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Abstract

We present a novel quasi-Bayesian method to weight multiple dynamical models by their

skill at capturing both potentially non-linear trends and first-order autocorrelated variability of

the underlying process, and to make weighted probabilistic projections. We validate the

method using a suite of one-at-a-time cross-validation experiments involving Atlantic meridi-

onal overturning circulation (AMOC), its temperature-based index, as well as Korean sum-

mer mean maximum temperature. In these experiments the method tends to exhibit

superior skill over a trend-only Bayesian model averaging weighting method in terms of

weight assignment and probabilistic forecasts. Specifically, mean credible interval width,

and mean absolute error of the projections tend to improve. We apply the method to a prob-

lem of projecting summer mean maximum temperature change over Korea by the end of the

21st century using a multi-model ensemble. Compared to the trend-only method, the new

method appreciably sharpens the probability distribution function (pdf) and increases future

most likely, median, and mean warming in Korea. The method is flexible, with a potential to

improve forecasts in geosciences and other fields.

1 Introduction

A common forecasting problem is one of probabilistic multi-model forecasts of a stochastic

dynamical system [1–18]. Sometimes, when a collection of complex dynamical models is used

to provide multi-model forecasts, these forecasts are weighted according to model perfor-

mance compared to observations [1,5,10,19–23]. The Bayesian approach to this problem

assumes that associated with k dynamical models are k competing statistical models Mi for vec-

tor of observations y. These statistical models result in a conditional probability density func-

tion (pdf) for y given that Mi is reasonable, p(y|Mi). Typically, in a multi-model evaluation

PLOS ONE | https://doi.org/10.1371/journal.pone.0214535 April 10, 2019 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Olson R, An S-I, Fan Y, Evans JP (2019)

Accounting for skill in trend, variability, and

autocorrelation facilitates better multi-model

projections: Application to the AMOC and

temperature time series. PLoS ONE 14(4):

e0214535. https://doi.org/10.1371/journal.

pone.0214535

Editor: Juan A. Añel, Universidade de Vigo, SPAIN

Received: November 15, 2018

Accepted: March 14, 2019

Published: April 10, 2019

Copyright: © 2019 Olson et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The relevant data and

code implementing the methodology and used to

produce the results of the paper (including

programs to make the figures) are available as a

supplementary file S2_File.zip. Observational data

used in this paper are freely available from third

party websites, with details provided in the

references. The Climate Model Intercomparison

Project phase 5 model output is available from

https://esgf-node.llnl.gov/projects/esgf-llnl/. Data

access requires filling in a registration form at

https://esgf-node.llnl.gov/user/add/. The results of

http://orcid.org/0000-0002-8233-9467
http://orcid.org/0000-0002-0003-429X
https://doi.org/10.1371/journal.pone.0214535
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0214535&domain=pdf&date_stamp=2019-04-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0214535&domain=pdf&date_stamp=2019-04-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0214535&domain=pdf&date_stamp=2019-04-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0214535&domain=pdf&date_stamp=2019-04-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0214535&domain=pdf&date_stamp=2019-04-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0214535&domain=pdf&date_stamp=2019-04-10
https://doi.org/10.1371/journal.pone.0214535
https://doi.org/10.1371/journal.pone.0214535
http://creativecommons.org/licenses/by/4.0/
https://esgf-node.llnl.gov/projects/esgf-llnl/
https://esgf-node.llnl.gov/user/add/


context, the pdf p(y|Mi) is a multivariate statistical distribution centered on ith dynamical

model trend xi. Each model is associated with a prior belief in its adequacy (“prior”) p(Mi),

which can be derived from previous work, or may be more subjective. The posterior probabil-

ity, or weight, for each model i given the observations is then found using Bayes theorem [24]:

pðMijyÞ / pðyjMiÞpðMiÞ ð1Þ

Specifically, the posterior probability of each statistical (and corresponding dynamical)

model is the likelihood of observations y coming from the model (given by the pdf p(y|Mi)),

multiplied by the model prior.

In ensemble modelling, models are usually judged on how well they represent the mean

state of the system, its trend, or spatio-temporal fields [1,3,6,14,22,23]. However, it is increas-

ingly being recognized that variability is of utmost importance for future prediction. Specifi-

cally, for some systems (stochastic dynamical systems) the stationary pdf of the equilibrium

solution is directly affected by system dynamics (i.e., the nonlinear operator in the ordinary

differential equations) through the Fokker-Planck (Kolmogorov forward) equation. Recent cli-

mate science work identifies variability as a key factor impacting climate projections [6,25].

Furthermore, variability has been used as a novel and effective constraint for climate sensitivity

[26]. In addition, variability also has major relevance for forewarning of critical thresholds

(i.e., a forcing value above which the underlying system shifts to a new equilibrium; [27]). Spe-

cifically, an increase in variance or lag-1 autocorrelation with time, as well as skewness and

kurtosis, have been used as such early warning indicators [28–31]. This motivates using vari-

ability properties of the system as a novel metric to assess performance of multiple dynamical

system models.

