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Abstract

Background: Diffusion weighted imaging(DWI) mode mainly includes intravoxel incoherent motion (IVIM), stretched
exponential model (SEM) and Gaussian diffusion model, but it is still unclear which mode is the most valuable in
predicting the response to radiochemotherapy for cervical cancer. This study aims to compare the values of three
mathematical models in predicting the response to synchronous radiochemotherapy for cervical cancer.

Methods: Eighty-four patients with cervical cancer were enrolled into this study. They underwent DWI examination by
using 12 b-values prior to treatment. The imaging parameters were calculated on the basis of IVIM, SEM and Gaussian
diffusion models respectively. The imaging parameters derived from three mathematical modes were compared
between responders and non-responders groups. The repeatability of each imaging parameter was assessed.

Results: The ADC, D or DDC value was lower in responders than in non-responders groups (P = 0.03, 0.02, 0.01). The α
value was higher in responders group than in non-responders group (P = 0.03). DDC had the largest area under curves
(AUC) (=0.948) in predicting the response to treatment. The imaging parameters derived from SEM had better
repeatability (CCC for DDC and α were 0.969 and 0.924 respectively) than that derived from other exponential models.

Conclusion: Three exponential modes of DWI are useful for predicting the response to radiochemotherapy for cervical
cancer, and SEM may be used as a potential optimal model for predicting treatment effect.
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Background
The synchronous radiochemotherapy has become a stand-
ard therapeutic regimen for advanced cervical carcinoma
later than IIB [1]. The previous studies [2–4] have demon-
strated that DWI is a valuable tool for predicting the early
response to radiotherapy for solid tumors, such as rectal,
prostate and cervical tumor.
Theoretically, DWI parameters can be acquired on the

basis of different mathematical modes, such as IVIM, SEM
and Gaussian diffusion models. Das et al. [5] investigated

the performance of Gaussian diffusion model (mono- ex-
ponential mode) of DWI in predicting the response to
treatment in locally advanced cervical cancer, and found
that ADC value was a good predictor for pathological
response of cervical cancer. Zhu et al. [6] explored the
application of IVIM DWI in predicting long-term progno-
sis in patients with advanced cervical cancer, and found
that IVIM parameters were very useful for predicting long-
term prognosis. Zhu et al. [7] compared the values of SEM,
IVIM and mono-exponential modes of DWI in predicting
pathological response to neoadjuvant radiochemotherapy
for rectal cancer, and found that α might be more valuable
than ADC in predicting treatment effect because it demon-
strated better predicting performance and better reliability.
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However, up to now, there has been no study to explore
which DWI mode is most effective in predicting the re-
sponse to radiochemotherapy for cervical cancer. There-
fore, this study aimed to compare the value of three DWI
modes in predicting the response to synchronous radioche-
motherapy for advanced cervical cancer, and to determine
which mode is most excellent in predicting treatment
effect.

Methods
In the present study, we aimed to systematically com-
pare the value of Gaussian diffusion model, IVIM and
SEM modes in predicting the response to radiochemo-
therapy for cervical cancer in order to establish the most
effective DWI mode in predicting treatment effect.

Study design and population
This is a prospective clinical observational single-center
study. This study was approved by the local ethics com-
mittee (No. 2013–0112), and written informed consents
were obtained from all the patients.
The patients who were suspected to have advanced

cervical cancer were enrolled into this study from July 7,
2013 to July 31, 2017. The inclusion criteria included:
(1) All the patients had biopsy-proven cervical cancer,
and International Federation of Gynecology and Obstet-
rics (FIGO) stage was IIB-IVA; (2) The mean age was
over 18 years old; (3) The patients were scheduled to re-
ceive radiochemotherapy, and there was no history of
chemotherapy or radiotherapy before the first MR exam-
ination; (4) The patients could complete follow-up MRI
examinations on time.
Exclusion criteria included: (1) The patients didn’t

complete the full course of radiochemotherapy; (2) The pa-
tients didn’t complete all the follow-up MR examinations on
schedule; (3) There were obvious artifacts on DW images.
(4) There was a contraindication to MRI examination (such
as allergy to contrast media or claustrophobia).

