes, we used the hypergeometric

distribution to compute the P-value

P ¼ 1�
Xx�1

i¼0

K
i

� �
M� K
N � i

� �

M
N

� � ; (10)

where M is the number of all network genes except the genes tested,

K the number of genes in a known pathway, N the number of genes

tested and x the number of common genes between the genes of the
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known pathway and the tested genes. P-values were adjusted for

multiple testing by the Benjamini-Hochberg method (Yekutieli

et al., 1999). We downloaded nine signaling pathways from the

Reactome database (Croft et al., 2011), whose connection has been

previously studied in cancer, such as Wnt and PI3K/AKT signaling.

2.5 Aberration events and RNA differential expression
We tested NetICS on five TCGA datasets, including uterine corpus

endometrial carcinoma, liver hepatocellular carcinoma, bladder uro-

thelial carcinoma, breast invasive carcinoma and lung squamous cell

carcinoma. We downloaded the genetic aberrations (somatic muta-

tions and copy number variations) from https://gdac.broadinstitute.

org/. The ultramutator samples reported in syn1729383 as well as

synonymous mutations were excluded. For mRNA and miRNA dif-

ferential expression, we downloaded RNA-seq data from the same

source. For the miRNA expression, we downloaded the Illumina

HiSeq miRNA sequencing data. We performed differential gene ex-

pression analysis by using DESeq2 (Love et al., 2014). We compared

each tumor sample against all normal samples and pooled genes being

differentially expressed for each sample. We considered as significant

the genes detected with an adjusted P-value lower than 0.05.

For the invasive breast carcinoma dataset, both RNA-seq and

RPPA data for tumor and normal samples were available. For the

RNA-seq data, we used DESeq2 to generate a P-value for the differ-

ence between the expression of tumor and normal samples. We

modeled the RPPA data of each sample as a normal distribution and

then computed a P-value for the tumor sample as

2 U �j t �m

s
j

� �
; (11)

where U is the cumulative distribution function of the standard nor-

mal distribution, m is the mean and s the standard deviation of the

RPPA data, and t the RPPA value for the specific tumor sample. We

used the Kolmogorov-Smirnov test to assess if the RPPA data

of each sample follows a normal distribution. We combined the

P-values for RNA and RPPA by using Fisher’s method. After FDR

correction (Yekutieli et al., 1999), we kept only those genes with a

P-value of less than 0.05.

For the methylation data, we first downloaded the infinium

HumanMethylation450 Manifest file from the Illumina website.

The file contains information on 486 428 methylation sites, each

named with a unique cg-number ID and provides several inform-

ative features such as the original gene name and the gene region.

We only used methylation sites in the 50 untranslated region, where

the promoter binds and which is often differentially methylated in

tumor samples (Jones et al., 2002). A total of 65 535 methylation

sites were located in this region. For each cancer type, we used the

Human Methylation 450 dataset that is available at https://gdac.

broadinstitute.org/. For each gene, we performed a Wilcoxon test

between the beta values of the methylation sites located in the 50 un-

translated region between the tumor and the matched normal sam-

ple. We only used significantly differentially methylated genes that

exhibited an adjusted P-value below 0.05. To adjust the P-values we

used a false discovery rate of 0.05.

3 Results

We have developed NetICS, a network-based method for prioritiz-

ing cancer genes by integrating multi-omics data (Fig. 1), including

genetic aberrations, mRNA and miRNA expression, as well as dif-

ferential methylation at the gene promoter region. NetICS performs

a per-sample bidirectional network diffusion on a directed func-

tional interaction network and creates a ranked gene list for each

sample. It then integrates the sample-specific ranked gene lists to

generate a global ranking for all samples by using a robust rank

aggregation technique (Supplementary Fig. S4).

3.1 Prediction of known cancer genes
NetICS ranks genes according to their predicted involvement in can-

cer progression. To assess the rankings, we predicted known cancer

genes (Supplementary Section S1.1). As negative examples in the

prediction task, we used all other network genes that are not in the

positive set of known cancer genes.

