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Abstract

Background: Perfusion imaging has become an important image based tool to derive the physiological
information in various applications, like tumor diagnostics and therapy, stroke, (cardio-) vascular diseases, or
functional assessment of organs. However, even after 20 years of intense research in this field, perfusion imaging
still remains a research tool without a broad clinical usage. One problem is the lack of standardization in technical
aspects which have to be considered for successful quantitative evaluation; the second problem is a lack of tools
that allow a direct integration into the diagnostic workflow in radiology.

Results: Five compartment models, namely, a one compartment model (1CP), a two compartment exchange
(2CXM), a two compartment uptake model (2CUM), a two compartment filtration model (2FM) and eventually the
extended Toft’s model (ETM) were implemented as plugin for the DICOM workstation OsiriX. Moreover, the plugin
has a clean graphical user interface and provides means for quality management during the perfusion data analysis.
Based on reference test data, the implementation was validated against a reference implementation. No differences
were found in the calculated parameters.

Conclusion: We developed open source software to analyse DCE-MRI perfusion data. The software is designed as
plugin for the DICOM Workstation OsiriX. It features a clean GUI and provides a simple workflow for data analysis
while it could also be seen as a toolbox providing an implementation of several recent compartment models to be
applied in research tasks. Integration into the infrastructure of a radiology department is given via OsiriX. Results
can be saved automatically and reports generated automatically during data analysis ensure certain quality control.
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Background
Perfusion imaging has become an important image
based tool to derive the physiological information in
various applications, like tumor diagnostics and therapy,
stroke, (cardio-) vascular diseases, or functional assess-
ment of organs [1, 2]. Mostly this technique is applied in
magnetic resonance imaging (MRI) [3] but also emerges
into the field of computed tomography (CT) [4, 5] and
ultrasound (US) [6]. Especially in MRI, this technique
benefits of good tissue contrast, that it is noninvasive

and without the application of ionized radiation. A com-
mon approach to measure perfusion using MRI is dy-
namic contrast enhanced (DCE) MRI, using T1-
weighted sequences to record the local signal change
due to the contrast agent bolus passing through the ob-
served area. By applying so called pharmacodynamic
models to the data hemodynamic parameters like the
blood flow (or perfusion), blood volume, mean transit
time or the extravasation of the contrast agent from the
blood stream e.g., into the interstitial space can be calcu-
lated. In recent years, added value of DCE-MR perfusion
imaging has been reported in various application, e.g.,
for kidney [7–9], liver [10], or heart disease [11]. In
prostate cancer DCE-MR perfusion imaging has
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developed as one part of a multi-parametric approach to
stage cancer [12, 13]. It is also applied in preclinical
functional imaging [14, 15]. However, even after 20 years
of intense research in this field, perfusion imaging
by DCE-MRI still remains a research tool without a
broad clinical usage. One problem is the lack of
standardization in technical aspects which have to be
considered for successful quantitative evaluation, includ-
ing sequence and contrast agent dose optimization [16]
model selection [17], correct selection of the arterial in-
put function [18, 19], or correction of motion artifacts
[20, 21]. Recently, efforts are made to overcome this,
e.g., by the Quantitative Imaging Biomarkers Alliance
(QIBA) [22] of the Radiological Society of North America
(RSNA) or the EIBALL – European Imaging Biomarkers
Alliance [23].
The second problem is a lack of tools that allow a dir-

ect integration into the diagnostic workflow in radiology.
To the best of our knowledge, apart from the work pre-
sented herein, there are only few research tools that are
also integrated into a DICOM workstation [24, 25] . Re-
search tools that allow calculations of hemodynamic pa-
rameters are developed often as offline solutions and the
clinician has to transfer the large image data sets to a
separate workstation for analysis [3, 24–28]. Further-
more, to include the results in the clinical workflow they
have to be transferred back into the diagnostic system.
However, results obtained from most research software
are stored in various formats that could not easily be
converted to DICOM objects to be stored in picture
archive and communication systems (PACS) [24]. Cer-
tainly, the aforementioned procedure is feasible in the
research context investigating small patient groups; how-
ever, in daily practice this becomes cumbersome.
Commercial software solutions to analyse DCE-MRI