MRI technique
The MRI examination was performed on a 3.0 T MRI
scanner (Discovery MRI 750, GE Company, USA). For
all MRI examination, the patient kept supine position
and an empty urinary bladder.
The conventional imaging sequences included: (1)

Axial FSE T1WI: TR/TE: 400.0/8.4 ms, slice thickness:
5.0 mm, inter-slice gap: 1.0 mm, matrix size: 320 × 256,
number of excitation (NEX) = 2, field of view(FOV): 40
cm × 40 cm. (2) Axial FSE T2WI: TR/TE: 6200.0/136.0
ms, slice thickness: 5.0 mm, inter-slice gap: 0.5 mm,
matrix size: 320 × 256, NEX = 2, FOV: 40 cm × 40 cm.
(3) Sagittal FSE T2WI: TR/TE: 5000/1000 ms, slice
thickness:3 mm, inter-slice gap: 0.3 mm, matrix size:
256 × 256, NEX = 2, FOV: 36 cm × 36 cm.

Multiple b-values DWI was obtained by using single-
shot spin-echo echo-planar imaging (EPI) sequence. The
main parameters were as follows: 12 b-values: 0, 10, 25,
50, 75, 100, 150, 200, 400, 800, 1000 and 1500s/mm2,
NEX: 1, 3, 3, 3, 3, 2, 2, 2, 2, 3, 5 and 6, TR/TE: 2000.0/
87.0 ms; slice thickness: 5.0 mm, inter-slice gap: 0.5 mm,
matrix size: 128 × 128. FOV: 38 cm × 38 cm. The imaging
duration was 7 min and 54 s.
The dynamic contrast-enhanced (DCE) images were

acquired by using liver acquisition with volume acceler-
ation sequence (LAVA-Flex). The main imaging parame-
ters were as follows: TR/ TE: 4.6/2.6 ms, slice thickness:
3 mm (sagittal imaging) or 5 mm (axial imaging), slice
gap: 0.5 mm, flip angle: 120, acceleration factor: 2, NEX:
4, FOV: 36 cm × 36 cm, matrix size: 256 × 256. The
contrast media were administered and followed by 20ml
saline flush by using a power injector. The imaging dur-
ation for each plane was 37 s.

Imaging analysis
All the imaging analyses were performed by two radiolo-
gists who had 8 and 10 years of experience on pelvic
MRI respectively. The two radiologists were blinded to
each other’s results. ROIs were manually drawn on DW
images at the b value of 800 s/mm2 under the guidance
of T2WI and DCE MRI. ROI encompassed as much of
tumor area as possible, and avoided the recognizable
necrotic or cystic areas. The mean value of each imaging
parameter for each ROI was calculated. The final value
of each imaging parameter was acquired from VOI
(volume of interest) for the total tumor. The calculating
equation was ƩAV/ƩA, where A was defined as the area for
each ROI at each slice of the tumor, and V as the mean
value of the imaging parameter for each ROI.
All functional maps of different parameters were

calculated by using MADC software on an AW 4.6
workstation provided by the manufacturer (GE Health-
care Company). The data were fitted by using a linear
fitting method for Gaussian model, while the data were
fitted by using a non-linear least-squares approach for
the non-Gaussian models.
The standard ADC was calculated according to the

conventional mono-exponential diffusion model by
using multiple b-values. The equation was S(b)/S0 =
exp.(−b˙ADC) [8].ADC represented the distribution of
diffusion-driven displacements.
The equation for intravoxel incoherent motion (IVIM)

model was Sb = (1-f) × exp. (−b·D) + f × exp. [−b (D* +
D)] [8].
Where D was defined as slow component of diffusion, D*

as incoherent micro-circulation, f as the volume fraction of
the protons linked to the intra-vascular component, and Sb
as the signal intensity in the pixel with b value.

Zhang et al. Cancer Imaging            (2020) 20:8 Page 2 of 9



The calculating equation for stretched exponential
model (SEM) was S(b)/S0 = exp.(−(b˙DDC)α) [9].
Where DDC represented the mean intravoxel diffusion

rate, and α was related to the intravoxel water molecular
diffusion heterogeneity. The range of α was 0~1. When
α = 1, the distribution of water molecule diffusion
obeyed Gaussian law, while the distribution would no
longer obey Gaussian law with increased heterogeneity
of tumor.

Synchronous radiochemotherapy
All the patients received radiotherapy combined with
chemotherapy. Radiotherapy regimen included external
beam radiation therapy (EBRT) and intracavitary brachy-
therapy (ICBT). EBRT was administered for 5 weeks at
the dose of 1.8 Gy daily (5 days/per week). The total cu-
mulative dose was 45Gy. From the last week of EBRT,
ICBT was delivered twice a week with a fraction dose of
6 Gy to point A, and the total dose was 30–40 Gy. The
chemotherapy (Cisplatin 40 mg/m2/w × 6w) was given
for all the patients. The median time interval between
first MRI examination and start of radiotherapy was 5
days (range: 3~7 days).

