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A B S T R A C T   

The endothelial glycocalyx (eGlx) lines the luminal surface of endothelial cells, maintaining vascular health. 
Glycocalyx damage is pathophysiologically important in many diseases across species however few studies have 
investigated its breakdown in naturally occurring disease in dogs. The aims of the study were to investigate eGlx 
damage in dogs with myxomatous mitral valve disease (MMVD) diagnosed on echocardiography, and dogs in a 
hypercoagulable state diagnosed using thromboelastography (TEG), by measuring serum hyaluronan concen-
trations. Serum hyaluronan was quantified in dogs with MMVD (n = 27), hypercoagulability (n = 21), and in 
healthy controls dogs (n = 18). Serum hyaluronan concentrations were measured using a commercially-available 
ELISA validated for use in dogs. Hyaluronan concentrations were compared among groups using Kruskal-Wallis 
tests, and post-hoc with Dunn’s tests. Serum hyaluronan concentrations (median [range]) were significantly 
increased in dogs with MMVD (62.4 [22.8–201] ng/mL; P = 0.031) and hypercoagulability (92.40 [16.9–247.6] 
ng/mL; P < 0.001) compared to controls (45.7 [8.7–80.2] ng/mL). Measurement of serum hyaluronan con-
centration offers a clinically applicable marker of eGlx health and suggests the presence of eGlx damage in dogs 
with MMVD and dogs in a hypercoagulable state.   

The endothelial glycocalyx (eGlx) is critical in maintaining vascular 
health, (Alphonsus and Rodseth, 2014) and has been implicated in a 
plethora of pathophysiological processes in different species (Ueno 
et al., 2004; Salmon et al., 2012; Kolářová et al., 2014; Lawrence-Mills 
et al., 2022, In Press). Quantification of eGlx breakdown products 
such as chondroitin sulfate, hyaluronan, and syndecan-1 in blood is a 
clinically applicable tool and accepted marker of eGlx health (Broe-
khuizen et al., 2009; Kubaski et al., 2016) with increases reported in 
humans with chronic kidney disease (Padberg et al., 2014), sepsis 
(Nelson et al., 2008), diabetes (Koźma et al., 1996), and decompensated 
heart failure (Neves et al., 2015). Measurement of hyaluronan as a 
marker of eGlx damage had been reported in both dogs with septic 
peritonitis (Shaw et al., 2021) and those receiving fluid boluses 

(Beiseigel et al., 2021). 
Dogs with myxomatous mitral valve disease (MMVD) have vascular 

endothelial dysfunction, the severity of which increases with disease 
progression (Jones et al., 2012; Moesgaard et al., 2012). EGlx degra-
dation represents a potential mechanism for endothelial dysfunction 
(Tarbell and Pahakis, 2006). Cellular studies have demonstrated the 
abolishment of flow-dependent vasodilation following enzymatic eGlx 
degradation (Pohl et al., 1991). The eGlx is critical in regulating hae-
mostasis, including harbouring coagulation cascade cofactors (Dan-
ielsson et al., 1986; Iba et al., 2019), thus eGlx shedding promotes 
coagulation. The study aim was to measure serum hyaluronan in dogs as 
a marker of eGlx damage in MMVD and hypercoagulable states. 

Ethical approval for the study provided by the University of Bristol 
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Animal Welfare and Ethics Review Board (Approval number, VIN/16/ 
047; Approval date, 24 November 2016). For the control group, residual 
serum samples from blood collected for health screening from clinically 
healthy dogs presented for blood donation to a non-profit organisation 
(Pet Blood Bank) were used. Health was confirmed in every case by 
thorough history taking, physical examination, and evaluation of full 
haematology and serum biochemistry results. For the MMVD group, 
residual serum samples from dogs presenting to a referral hospital 
(Langford Vets) with MMVD, were used. Disease severity was classified 
according to the American College of Veterinary Internal Medicine 
(ACVIM) consensus statement (Keene et al., 2019). Dogs with congestive 
heart failure (CHF) were stabilised prior to sample collection. Dogs with 
co-morbidities were not excluded. Dogs in the MMVD group were not 
evaluated for concurrent hypercoagulability. For the hypercoagulable 
group, residual serum samples from dogs in a hypercoagulable state, as 
defined by thromboelastography (TEG; G > 8 dynes/s), were used. 
Partnership on Rotational ViscoElastic Test Standardization (PROVETS) 
guidelines were adhered to (Goggs et al., 2014). These dogs presented 
with a variety of underlying conditions. 