data exist and they allow integration into the clinical en-
vironment. This comprises products of independent
companies but also solutions provided by the vendors of
the MR scanners, but suffering of multi-vendor capabil-
ity. Furthermore, a major problem of these solutions is
that they are black-box, which means that validation and
absolute benchmarking is difficult. This has real clinical
implications, as demonstrated recently in the study by
Heye et al. [26] which reported that a “considerable vari-
ability for DCE MR imaging pharmacokinetic parame-
ters (Ktrans, kep, ve, iAUGC) was found among
commercially available perfusion analysis solutions” and
that therefore “clinical comparability across perfusion
analysis solutions is currently not warranted”.
In addition, such software is expensive in respect to

the cost-benefit ratio: available commercial software so-
lutions are often dedicated to a single application, i.e.,
heart, brain, or prostate perfusion [27] which does not
allow for easy extension and adaption beyond the

intended usage in the clinical situation [28]. Therefore,
only few licenses or dedicated workstations are usually
purchased which prevents ubiquitous usage [29, 30].
Recently our group presented a perfusion analysis tool

(UMMPerfusion) that aimed at overcoming some of the
aforementioned problems [31]. In the initial version of
our software, we provided means for quality assurance
by visualizing the arterial input function (AIF) online
while drawing its respective region of interest and by
generating automatically a report logging all settings of
the respective data analysis session. The software itself
was designed as a plugin for the Open Source DICOM
Workstation OsiriX [32, 33] which can be fully embed-
ded into the radiological workflow [30] and thereby, cal-
culated results by our software, too. The decision to
select OsiriX, besides that it has been installed for re-
search and clinincal use in our Radiology department
was that OsiriX became a very popular and powerful
software with more than 40.000 users worldwide at very
low costs. By implementing the perfusion anaylsis soft-
ware as OsiriX plugin and Open Source, we hope to
reach a large number of users and to bring perfusion im-
aging forward by providing analysis software.
To calculate hemodynamic parameters, however, so far

only a model-free deconvolution approach was imple-
mented. Pharmacokinetic models reported in the litera-
ture [34] offer additional parameters, e.g., permeability
or extravascular extracellular volume and describe the
tissue in more detail.
In this paper, we will present recent extensions of our

software. This comprises the implementation of several
well established compartment models and their integra-
tion into the plugin and the quality management devel-
oped for this software.

Implementation
Perfusion models
Besides the existing deconvolution approach described in
detail in [31], five additional models were implemented,
namely, a one compartment model (1CP), a two compart-
ment exchange (2CXM), a two compartment uptake
model (2CUM), a two compartment filtration model
(2FM) and eventually the extended Toft’s model (ETM). A
detailed description with theoretical background [35] and
the reference implementation in IDL (Exelis VIS, Boulder,
CO) of the single models is detailed in [36]. The imple-
mentation of the compartment models in this work was
translated from IDL to C/C++. Table 1 shows the different
parameters to be obtained by the implemented models.
We have chosen to model the capillary bed in terms of

arterial plasma concentration (ca), tissue plasma concen-
tration (cp), plasma volume (vp) and plasma flow(Fp) as
in [37]. Others use arterial blood concentration (ca,b),
tissue blood concentration (cb), blood volume (vb) and
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blood flow (F), and use the term ‘AIF’ for ca,b. There are
no experimental indications that either plasma- or blood
parameters form better biomarkers, so the choice be-
tween the alternatives is a matter of historical conven-
tion. All equations can be translated between
conventions by inserting the haematocrit of arterial
blood (Hcta), and the haematocrit of tissue blood (Hctt).
In practice, the blood concentration ca,b is measured
from an ROI in a feeding artery. ca is then derived by
dividing ca,b by 1-(Hcta) and a known value for the arter-
ial haematocrit Hcta. A measured value for the individ-
ual subject should be used when available; if not, a
standard value such as Hcta = 0.45 is often used [38].
All models are fitted to the measured data by non-