The classification of treatment effect
Follow-up MRI examination began 4~6 weeks after the
start of radiochemotherapy, and subsequently once every
3 months. The follow-up time lasted 1.5 years. Tumor
size was determined according to the largest diameter of
the lesion measured with electronic calipers on the
image that showed the largest axial section of the mass.
Two radiologists measured the tumor size independently
and were blinded to clinical information. When there
was a significant disagreement on the measurement of
tumor size between two radiologists, the third radiologist
took part in measurement and finally reached a consen-
sus after consultation. When the patient appeared as
complete response (CR) at any time point during 12
months, the response assessment ended, and for other
patients, response was assessed at 12 months. For the
patients who progressed before or those who couldn’t
complete the treatment, they were excluded from this
study.
The classification of response to radio-chemotherapy

included: (1)CR, the tumor disappeared completely; (2)
partial response (PR), the tumor had the decrease in diam-
eter more than 30% 12months after treatment; (3) pro-
gressive disease (PD), there was an increase of at least 20%
in diameter; (4) stable disease (SD), the tumor appeared as
neither sufficient shrinkage to qualify for partial response
nor sufficient increase to qualify for progressive disease
[10, 11]. CR or PR was classified as the responders group,
and SD or PD as the non-responders group.

Statistical analysis
Statistical analyses were carried out by using SPSS 20.0
package (SPSS Inc., Chicago, IL, USA). We investigated
the interobserver agreement on the measurement of im-
aging parameters by using the concordance correlation
coefficient (CCC) according to the following score cri-
teria: good agreement, > 0.75; moderate agreement, >
0.40~0.75; and poor agreement, < 0.40 [12]. We com-
pared the clinical and pathological characteristics be-
tween responders and non-responders groups by using
x2 test or Fisher’s exact test. The imaging parameters
were compared between responders and non-responders
groups by using the unpaired two-tailed t test. P < 0.05
was considered significant.
A receiver operating characteristic (ROC) was analyzed

in order to investigate the capability of imaging parame-
ters in predicting the response to radiochemotherapy.
The sensitivity and specificity were calculated on the
basis of the cut-off point of each imaging parameter.

Results
Patient characteristics
Eventually, 84 patients were included into this study. The
clinical and histopathological characteristics for all the pa-
tients were summarized in Table 1. The tumor in responders
group was smaller than that in non-responders group
(P = 0.04). There was a higher percentage of poorly dif-
ferentiated tumor in responders than in non-responders
group (P = 0.02).

Model fitting test
We fitted the different models with the average DWI
signals of the tumor respectively. The actual diffusion
attenuated signals deviated from the mono-exponential
attenuation substantially, which reflected non-Gaussian
diffusion behavior. The R2 value was 0.954 (P = 0.007),
0.926(P = 0.008) and 0.712(P = 0.006) in SEM model,
mono-exponential model and IVIM model.

The difference in imaging parameters between
responders and non-responders groups
The CCCs for standard ADC, D, D*, f, α, DDC were
0.912, 0.891, 0.823, 0.858, 0.969 and 0.924 respectively.
The results indicated that there was a good agreement
on the measurement of each imaging parameter between
two observers.
The imaging parameters derived from three DWI modes

were summarized in Table 2. The ADC, D or DDC value
was lower in responders group than in non-responders
group (P = 0.03, 0.02, 0.01), and the α value was higher in
responders group than in non-responders group (P = 0.03).
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The value of the parameters in predicting the response to
radiochemotherapy
The areas under the curves (AUCs) of ADC, D, α and
DDC in predicting the response to radiochemotherapy
were 0.865, 0.881, 0.766 and 0.948 respectively (Table 3).
DDC had a larger AUC compared to ADC (P = 0.02), D
(P = 0.03) or α (P = 0.04) (Fig. 1). The cut-off point of
DDC was 1.141 × 10− 3 mm2/s, which yielded 93.3% sen-
sitivity and 86.5% specificity (Figs. 2 and 3).