We compared NetICS to two other methods that perform network

diffusion by using gene scores pooled over all samples. By Pool1dir

we denote the method that pools aberrant genes across all samples by

initializing the gene scores with their population frequencies before

propagating them through the network. Pool1dir is the network diffu-

sion process used in HotNet2 (Leiserson et al., 2015). By Pool2dir,

we denote the method that pools both the aberrant and the differen-

tially expressed genes across all samples. In Pool2dir, the gene scores

are initialized with their aberration or differential expression frequen-

cies, before bidirectional diffusion propagates them through the net-

work, by diffusing the aberration scores towards the directionality of

the network’s interactions and the differential expression scores op-

posite of the directionality of the network’s interactions. After that,

these two scores are integrated by computing their minimum as sug-

gested by Paull et al. (2013) for TieDIE. For network diffusion, we

used insulated heat diffusion as implemented in HotNet2 (Leiserson

et al., 2015) for all the methods. We also tested two simple prioritiza-

tion schemes that prioritize the genes based on their aberration fre-

quency (Aber. Fr.) and their differential expression frequency (RNA

DE Fr.) in the population without using any network information.

For computing performance as the partial AUC measure AUCn,

we executed every method 10 times by bootstrapping the available

samples. The same 10 datasets of the samples derived from boot-

strapping were used in each method. We computed AUCn for

n¼50, 100 and 150. With these performance estimates, we focus

on the highest ranked genes because those are the genes that one

would consider for further biological interpretation or experimental

validation.

We observed that NetICS has a better performance than the

other methods for all datasets meaning that it is able to rank the

known cancer genes higher (Fig. 2, Supplementary Fig. S9). We also

observed that NetICS exhibits on average a higher performance for

any individual value of the restart probability, as compared to the

pooling-based network diffusion methods (Supplementary Fig. S3).

The restart probability determines the degree of diffusion, namely

how far the random walker can move in the network. Pool2dir ex-

hibited the worst performance indicating that using mRNA data by

pooling all samples is less efficient in predicting cancer genes than

using each sample individually for diffusion. Pool1dir exhibited in

general a lower performance compared to NetICS and reached its

highest AUC for restart probabilities lower than 0.5, for all cancer

types (Fig. 2). This is because a random walker starting at an aber-

rant gene needs a restart probability of more than 1/2 in order to

weight the neighbors of the aberrant gene more than the gene itself

at the equilibrium state (Eq. 2). Depending on the average distance

of the mediator genes from their upstream aberrant genes, Pool1dir

reaches its optimal performance for a relatively low value of the

restart probability in all cancer types (Supplementary Fig. S3).

This fact does not hold for NetICS where we observe that the
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maximum performance is achieved on average for a low value of the

restart probability but there is a wider range of restart probabilities

for which a performance close to the maximum is reached. Thus,

NetICS is more robust to changes of the restart probability due to

the transformation of the diffusion scores into ranks, and most often

a value between 0.2 and 0.6 gives close to optimal performance for

any cancer type. The ranking also accounts for differences in the

scale of diffusion scores among samples. NetICS’ robustness to

changes in the restart probability is illustrated in a small example of

4 samples and 13 genes in Supplementary Figures S1 and S2.

Overall, NetICS’ performance was statistically higher than all

other methods. In specific, NetICS’ AUC50 was statistically higher

than the next highest performing method which was Pool1dir

(Wilcoxon ranksum, P ¼ 1:08� 10�5) in the uterine corpus endo-

metrial carcinoma dataset. Similarly, NetICS’ AUC50 was statistic-

ally higher than the next highest performing method which was

Pool2dir (Wilcoxon ranksum, P ¼ 1:82� 10�4) in the liver hepato-

cellular carcinoma dataset.