linear least square optimization, e.g., by the Levenberg-
Marquardt-Algorithm (LMA). In our implementation,
we incorporated the LMA implementation by Mark-
wardt et al. (mpfit, version 1.2) [39]. The mpfit algorithm
thereby serves as a general solver of the optimization
problem. The respective compartment model was imple-
mented as a function that is passed to the solver.
Thereby, a modularization and easy extension of our
plugin is possible. To add a further model, only the
model function has to be implemented.
Another benefit of this modularization is that parame-

ters related solely to the fit algorithm (stopping criteria,
number of iterations, etc.) can be configured and main-
tained globally and be provided to all models. This pre-
vents different settings for each perfusion model and
allows comparison of results across perfusion models. In
the current implementation, all such parameters have
been adopted from the reference implementation in PMI
[40]. Each parameter can be altered by the user accord-
ing to their needs. Also, to constrain the fitting algo-
rithm, the initial parameters of the compartment models
can be fixed or upper and lower bounds can be set. All
user defined settings can be saved as preferences for fu-
ture analyses. Furthermore, the preferences can be
exported to be distributed within or across institutions
or to have common preferences for e.g., a certain study
or application. It is saved in the property list format
(plist) provided by the Mac OSX operating system [41].

Data analysis options
In our software, for the newly implemented compart-
ment models, two ways to analyze the data were imple-
mented; based on a region of interest (ROI) and
calculation of parametric maps. Furthermore, the user
can choose to compare different ROIs (within the same
data set) using one model or to compare the different
compartment models among each other.

ROI based analysis
The ROI approach allows selecting a specific area within
the data set to be analyzed. Within this (tissue) ROI, all
time intensity curves of the enclosed pixels are averaged
and then the respective model is fitted to this curve.

Calculation of parametric maps
In the map mode, a voxel wise fitting of the compart-
ment model is performed. Although means for
parallelization of the calculations are implemented
within our software using Grand Central Dispatch [42],
this approach can be time consuming, especially in large
datasets and within the background voxels where no
meaningful fit results are expected and the fit algorithm
will probably not converge. Therefore, we force the user
to select a rectangular region around the respective part
in the image to be analyzed. This ROI is propagated
throughout the whole 3D stack and within this volume,
voxel wise fitting is performed.

Comparing multiple perfusion models
Choosing the right perfusion model to analyze the ob-
tained DCE-MRI data is critical [3, 43]. As outlined be-
fore, we implemented a range of models with different
amount of free parameters to be fitted. For example, the
1CP has two free parameters while the 2CXM has four,
i.e., they model the tissue physiology differently.
In general, a too simple model might not capture the

physiology within the tissue while a too complex model
might overfit or the large amount of fitted parameters
cannot be estimated under stable conditions. Therefore,
comparing different models on the data at hand and

Table 1 Compartment models and their pharmacokinetic parameters and respective units as implemented in our software. Please
note that Ktrans = E*Fp and, for the ETM, by definition PS = Ktrans

Plasma Flow (Fp)
(ml/min/100 ml)

Plasma
MTT (s)

Plasma Volume
(ml/100 ml)

Interstitial
MTT (s)

Interstitial Volume
(ml/100 ml)

Extraction Fraction
(E) (%)

Permeability-surface
area product (PS)
(ml/min/100 ml)

Ktrans
(ml/min/100 ml)

1CP x x x

2CUM x x x x x x

2CFM x x x x x x x

2CXM x x x x x x x x

ETM x x x x x
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estimating the goodness of fit is a strategy to select the
most appropriate model.
To make this most feasible and easy, in our implemen-

tation, the user can switch between the different perfu-
sion models while our software keeps recent settings like
signal normalization, baseline, the selected AIF and tis-
sue ROI and therefore, provides them directly to the se-
lected model. Thereby, common errors during perfusion
analysis like nonsimilar ROI selection, changes in pre-
requisites are avoided. The user just simply needs to
press the ‘Generate’ button for computing the additional
model with all previous settings.
To automate this comparison, we added functionality

to loop over the different compartment models and cal-
culate for each the respective pharmacodynamic param-
eters. It is implemented for ROI based data analysis and
the calculation of parametric maps. To support the user
to evaluate the results two goodness-of-fit (GOF) mea-
sures are provided with the results, namely the χ2 error
and the Akaike information criterion (AIC) [44]. In case
of the calculations of parametric maps, respective maps
of χ2 error and AIC are provided. When comparing sev-
eral models, given the reported AIC values of each
model, the relative information loss, i.e., how good the
model fit the data, can be calculated

e
AICi−AICmin

2

where AICi is the actual AIC of the model I and AICmin,
the minimum AIC value of all models.