Serum hyaluronan concentrations were determined by a single 
operator (SLM) using a commercially available sandwich ELISA 
(Quantikine, R and D Systems, cat number DHYAL0) validated for use in 
dogs (Beiseigel et al., 2021). The assay was performed according to 
manufacturer’s instructions. Samples were diluted 1:16 and run in 
duplicate. A coefficient of variation > 15% was deemed unacceptable. 
Optical densities were read on a Dynex Opsys MR microplate reader at 
450 nm and 570 nm, the latter for correction. Statistical analyses were 
performed using commercially available software (GraphPad Prism v 
9.0, GraphPad Software, Inc.). Data were assessed for normality 
graphically and by use of the Shapiro-Wilk test. Summary statistics for 
continuous variables are reported as median (range). Comparisons of 
categorical variables amongst groups were made using Chi-squared tests 
and continuous variables using Kruskal-Wallis tests. Post-hoc compari-
sons between groups were made using the Dunn’s test for multiple 
comparisons. Type 1 error rate is set at 0.05. 

Sixty-six dogs were included in the study: 18 control dogs; 27 dogs 
with MMVD; and 21 dogs in a hypercoagulable state. Population char-
acteristics are presented in Table 1, information about comorbidities and 
concurrent medication is included in Table 2. The serum hyaluronan 

concentrations in the control population was 45.7 (8.7–80.2) ng/mL, 
MMVD population 62.4 (22.8–201) ng/mL, and in dogs in a hyperco-
agulable state 92.4 (16.9–247.6) ng/mL. Post-hoc pairwise group com-
parisons revealed differences between control and hypercoagulable (P 
= 0.001) and control and MMVD (P = 0.031) groups, but not hyperco-
agulable and MMVD (P = 0.550) groups (Fig. 1). Post hoc pairwise 
analysis was performed comparing ACVIM stages of MMVD, with stages 
C and D grouped into a CHF group. No significant differences in serum 
hyaluronan concentrations were detected between B1 and B2 (P >
0.999), B1 and CHF (P > 0.999), and B2 and CHF (P > 0.999) groups 
(Fig. 2). 

This study measured serum hyaluronan as a surrogate marker of eGlx 
damage in dogs. Increased serum hyaluronan concentrations in dogs 
with MMVD and in dogs with hypercoagulability is suggestive of eGlx 
damage in these disease processes. Multiple studies in humans, animal 
models, and dogs have demonstrated the usefulness of circulating eGlx 
breakdown product measurement (Williams et al., 2003; Yini et al., 
2015; Beiseigel et al., 2021; Shaw et al., 2021). The hyaluronan con-
centrations identified in the present study control population differ from 
ranges reported in other studies (Beiseigel et al., 2021). Beiseigel and 
colleagues reported a baseline median hyaluronan concentration of 
17.4 ng/mL with an inter-quartile range (IQR) of 37.3 ng/mL in one 
group and 25.6 ng/mL; IQR, 25.6 ng/mL in another. Differences in the 
control populations; including differences in age, breed, and sex distri-
bution, as well as different presentation of the data, precludes direct 
comparison between studies. 

We postulate that dogs in a hypercoagulable state have increased 
circulating serum hyaluronan due to eGlx shedding. The eGlx is a known 
reservoir for enzymatic cofactors involved in the coagulation cascade 
(Ince et al., 2016; Sieve et al., 2018). EGlx shedding may develop as a 
result of ‘glycocalyx-degradation factors’ such as reactive oxygen spe-
cies, matrix metalloproteinases and heparinases released in response to 
inflammation (Sieve et al., 2018). 

Dogs with MMVD have known endothelial dysfunction (Puglia et al., 
2006; Jones et al., 2012; Moesgaard et al., 2012), increased circulating 
serum hyaluronan suggests eGlx damage may be associated with this. 
Atrial and B-type natriuretic peptides (ANP and BNP) cause eGlx shed-
ding in rodent models and human patients (Bruegger et al., 2011; Jacob 
et al., 2013). Both ANP and BNP are elevated in dogs with MMVD 

Table 1 
Comparison of population characteristics for dogs in which serum hyaluronan was measured.  