The two simple prioritization schemes that prioritize the genes

based on their aberration (Aber. Fr.) or differential expression fre-

quency (RNA DE Fr.) in the population without using any network

information exhibited the worst performance, indicating the import-

ance of using network interactions in the task of cancer gene priori-

tization (Fig. 2 and Supplementary Fig. S9). The main difference

between the network-based methods is that Pool1dir and Pool2dir

perform network diffusion by first pooling all aberration events and

therefore prioritization is performed by taking into account the net-

work distance between aberrant genes or miRNA across all samples.

By contrast, NetICS performs a per-sample network diffusion and is

able to capture the sample-specific causes of the same gene expres-

sion changes.

3.2 Stability of cancer gene predictions
We tested the stability of rankings obtained by the different methods

using bootstrapping. We assessed stability by computing the

Spearman correlation between the 10 ranked gene lists that resulted

from the bootstrapping repeats. For each method, we computed the

Spearman correlation between all the possible pairs of the 10 ranked

lists. We found that NetICS is more stable compared to the other

methods exhibiting on average a close to 100% correlation between

the ranked gene lists that resulted from bootstrapping, whereas

Pool1dir and Pool2dir exhibited correlation ranging from 92 to

99% (Fig. 3 and Supplementary Fig. S10). The higher stability of

NetICS can be attributed to aggregating the per-sample ranks.

Pool2dir is less stable than Pool1dir, because there are more differ-

ences in the initial gene scores for network diffusion in the different

bootstrap repeats, because Pool2dir initializes genes based on their

frequency for both aberrations and differential expression.

We also tested the stability of the methods when the network

was perturbed by randomly deleting, adding or reversing edges. We

tested different percentages of deleted, added and reversed edges

ranging from 10 to 90% with respect to the total number of net-

work’s edges. We computed the Spearman correlation between the

ranked gene list when methods were used with the original network

and the ranked gene lists when methods were used with the per-

turbed networks. We observed that all methods are robust to

changes in the edges of the network, with NetICS and Pool1dir

being more robust than Pool2dir (Supplementary Figs S11–S13).

Specifically, NetICS exhibited on average 84% correlation with the

gene ranks from the original network when as much as 90% of the

total edges were removed. Pool2dir exhibited on average 65% cor-

relation for the same experiment. All methods were more robust to

the addition of random edges compared to the random deletion of

existing edges. NetICS exhibited on average 92% correlation with

the gene ranks on the original network when 90% random edges of

the initial number of network edges were added. Pool2dir exhibited

on average 70% correlation for the same experiment.

3.3 Pathway enrichment
We used the highest ranked mediator genes for each cancer type to

perform pathway enrichment analysis and compared the findings to

those obtained from ranked genes based on aberration or differential

expression frequency across the samples (Supplementary Fig. S6).

We downloaded the genes of nine signaling pathways from the

Fig. 2. Comparison of gene prioritization methods. We compared the per-

formance of NetICS to four methods including pooling aberrant genes from

all samples before diffusion (Pool1dir), pooling both aberrant and differen-

tially expressed genes from all samples before bidirectional diffusion

(Pool2dir), ranking by frequency of aberrant genes across all samples (Aber.

Fr.) and ranking by frequency of differentially expressed genes across all

samples (RNA DE Fr.). By bootstrapping the available samples 10 times, we

computed the partial AUC for n¼ 50, 100 (x-axis). The performance was

tested on the TCGA datasets of uterine corpus endometrial carcinoma (top)

and liver hepatocellular carcinoma (bottom)

Fig. 3. Stability of ranked gene lists. Shown are box plots demonstrating the

stability between the ranked gene lists of each method among 10 bootstrap

repeats. The boxes represent the average Spearman correlation (y-axis) be-

tween all possible pairs of the 10 ranked gene lists produced from the 10

bootstrap repeats. We compared three methods (x-axis) including NetICS,

Pool1dir and Pool2dir. Stability was tested on the TCGA datasets of uterine

corpus endometrial carcinoma (left) and liver hepatocellular carcinoma (right)
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Reactome database. These are signaling pathways whose properties

have been previously studied in cancer, such as the Wnt and the

PI3K/AKT signaling pathways. We found that the highest ranked

mediator genes are more enriched in the signaling pathways com-

pared to genes ranked based on aberration and differential expres-

sion frequency. This trend was observed in all tested cancer types.