Discussion
DWI is very helpful for predicting the response to ther-
apy or viability of therapy. Razek et al. [12] found that
ADC map was an excellent method for differentiation
between the viable and necrotic parts of head and neck
tumors, and they also found that diffusion tensor im-
aging (DTI) was very valuable in differentiation between
residual tumors and post-radiation changes [13]. In
addition, DWI is very useful in differential diagnosis of
different tumors. Razek et al. [14] demonstrated that a

combination of arterial spin label (ASL) - and DTI-
derived metrics of the peritumoral part could be used
for differentiation between glioblastomas and solitary
brain metastasis.
It is generally known that DWI models include a Gauss-

ian diffusion model and non-Gaussian diffusion models. A
Gaussian diffusion model (mono-exponential model) is
considered as free diffusion (Brownian diffusion) under
the ideal condition and simply described as average diffu-
sion value [15]. However, the water molecular diffusion in
tissue deviates from Gaussian diffusion because that the
diffusion is usually restricted by cell membranes, fibers or
electric charges at the proteins. Therefore, Gaussian diffu-
sion model can’t reflect the real situation of tissue or
tumor micro-structure. A non-Gaussian model (such as
IVIM or SEM) can reflect the real distribution of water
molecular in human tissue more accurately [9, 16]. The
study on the relationship between non-Gaussian models
and the response to radiochemotherapy is very useful for
the design of treatment regimen.
The standard ADC value acquired by us had a higher

diagnostic efficacy in predicting the response to radio-
chemotherapy. For example, Das et al. [5] showed that
the AUC of ADC in predicting the response to radioche-
motherapy was 0.814, while our study showed that the
AUC of standard ADC was 0.865. The possible reason is
that ADC value is calculated on the basis of two b values
in the study by Das et al., while the standard ADC value
is calculated on the basis of 12 b-values in the study by
us. The selection of more b values can avoid selection
bias and thus achieve more reliable results even for a
mono-exponential model [17].

Table 2 Comparisons of parameters between responders and
non-responders group

Parameters Responders Non-responders P-value

ADC (10−3 mm2/s) 0.610 ± 0.072 0.980 ± 0.089 0.03

D (10− 3 mm2/s) 0.443 ± 0.167 0.843 ± 0.235 0.02

D* (10−3 mm2/s) 6.891 ± 5.588 8.820 ± 6.456 0.10

f(%) 25.318 ± 9.069 32.356 ± 10.723 0.09

α (unit-less) 0.912 ± 0.043 0.612 ± 0.235 0.03

DDC (10−3 mm2/s) 0.831 ± 0.141 1.257 ± 0.167 0.01

Note. -The data are expressed as mean value±standard deviation

Table 1 Patient Characteristics

Parameters Responders
(n = 58)

Non-responders
(n = 26)

P-value

Median age (y)α 40 (25~67) 38 (29~68) 0.14

Tumor size(no.) 0.04

≤ 4 cm 30 (75.0%) 6 (23.1%)

> 4 cm 10 (25.0%) 20 (76.9%)

FIGO stage (no.) 0.06

IIB 8 (13.8%) 6 (23.1%)

III 26 (44.8%) 10 (38.5%)

IV 24 (41.4%) 10 (38.5%)

Pathologic types (no.) 0.10

Squamous carcinoma 48 (82.8%) 21 (80.8%)

Other pathologic types 10 (17.2%) 5 (19.2%)

Histologic grade (no.) 0.02

Well//moderately differentiated 18 (31.0%) 20 (76.9%)

Poorly differentiated 40 (69.0%) 6 (23.1%)

Note.-αThe data are expressed as median ages, and the data in the parenthesis are age ranges. The total number within the parenthesis of the column of FGO
stage is not equal to 100% because of round off
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This study showed that there were significant differ-
ences in ADC, D, α and DDC values between responders
and non-responders groups. Among the imaging parame-
ters, DDC had the highest capability of predicting the
response to radiochemotherapy. This result was similar to
the study by Bedair et al. [18], who found that there was
an inverse correlation between DDC value and therapeutic
response. The possible reason is that DDC reflects the
mean intravoxel diffusion rate in the tumor. The tumor
with higher DDC value frequently has necrosis and poor
oxygenation, which results in the resistance to radioche-
motherapy [18]. In addition, this study showed that re-
sponders group had higher α value than non-responders
group. The α value reflects the micro-structural com-
plexity of the tumor, such as cellular pleomorphism,
vascular heterogeneity and presence of microscopic
necrosis. The lower α value seen in non-responders
group indicates a more heterogeneous microenviron-
ment within the tumor area [19, 20].