Population Controls Myxomatous mitral valve disease Hypercoagulability* P value 

Breed Pedigree n = 18 Pedigree n = 25 
Crossbreed n = 2 

Pedigree n = 19 
Crossbreed n = 2  

0.894  

Labrador n = 6 
Golden retriever n = 3 
Greyhound n = 3 
Border collie n = 1 
Dalmatian n = 1 
German shepherd n = 1 
Pointer n = 1 
Poodle n = 1 
Ridgeback n = 1 

Cavalier King Charles spaniel n = 11 
Border collie n = 2 
Chihuahua n = 2 
Springer spaniel n = 2 
Jack Russell terrier n = 1 
Labrador retriever n = 1 
Lhasa apso n = 1 
Miniature schnauzer n = 1 
Parson Russell terrier n = 1 
Shih tzu n = 1 
Wire-haired fox terrier n = 1 
Yorkshire terrier n = 1 

Labrador retriever n = 4 
Bichon frise n = 3 
Springer spaniel n = 2 
Border collie n = 1 
Bulldog n = 1 
Cocker spaniel n = 1 
Dalmatian n = 1 
English spaniel n = 1 
Golden retriever n = 1 
Jack Russel terrier n = 1 
Lakeland terrier n = 1 
Pug n = 1 
West Highland white terrier n = 1   

Sex Female entire n = 3 
Female neutered n = 2 
Male entire n = 5 
Male neutered n = 8 

Female entire n = 1 
Female neutered n = 15 
Male neutered n = 11 

Female entire n = 1 
Female neutered n = 9 
Male entire n = 4 
Male neutered n = 7  

0.0055 

Age in years Median (range) 6.6 (2.8–10.4) 10.3 (2.1–16.0) 9.0 (2.8–14.3)  < 0.001 
Disease classification Healthy ACVIM stage** 

B1 n = 14 
B2 n = 10 
C and D n = 3 

G value (dynes/s)* 
Median (range) 
11.9 (8.3–22.1)    

* as defined by thromboelastography (G >8 dynes/s). 
** American College of Veterinary Internal Medicine (ACVIM) stage of myxomatous mitral valve disease. 
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(Tarnow et al., 2009), natriuretic peptide-mediated eGlx damage is 
therefore plausible. Although neither marker was measured directly in 
the present study, ACVIM disease stage can be considered a surrogate 
marker for these neurohormones (Ogawa et al., 2021). 

The diagnostic and prognostic potential of eGlx study is increasingly 
demonstrated in human patients (Dane et al., 2014; Padberg et al., 2014; 
Ikeda et al., 2018). Significant further research is required to explore its 

application in eGlx health monitoring in dogs. Limitations of the present 
study include the measurement of a single eGlx component, potential for 
non-endothelial sources of hyaluronan, and a small sample size 
increasing the risk of type 2 statistical error. This is particularly perti-
nent for the comparisons between ACVIM MMVD disease stages. A 
further confounding factor was the presence of comorbidities that may 
influence eGlx health. In addition, the eGlx may be influenced by age 
and sex; eGlx thickness decreases in advanced age in humans and rats 
(Salmon et al., 2012; Machin et al., 2018), coroborated by the finding 
that serum hyaluronan increases with age in humans (Lindqvist and 

Table 2 
Comorbidities and concurrent medication data for clinical populations. Dogs 
may have multiple comorbidities and be on multiple medications.  