Hence, the mediator genes detected by NetICS are more functionally

homogeneous with respect to the specific signaling pathways. The

fact that mediator genes are more functionally homogeneous than

aberrant genes is in line with the assumption of NetICS that hetero-

geneity in aberration events across samples can be explained by con-

vergence in the network to functionally homogeneous mediator

genes (Fig. 1).

3.4 Specific examples of mediator genes
As a proof of concept, we analyzed two mediators that NetICS pre-

dicted for breast cancer, namely EP300 and TP53, in more detail

and examined their upstream aberrant and downstream differen-

tially expressed genes (Supplementary Figs S7 and S8). Both EP300

(Gayther et al., 2000) and TP53 are well-characterized tumor

suppressors.

EP300 protein is a histone acetyltransferase for all four-core his-

tones in nucleosomes. Breast carcinomas express extremely low levels

of EP300. However, mutations in EP300 are not very common

(<1% breast cancer samples with EP300 mutations in Cosmic).

NetICS predicted that EP300 is a mediator gene for breast cancer.

Specifically, it identified five direct upstream aberrant genes or

miRNAs in 50% of the tumor samples, namely ARNT, MED13,

MED24, CITED1 and HSA-MIR-429, and three direct downstream

differentially expressed genes which are known to be cancer-related,

namely TP53, AKT1 and MYC (Supplementary Fig. S7a). ARNT (or

HIF-1b) is a gene that acts in complex with EP300 and was found

mutated in 7% of the tumor samples. Specifically, HIF-1a or HIF-2a

dimerize with HIF-1b to form the HIF-1 or HIF-2 transcription fac-

tor, respectively. HIF1/2 transcription factors bind to the HRE

(HIF1/2 response element) in the presence of EP300 coactivator, to

regulate the transcription of target genes like VEGFA, which is an

oncogene. Although ARNT was downregulated in most samples, in

the samples where it is amplified, it was found to be upregulated.

Hence, when amplified, ARNT appears to lead to upregulation of the

oncogene VEGFA with the help of EP300 as a mediator.

Moreover, MED13 and MED24 are proteins that act in complex

with EP300 and are less explored in the context of tumorigenesis.

Our method suggests that MED13 and MED24 should be further

investigated for their role in downregulating EP300 in tumorigen-

esis. CITED1 is a gene that is hypermethylated at the promoter re-

gion and therefore, downregulated at its mRNA level. Its

downregulation is a possible cause for EP300’s down regulation.

Reports suggest that miR-429 expression is up-regulated in human

colorectal cancer (Li et al., 2013) and serous ovarian carcinoma tis-

sues (Nam et al., 2008), and this high expression is associated with

increased tumor size and poor prognosis. NetICS has classified miR-

429 as an upstream regulator of EP300 (Mees et al., 2009). Thus,

an increase in miR-429 levels could reduce EP300 expression.

EP300 controls the stability of TP53, an important tumor suppres-

sor. Reduced expression of EP300 can lead to a lower expression of

TP53. In addition, EP300 in complex with other proteins induce

acetylation and inactivation of AKT. The lower expression of

EP300 could be the cause of increased AKT1 stability that aids

tumorigenesis. Further, EP300 is able to maintain genomic integrity

by negatively regulating MYC (Sankar et al., 2009). Loss of EP300

expression could be a potential cause of MYC upregulation, a

known oncogene in breast cancer. We detected a mutually exclusive

mutation pattern in the samples among ARNT, TP53, MYC and

AKT1, further enhancing the idea that aberrations in these four

genes might be alternative ways to disrupt the same cellular pathway

(Supplementary Fig. S7b).