This study demonstrated that there was no signifi-
cant difference in D* or f value between responders
and non-responders groups. Similarly, Liang et al. [21]
investigated the value of imaging parameters derived
from IVIM mode in predicting the response to radio-
therapy for rectal cancers, and found that there was
no significant difference in D* or f value between
pathological complete response (pCR) and non-pCR
groups. Xiao et al. [22] investigated the value of IVIM
parameters in predicting the early response to induc-
tion chemotherapy for nasopharyngeal carcinoma, and
found that D* and f value showed no significant differ-
ences between effective and ineffective groups. These
results indicate that perfusion-related parameters may
not play an important role in predicting responders
after treatment. However, it is noteworthy that D* has
some technical shortages, such as data instability and
its dependence on signal noise ratio (SNR) [23], which
may also be the main reasons why there is no signifi-
cant relationship between D* value and treatment
effect.
This study investigated the reproducibility of the

imaging parameters derived from three DWI modes.
Among the imaging parameters that had significant
differences between responders and non-responders
groups, the parameters derived from SEM model had
the best repeatability. This result is similar to a previ-
ous study by Jerome et al.,who found that SEM out-
performed other models [24]. In addition, we found
that significantly better fitting of DWI signals could
be acquired by non-Gaussian diffusion models, with
the exception of IVIM model. Therefore, the imaging
parameters derived from SEM may be used as a po-
tential optimal model for predicting treatment effect.
Except for IVIM, SEM and mono-exponential diffu-

sion model, other advanced diffusion imaging models,
such as DTI and diffusion kurtosis imaging (DKI), have
been used in differentiation between benign and malig-
nant tumors [25, 26]. However, the role of DTI or DKI
in predicting the response to radiochemotherapy for cer-
vical cancer is still unclear and needs to be furtherly
investigated.
The limitations to this study were as follows: (1) In

this study, 12 b-values were selected, which might not

Table 3 The diagnostic performances of parameters in predicting responders

Parameters Cut-off value AUC(95%CI) Sensitivity Specificity

ADC (10− 3 mm2/s) 0.752 0.865 (0.753–0.902) 85.1% 67.4%

D (10−3 mm2/s) 0.532 0.881 (0.783–0.923) 82.1% 73.3%

α (unit-less) 0.734 0.766 (0.654–0.834) 76.3% 78.4%

DDC (10−3 mm2/s) 1.141 0.948 (0.812–0.976) 93.3% 86.5%

Note.- AUC The area under ROC curve, CI Confidence level

Fig. 1 ROCs of imaging parameters in predicting the response to
radiochemotherapy. The DDC had the largest AUC (=0.948)
compared with ADC, D and α (=0.865, 0.881, 0.766). The cut-off
value of DDC was 1.141 × 10− 3 mm2/s

Zhang et al. Cancer Imaging            (2020) 20:8 Page 5 of 9



be optimal for all the mathematical models, therefore,
the further study is necessary to optimize the design
of b-values for different exponential modes [27]. For
example, SEM was analyzed on the basis of 12 b-
values in this study, while the previous studies [28, 29]

acquired the similar results by using approximate 4–5
b values. Therefore, the selection of b values might be
not optimal for SEM mode. (2) The number of the pa-
tients in non-responders group was relatively small,
which might bring about subtle selection bias. (3) The

Fig. 2 The mean value of DDC in responders group. a Axial T2WI, there was an irregular mass in cervix. b DWI (b = 800 s/mm2), the image
showed the location of ROI during the tumor area. c ADC map, the final ADC value was low (=0.619 × 10− 3 mm2/s). d D map, the final D value
was low (=0.608 × 10− 3 mm2/s). e DDC map, the final DDC value was low (=0.972 × 10− 3 mm2/s), which was lower than the cut-off value of DDC
(=1.141 × 10− 3 mm2/s). f α map, the final α value was high (=0.910). g Seven months after radiochemotherapy, the lesion disappeared
completely; the patient was classified as responders group
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f values were not T2 corrected and thus could have
been influenced by the T2 relaxation times of blood
and tissues [30].

Conclusions
In conclusion, this study shows that both Gaussian diffu-
sion model and non-Gaussian diffusion models of DWI

are helpful for predicting the early response to radioche-
motherapy for cervical cancer. The wider use of non-
Gaussian diffusion models in assessing treatment effects
may provide more important information on the prog-
nosis of cervical cancer. Especially, SEM mode has the
highest potency for discriminating responders from non-
responders after radiochemotherapy.

Fig. 3 The mean value of DDC in non-responders group. a Axial T2WI, there was an irregular mass in cervix. b DWI (b = 800 s/mm2), the image
showed the location of ROI during the tumor area. c ADC map, the final ADC value was high (=0.993 × 10− 3 mm2/s). d D map, the final D value was
high (=0.876 × 10− 3 mm2/s). e DDC map, the final DDC value was high (=1.237 × 10− 3 mm2/s), which was higher than the cut-off value of DDC (=
1.141 × 10− 3 mm2/s). f α map, the final α value was low (=0.621). g Twelve months after radiochemotherapy, the lesion decreased slightly. But the
tumor size didnʼt achieve a sufficient shrinkage to qualify for partial response, therefore, the patient was classified as non-responders group
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