Population Concurrent diseases Concurrent 
medications 

Hypercoagulablea Hyperadrenocorticism n = 4 
Idiopathic epilepsy n = 4 
Immune-mediated haemolytic 
anaemia n = 3 
Neoplasia (nasal mass, 
meningioma, gastrointestinal 
lymphoma) n = 3 
Pulmonary thromboembolism n 
= 2 
Subarachnoid diverticulum n =
2 
Aortic thromboembolism n = 1 
Atopic dermatitis n = 1 
Endocarditis n = 1 
Hepatitis n = 1 
Ischemic myelopathy n = 1 
Myocarditis n = 1 
Otitis externa n = 1 
Protein-losing nephropathy n =
1 
Pulmonary hypertension n = 1 
Meningitis n = 1 
Quadrigeminal cistern 
arachnoid cyst n = 1 
Spondylosis n = 1 
Urinary tract infection n = 1 
Unspecified hindlimb lameness 
n = 1 

Levetiracetam n = 4 
Amoxicillin- 
clavulanate n = 3 
Prednisolone n = 3 
Maropitant n = 2 
Phenobarbitone n = 2 
Potassium bromide n =
2 
Atenolol n = 1 
Buprenorphine n = 1 
Chloramphenicol eye 
drops n = 1 
Ciclosporin n = 1 
Clindamycin n = 1 
Cyproheptadine n = 1 
Cytarabine n = 1 
DDAVP n = 1 
Dexamethasone n = 1 
Frusemide n = 1 
Hydrocortisone n = 1 
Itraconazole n = 1 
Lactulose n = 1 
Meloxicam n = 1 
Methadone n = 2 
Methylprednisolone 
acetate n = 1 
Pimobendan n = 1 
Vitamin B12 n = 1 

Myxomatous mitral valve disease 
B1b Immune-mediated disease n = 2 

Intervertebral disc disease n = 2 
Atrial fibrillation n = 1 
Eosinophilic lymphadenitis n =
1 
Gastritis n = 1 
Haematuria n = 1 
Hepatopathy n = 1 
Neoplasia (urethral mass) n = 1 
Otitis externa n = 1 
Proteinuria n = 1 
Rhinitis n = 1 
Syringomyelia n = 1 
Tracheobronchial collapse n = 1 

Amoxicillin- 
clavulanate n = 1 
Frusemide n = 1 
Meloxicam n = 1 
Pimobendan n = 1 

B2b Intravertebral disc disease n = 4 
Gastritis n = 2 
Degenerative joint disease n = 1 
Haematuria n = 1 
Hepatopathy n = 1 
Humeral periostitis n =
1Idiopathic epilepsy n = 1 
Neoplasia (lymphoma) n = 1 
Syringomyelia n = 1 

Maropitant n = 2 
Benazepril n = 1 
Buprenorphine n = 1 
Carprofen n = 1 
Cefovecin n = 1 
Frusemide n = 2 
Pimobendan n = 1 
Robenacoxib n = 1 
S-adenosyl methionine 
n = 1 
Sucralfate n = 1 

Congestive heart 
failure (C or Db) 

Eosinophilic tonsilitis n = 1 
Neoplasia (retrobulbar mass) n 
= 1 

Benazepril n = 2 
Frusemide n = 2 
Pimobendan n = 2 
Spironolactone n = 2 
Diphenoxylate 
hydrochloride n = 1  

a As defined by thromboelastography (G >8 dynes/s). 
b American College of Veterinary Internal Medicine stage of myxomatous 

mitral valve disease. 

Fig. 1. Scatter plot depicting serum hyaluronan concentration in control dogs 
(n = 18) and dogs with different naturally occurring disease states (myxoma-
tous mitral valve disease, MMVD, n = 27; and hypercoagulable, n = 21). Bars 
show median and interquartile ranges. * represents P < 0.05, 
* ** represents P < 0.001. 

Fig. 2. Scatter plot depicting serum hyaluronan concentrations in dogs with 
different American College of Veterinary Internal Medicine stages of myxo-
matous mitral valve disease. The congestive heart failure (CHF) group (n = 3) 
comprises dogs in both stage C and D. Bars show median and interquartile 
ranges. Twelve dogs had stage B1 and ten at stage B2. No significant differ-
ence (ns). 
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Laurent, 1992) as well as reported sex-linked differences in eGlx health 
in humans (Brands et al., 2020). Increased age in the diseased groups 
may have contributed to the significantly higher hyaluronan concen-
trations in this study. Future research should corroborate findings with 
multiple measurements of eGlx health (Schmidt et al., 2016) as well as 
direct visualisation measurements. 

This study identified increased serum hyaluronan concentrations in 
dogs with MMVD and hypercoagulability suggesting eGlx damage in 
these disease states, demonstrating the potential of this marker for 
studying the eGlx in dogs. 
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