The tumor suppressor TP53 is crucial to sense and respond to a

variety of cellular stresses and induce cell cycle arrest or senescence.

NetICS predicted that TP53 is a mediator gene for breast cancer and

has five direct upstream genes, namely AKT1, BDNF, MYC,

CREBBP and miR-425, which together exhibit aberrations in about

50% of the available breast cancer samples. Directly downstream,

TP53 interacts with 4 other genes, namely BAI, TSC1, DDB2 and

GADD45A, which are significantly down-regulated in tumor sam-

ples as compared to normal samples (Supplementary Fig. S8a).

AKT1 is a member of AKT signaling and it is known that active

AKT signaling mediates degradation of the tumor suppressor TP53

(Abraham et al., 2014). Hence, overexpression of AKT1 could be

the cause of TP53 downregulation. Somatic mutations detected in

AKT1 (E17K) are known to exhibit oncogenic properties and acti-

vate downstream signaling by localizing AKT to the plasma mem-

brane (Carpten et al., 2007).

Interestingly, TP53 has been suggested to be indirectly regulated

by MYC with the help of MDM2 (Phesse et al., 2014), and it would

be interesting to examine how aberrations in MYC affect the expres-

sion of TP53. More precisely, MYC overexpression leads to MDM2

overexpression which is known to inhibit TP53 via binding to its

N-terminal domain and leading to its proteolytic digestion (Zhou

et al., 2016). Finally, CREBBP is an important coactivator of TP53

responsible for its transcriptional activity (Roeder et al., 1997). Thus,

loss of CREBBP function by mutations mimics and abolishes TP53

function. Some of the upstream genes, for example, TP53, AKT1,

MYC and CREBBP, follow a mutually exclusive mutation pattern

(Supplementary Fig. S8b), implying that they might be alternative hits

to disrupt the expression of TP53. Downstream of TP53, there are

several genes whose expression is controlled by TP53. Upon downre-

gulation of TP53, the expression of these genes is also downregulated.

Some of them have tumor suppressive properties. For example, TSC1

is a strong tumor suppressor and BAI1 is an angiogenesis inhibitor.

Apart from well-studied cancer genes, NetICS was able to detect

less known, recently discovered cancer genes. In lung cancer dataset,

XPO1, a recently discovered oncogene, was recovered in top 1% of

the ranked gene list. Inhibitors for XPO1 are a promising thera-

peutic strategy for lung (Kim et al., 2016) and ovarian (Chen et al.,

2017) cancer. Another oncogene, PLCG1, recovered in top 1% of

the ranked gene list in hepatocellular carcinoma, was recently also

shown to exhibit recurrent activating mutations in angiosarcoma

(Behjati et al., 2014) and somatic mutations in cutaneous T-cell

lymphomas (Vaqué et al., 2014) that lead to increased cell prolifera-

tive mechanisms. Finally, GNG2, a gene shown recently to inhibit

metastasis in human melanoma cells with decreased FAK activity

(Yajima et al., 2014), was predicted as mediator gene (top 1%) in

the uterine corpus endometrial carcinoma dataset and found down-

regulated in 31% of the tumor samples (Supplementary Fig. S14).

4 Discussion

We have developed NetICS, a new method for prioritizing cancer

genes based on the integration of multi-omics data on a directed

functional interaction network. NetICS provides a flexible computa-

tional framework for per-sample network-based integration of a

2446 C.Dimitrakopoulos et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty148#supplementary-data
Deleted Text: ,
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty148#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty148#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty148#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty148#supplementary-data
Deleted Text: 6
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty148#supplementary-data