Comparing several ROIs with one model
Another way to analyze DCE-MRI data is to compare
different (tissue) ROIs within the data set, e.g., to see dif-
ferences between healthy and diseased tissue or between
paired organs like the kidney. To foster automation here
too, we also implemented an option to loop over all (tis-
sue) ROIs within the data set and calculate the selected
model for these.

Software design
The design of our software follows the Model–View–Con-
troller (MVC) design pattern [45, 46]. Thereby, the com-
munication between the user, the graphical user interface
(GUI) for visualization (view) and the model is handled
via a so called controller (cf. Fig. 1). This allows a separ-
ation between the computation and the visualization/ user
interaction in our system and makes our plugin modular
and extensible. For example, the design of the GUI can be
changed without the need to change the model (e.g., com-
putation of the compartment models). The controller
steers the communication between view and model. In the
following two examples depicting briefly the software de-
sign are presented.

Graphical user interface
In our implementation the GUI represents the Control-
ler of the MVC concept. It allows the user to steer the
calculation implemented in the model. Results of the
calculation are passed on to the View by calling the re-
spective visualization function provided by OsiriX (so
called 2D viewers).
In the initial version of the plugin, only the fast model-

free deconvolution algorithm was implemented [28]. Since,
we implemented several other models the GUI was ex-
tended. Thereby, care was taken to not overload the inter-
face so that the user can easily work with the software.
At start the user is presented just a top down menu to

select their perfusion model of choice (see Fig. 2a). For
each perfusion model a panel showing the inputs is visu-
alized when selected from the top down menu (cf.
Fig. 2b). We designed the GUI in such way that work-
flow (selection of input parameters) needed to calculated
the model was mostly kept the same. Overall, up to six
steps (see Fig. 2, red numbers) have to be performed to
obtain a result. This comprises to select the model of
choice (1), to select the arterial input function (AIF) and
a region of interest (ROI) of the respective tissue to be
analysed (2), selection of the type signal normalization
(3) and the baseline (4), i.e., number of time points to in-
clude for the signal normalization. Moreover, the user
has the option to select a range of slices from the 3D
volume and to trim the time series (5). Eventually, the
user can set a name prefix (6) which is added to the re-
sults. This might be beneficial to tag results if different
parametrization of a model during a data analysis session
is performed. Ticking the ‘autosave’ checkbox allows for
saving the results directly to the OsiriX database automat-
ically. Saving results can be also triggered manually by hit-
ting the export button. After successfully following the
above steps, the ‘Generate’ button starts the calculations.
Technically, after initialization of the plugin, the GUI

depicted in Fig. 2 is created by a controller to steer this
panel following the above described MVC design pat-
tern. Figure 3 shows, as an example, the call graph of

Fig. 1 Sch. of the model-view-controller software design pattern.
Arrows depict interactions between the three components.
Source: https://de.wikipedia.org/wiki/Datei:ModelViewControllerDia-
gram2.svg#filelinks
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the initialization method depicting the connection to
Views, to data management objects (e.g., to store infor-
mation about ROIs), and to controller that supervises
the actual computation.

Compartment models
To realize a flexible solution and to easily extend our
software by possible other compartment models, we
followed the object-oriented programming paradigm.
Figure 4 shows the inheritance diagram of the UMM-

PAlgorithmController that provides a general class for
calculating a perfusion model based on the GUI inputs
and the DCE-MRI data. From this general class, it could
be regarded as a template, specific sub controllers are
inherited. These hosts the actual implementation needed
to e.g., calculate a compartment model and provide
parametric maps as a result. Thereby, on the level of this
controller, only an interface to the actual compartment
model is implemented. The implementation of the

respective model is encapsulated and called as a method
by the instanced controller object during run time.
To implement a new compartment model, only three

steps have to be performed: a) the respective implemen-
tation of the model, b) extension of the sub controller to
interface the model, and eventually to adapt the GUI
appropiatly to be able to select the model.