variety of data sources that include causal (genetic aberrations, dif-

ferential methylation of the promoter region and miRNA differen-

tial expression) and consequential cancer events (gene and protein

expression measurements). In our applications of NetICS, we have

integrated different types of genetic aberrations, namely somatic

mutations and copy number variations as well as methylation and

miRNA expression data. In the future, one may integrate additional

types of more complex mutational patterns. For example, most can-

cer types exhibit changes in chromosome number (aneuploidy), and

more complex rearrangements, such as kataegis (Nik-Zainal et al.,

2012) and chromothripsis (Stephens et al., 2011), have been

described. NetICS is capable of fusing different types of differential

expression measurements, for example, transcriptomics and prote-

omics. We have used Fisher’s method to combine P-values of differ-

ential gene expression obtained from RNA-seq count data and

protein expression derived from RPPA experiments (Spurrier et al.,

2008). The same approach will also allow to fuse other types of dif-

ferential expression measurements, for example, at the phosphopro-

teome level. There are several ongoing efforts for characterizing the

TCGA tumors in terms of their proteome and phosphoproteome

such as Koboldt et al. (2012) and Coscia et al. (2016). In the future,

it will be interesting to incorporate these data at the level of differen-

tially expressed genes (blue-colored nodes at Fig. 1).

We demonstrated that NetICS was able to detect both frequently

(e.g. TP53) and infrequently (e.g. EP300) aberrant genes. A gene

that is aberrant in several samples will, in general, be ranked higher

than non-aberrant genes, because of the restart probability of the

random walker during network diffusion. A high ranking score in

the rest of the samples will imply a mediator effect for the gene,

when it is not aberrant. This is the main reason why NetICS was

successful in ranking high genes that are silent, i.e. not affected by

mutation. Another gene detected by NetICS that exhibits low muta-

tional frequency in breast cancer is AKT1, which is aberrant in less

than 1% of the samples, while other genes exhibit high mutational

frequencies, such as KRAS in lung squamous cell carcinoma which

is aberrant in 26% of the sample. In the TCGA breast cancer data-

set, NetICS identified in the top 5% of the list genes related to breast

cancer, such as PTEN, TP53, CDH1 and ERBB2. Similarly, in the

lung cancer dataset, NetICS identified known lung cancer genes

such as AKT1, EGFR, KRAS, NRAS and PIK3CA among the top

5% of the ranked genes (Supplementary Tables S6–S10).

NetICS provides insight on how aberration events that are very

different between samples of the same cancer type can lead to the

same expression changes in other genes due to gene interactions.

The aberration events include aberrations in the genome, differential

methylation and significantly differentially expressed miRNA be-

tween tumor and normal tissue. This fact can aid in distinguishing

driver from passenger aberration events. For example, the driver

mutations will possibly be the ones affecting the same downstream

targets, i.e. the mediator genes. In the same way, NetICS can help in

the detection of cancer driver genes that are aberrant in a small part

of the tumor samples and are difficult to detect with a frequency-

based method. However, we acknowledge that NetICS can only

examine the effects of genes that are present in the interaction net-

work. Moreover, the results may be biased towards highly con-

nected genes as these have a higher chance of having aberrant or

differentially expressed genes in their network neighborhood.

However, as already shown in Leiserson et al. (2015), the asymmet-

ric diffusion function that NetICS uses (Eq. 2) is less biased towards

hubs than previously used symmetric diffusion techniques.

NetICS is a general and flexible computational method for process-

ing various cancer-related events on the network level. It can help

identify new cancer genes that act either silently or explicitly in promot-

ing cancer progression. A tumor suppressor can be mutated in one sam-

ple leading to its loss of function, whereas in another sample, the same

tumor suppressor might not be mutated but still downregulated because

of a nearby interacting gene which is genetically altered. By identifying

the heterogeneous causal cancer events that converge to functionally

related mediator genes, NetICS can elucidate the different ways in

which the same pathways are affected in different samples. Eventually,

new personalized diagnostic and therapeutic opportunities across cancer

types may arise in this manner, for example, by drug repositioning.
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