Quality management
Besides the technical (implementation of the algo-
rithms) and medical/physiological (modeling the per-
fusion in tissue) aspects of this software, another part
of this software is quality management. On the one
hand, this comprises testing and evaluation but also
documentation of the software to allow for certifica-
tion of the software for clinical use. The UMMPerfu-
sion plugin was certified in-house according to the
German Medical Product law. Besides the necessary
documents, e.g., risk analysis etc., we designed a test-
ing scheme and corresponding reference datasets [28]

Fig. 2 Graphical User Interface of the UMMperfusion software. a initial view after loading the plugin, b drop down box showing the different
models and analysis modes, c example of a specific panel (here 2CXM) to perform the calculation. The red numbers (from 1 to 6) depict the
workflow for analyzing DCE-MRI data using our software
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to continually evaluate changes to the software. In
addition, we also provide a bug tracking system so
that user can report errors or problems with the soft-
ware but also suggestions of new features. All of this
is provided via an online platform called OpossUMM
(http://www.opossumm.de) which is freely accessible.
Moreover, we also implemented means to support the

user in its daily work to detect errors arising from the
data analysis. This comprises a preview of the AIF and a
report automatically generated and saved with the pa-
tient record. The AIF preview display thereby is update
immediately if the user alters the corresponding ROI,
e.g., by resizing or moving it. Thereby, the user can, be-
fore performing any calculations, check if a correct AIF
was selected and prevent results hampered by this. The
report gives an overview of all user selected parameters
(AIF, baseline, etc.) of the respective data analysis.

Furthermore, it also visualizes the selected ROIs but
also the initial parameters of the fitting algorithm. By
this, a documentation of the steps taken to perform a
data analysis is given allowing for a retrospective
quality check, also.

Results and discussion
Our software plugin was implemented and tested on
Mac OSX systems version 10.8.x using OsiriX versions
5.5.1, 5.6, and 5.9. Apart from these OsiriX versions, the
software may work but no tests by the authors were per-
formed so far.
Figure 5 depicts the AIF display and the GUI for an

example data analysis of the prostate. The result of this
ROI based analysis using the 2CUM is depicted in Fig. 6
while Fig. 7 shows the corresponding report that is

Fig. 3 Call graph of the UMMPPanelController class. This controller steers the visualization of the individual panels (see Fig. 2c) of the respective
models. It also calls several other objects (e.g., the algorithm controller for calculating the compartment models or classes for visualizing the AIF)
within the plugin
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Fig. 4 Class diagram of UMMPAlgorithmController. It depicts the respective classes and their methods. The arrows show the inheritance of the
subclasses. Here, the subclasses implement the different data analysis option (ROI-based, parametric maps, the deconvolution approach, and the
advanced options to compare models)

Fig. 5 Display of the GUI and the AIF (red curve) for example DCE MRI data set of the prostate. Here, the AIF was selected in one of the Iliac
artery. The blue curve is the mean signal intensity curve of prostate tissue corresponding to the blue ROI
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created when exporting the data into the OsiriX data-
base. The report is a DICOM object that can be archived
with the patient data into PACS systems.
In the ROI based analysis as well as for the report, the

calculated parameters derived from fitting the model to
the data are listed. Also, the fit itself to the data is visual-
ized in a plot. To assess the quality of the fit not only
visually, we provide two goodness-of-fit measures (χ2,
AIC). While the χ2 can be used to judge if the model fit
was good, the AIC can be used to compare two or more
models given the data.
Similar, the results of the other implemented compart-

ment models for a ROI based analysis would look alike.
Analyzing the data using the pixel based calculation will
result in a parametric map for each of the respective pa-
rameters of corresponding compartment model. As an
example, Fig. 8 depicts such an analysis for a DCE-MRI
data set of the kidney employing the 2CFM.
To evaluate the implemented compartment models we

used a procedure previously described in [31] utilizing a

reference test data set constructed from a DCE-MRI
data set of the prostate. A time series with 100 time
points was constructed taking a matrix of 8 × 4 pixels as
one slice. Half of these pixels were taken from a vessel
representing the AIF in the original data while the
remaining pixels were sampled from prostate tissue. To
calculate reference values for each compartment model,
the software PMI [40], an authorative research tool for
perfusion analysis was selected. Obtained reference
values for each parameter and the corresponding values
of our software were compared. In all settings, no differ-
ences between reference and our implementation were
detected (see Table 2). By this we conclude that the im-
plementation of the algorithm is technically correct.
In order to process data by our plugin, two prerequi-

sites are required, a) the data has to be in DICOM for-
mat and b) it must be loaded into the OsiriX 4D viewer.
To further evaluate the robustness of our software, also
for processing image data from different vendors, perfu-
sion data sets from the three main vendors of clinical

Fig. 6 Example of ROI-based data analysis and result for a DCE-MRI of the prostate. The window in the top left area of the figure depicts the
result of this analysis, showing the fit (black curve) to the data (red curve) and also listing the calculated parameters and GOF measures
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Fig. 7 Report created from the data analysis depicted in Fig. 6. This report is stored as DICOM object in the OsiriX database together with the
patient record. Besides the actual results, this report lists the employed model, all relevant parameters set during the analysis (e.g., selection of
baseline), and also the initial parameters and limitations passed to the fit algorithm. Corr. Akaike Information Crit. and Final Chi Square depict
measures of the goodness of the fit
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MR systems (Siemens, GE, Philips) were collected and
processed successfully. The major challenge in process-
ing data sets of the different vendors is that information
of the temporal resolution is stored differently in the
DICOM headers, especially for the Philips multi frame
storage format (see Table 3). If no such timing informa-
tion can be extracted from the DICOM header, at the
moment, no calculation of the models is possible. We
are currently also testing to read DICOM data provided
by small animal scanners (Bruker). DCE-MRI data of 2D
acquisitions could be successfully analysed.
In addition special slice positioning (e.g., 1 transversal

slice, 4 coronal slices) reported in the literature [1, 7]
caused problems when loaded into the OsiriX 4D viewer, a
prerequisite for our plugin to detect the temporal domain
of the data. Using an option in OsiriX to resort this data,
the 4D viewer could be opened and thereafter, our plugin
could process this data without problems (see Fig. 9).
A current drawback of our implementation is that the

non-linear fitting of parametric maps is time consuming.
To reduce the computation time, at present a rectangu-
lar ROI has to be placed in the DCE-MRI image series.
To further improve the computational speed of the cal-
culating parametric maps, a linear least squares ap-
proach as proposed by Flouri et al. [36] will be explored.
Furthermore, an implementation of the compartment
models in a Graphics Processing Unit (GPU) will be
considered.
Besides our plugin several research tools exist for per-

fusion analysis in DCE-MRI [47–52] which might allow

for benchmarking and comparison of the different solu-
tions. In this work, we only compared our algorithms
against the reference implementation in PMI [40] to ver-
ify the technical correctness. A comparison of PMI
against other perfusion analysis software using the QIBA
protocol and different levels of noise was reported by
Cron et al. [53]. Beuzit et al. compared our plugin to
four other software solutions, including commercial soft-
ware from all three main vendors using simulated and
measured data [54]. In this study, the ETM was used
and the authors reported a bias for all solutions and
pharmacokinetic parameters ranging from 0.19 min−1 to
0.09 min−1 for Ktrans, −0.15 to 0.01 for ve, and −0.65 to
1.66 mmol/L−1/min. In both studies the variances in the
parameters between the different software solutions
were attributed to various reasons. Cron et al. observed
increased unphysiological values with increasing noise
while Beuzit et al. stated that probably the (not docu-
mented) fitting routine might have had an influence on
the results. As stated by Heye et al. such comparison
might be in general difficult [26], especially for the com-
mercial solution since little is known about their imple-
mentation. Available research tools are implemented on
various platforms, requiring different input formats and
outputs and eventually implemented different fitting al-
gorithms which make a comparison difficult to interpret.
Furthermore, data sets with known true values or avail-
able gold standard and fully control on the measured or
simulated data should be employed when comparing
and validating software to minimize e.g., inter patient
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Fig. 8 Parametric maps generated using UMMPerfusion and the 2CFM. Top row from left to right: plasma flow (FP), plasma volume (VP), plasma
mean transit time (PMTT). Lower row from left to right: extraction fraction (E), permeable surface area product (PS), and tubular mean transit
time (TMMT)
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variability [55]. All this implies that there is a need in
standardizing the DCE-MRI perfusion analysis.
Compared to the above mentioned research tools our

plugin underwent an in house certification process. This
process which involves risk analysis and thorough docu-
mentation also gave insights howto improve the work-
flow, the structure of the source code and to prevent
errors caused accidently by users and thereby improve

stability of the plugin. Eventually, it allows for using our
plugin for research but also for clinical routine [56]. All
documents and procedures of this certification are docu-
mented at our website (http://www.opossumm.de) to
help others to perform an in house certification by
themselves or to adapt the procedure according to their
local regulations.

Conclusions
We developed open source software to analyse DCE-
MRI perfusion data. The software is designed as plugin
for the DICOM Workstation OsiriX. It features a clean
GUI and provides a simple workflow for data analysis
while it could also be seen as a toolbox providing an im-
plementation of several recent compartment models,
adapted from the software PMI, to be applied in re-
search tasks. Integration into the infrastructure of a radi-
ology department is given via OsiriX. Results can be
saved automatically and reports generated automatically
during data analysis to ensure certain quality control.

Availability and requirements
Compiled binaries and source code of our Open Source
software is available for download via the OpossUMM
platform (http://www.opossumm.de). The software re-
quires at least Mac OSX 10.8.x and was tested with
OsiriX versions 5.5, 5.6 and 5.9. For optimal perform-
ance and to handle large datasets, the installation of the
commercial available 64bit extension of OsiriX (now in-
cluded in OsiriX MD) is suggested.

Ethics approval
The data were acquired in different studies at our insti-
tution and were retrospectively selected for this paper.
No permission to use the data in this study was re-
quired, however, for the data acquisition and retrospect-
ive further usage local IRB approval (Institutional
Review Board II, Medical Faculty Mannheim, Heidelberg

Table 2 Resulting pharmacokinetic parameters calculated by the
different models and the reference test data set. Model evaluation
was performed by the ROI-based approach, i.e., selecting the AIF as
ROI in the upper row of the test data set and the tissue ROI in the
lower row (see [31] for details on the test data set). For our test data
set we do not expect physiological reasonable values but identical
results to verify the technical correct implementation of the
algorithms in UMMPerfusion

Parameter Reference UMMPerfusion

1 CP

Plasma Flow 0,148 0,148

Plasma MTT 0,012 0,012

Plasma Volume 0,033 0,033

2 CXM

Plasma Flow 0,056 0,056

Plasma MTT 0,092 0,092

Plasma Volume 0,133 0,133

Interstitial MTT 73684,672 73684,672

Interstitial Volume 0,129 0,129

Extraction Fraction 0,149 0,149

Perm.-surf. Area product 0,088 0,088

2 CFM

Plasma Flow 0,264 0,076

Plasma MTT 0,03 0,03

Plasma Volume 0,076 0,076

Tubular MTT 767313,375 767313,375

Tubular Flow 0,166 0,166

Extraction Fraction 0,001 0,001

2 CUM

Plasma Flow 0,032 0,032

Plasma MTT 0,011 0,011

Plasma Volume 0,033 0,033

Perm.-surf. Area product 0 0

Extraction Fraction 0 0

ETM

Plasma Volume 0,095 0,095

Ktrans 0,122 0,122

Interstitial MTT 0,023 0,023

Interstitial Volume 0,007 0,007

Table 3 DICOM header tags addresses in hexadecimal notation
used by UMMperfusion to derive the temporal resolution of the
DCE-MRI series. For the Bruker DICOM, at the moment only 2D
+ t data can be processed, the time information is calculated
from TR and the number of acquired images

Vendor DICOM tags used for reading
temporal resolution

Siemens “0X0008,0X0032”

GE, Philips single frame “0X0018,0X1060”

Philips multiframe “0X0008,0X0033”

“0X0008,0X0032”

Bruker “0X0018,0X1310”

“0X0018,0X0080”
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University) and written consent of the patients/ volun-
teers invoveld was obtained at time of the original study.
All patient identifing information has been removed
prior to the data analysis.
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