Several new studies break important new ground by incorporating variability into the

weighting [17,32–34], but they typically assume stationarity of the pdf of the system [17,32,33],

or cannot work with complex dynamical models [34]. Some previous work does explicitly

weight dynamical models by performance in variability and trends in a statistically-sound way

[35]. However, the method in its current form works only for linear trends (as a function of

time) and does not account for autocorrelation in the variability.

Here we propose a novel method to weight models of complex dynamical systems by their

performance in autocorrelation, variability, and a potentially nonlinear trend (i.e., nonlinear

with time) compared to observations, and to make probabilistic forecasts. The method is based

on Bayesian Model Averaging (BMA) [20,21]. While the framework is Bayesian, it deviates

from traditional Bayesian theory in some steps of the estimation process. We highlight these

deviations where they arise in more detail in later sections. Consequently, we call our approach

“quasi-Bayesian”. Using several simulated and observed datasets (involving AMOC, its tem-

perature-based index, and summer mean maximum temperature over Korea) we show that

the new method results in better weighting and tends to improve forecasts of system mean

change under new conditions compared to when trend-only BMA weighting is used. Thus,

this work has implications for improving projections of many environmental systems. The

approach is not restricted to linear trends, making it relatively easy to apply to new datasets.

Finally, we apply the method to a real case problem of projecting future summer mean temper-

ature changes over Korea.

The rest of the paper is structured as follows. Section 2 describes the novel methodology to

weight models by trend and variability performance, to combine those weights, to make multi-

model weighted projections, as well as the computational details. The main interest here is not

the procedure for obtaining the trend and variability components, but the algorithm for model

weighting. In Section 3 we describe leave-one-out cross-validation experiments to test method
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performance against a trend-only BMA method. Here we also provide the specific details on

how the trend and variability components were extracted from the data. Section 4 describes

the results of these experiments. Section 5 discusses the application of the method to make

multi-model probabilistic projections of Korean summer mean maximum temperature

change. Section 6 briefly discusses the main findings of the study and places it in context of

prior work. Section 7 discusses the limitations of the work, and Section 8 presents conclusions.

2 Materials and methods

2.1 Overview of the method

At the start of the analysis, we assume that we have a collection of dynamical model time series

outputs, and that these outputs can be decomposed into long-term trend and variability com-

ponents. The details of this decomposition are not critical for this study, as we focus on the sta-

tistical methodology for the weighting. The weights (or probabilities) for the two submodels

are calculated separately, using the Bayesian statistical paradigm, and then combined. The

combined weights can then be used to make predictions (Fig 1).

Fig 1. Schematic illustrating the proposed “trend+var” method.

https://doi.org/10.1371/journal.pone.0214535.g001
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2.2 Notation and decomposition of model output

Consider that k models are available. We postulate that each dynamical model is associated

with a statistical model Mi for the observations. Mi can be thought of as a statistical event,

which when true indicates that ith dynamical model is a reasonable representation of real sys-

tem. Mi consists of two submodels: a trend submodel MT,i (related to the trend in the system),

and a variability submodel MV,i (modelling internal fluctuations in the system). When MT,i is

true, the ith dynamical model correctly captures the trend of the system. Likewise, when MV,i

is true, the ith dynamical model correctly captures the variability of the system. Alternatively,

we can consider the model for anomalies scaled by the mean (MV0,i). Each model produces

time series output of a physical quantity during the period when observations are available

(“calibration period”), as well as under new forcing conditions, usually associated with future

system projections (“projection period”). We are interested in finding the probability distribu-

tion of a change of the system mean Δ between a “projection reference period” (typically the

same as the calibration period) and the projection period. We denote the raw calibration

period model output from the ith dynamical model by vector x0i ¼ ðx
0

i;1; . . . ; x0i;nÞ where super-

script “'” indicates that the output is raw (un-smoothed), and n is the length of the record. The

model output is a regularly spaced time series. We consider decomposition of the form:

x0i ¼ xi|{z}
trend

þ Δxi|{z}
anomalies

ð2Þ

We will use the term “anomalies” to refer to the variability component of the time series.

The trend xi can be either a linear trend, or a more flexible nonlinear trend obtained, for exam-

ple, from robust locally weighted regression [36]. We assume that this decomposition is deter-

ministic, unique, and is performed before the start of the main analysis. We also assume that

the estimate of the trend is a reasonable proxy for the true unknown trend. While it may be

possible to also incorporate the uncertainty in this decomposition, we leave it to future work.

The focus here is not on how to properly decompose a time series into a long-term trend and

variability, but on the novel methodology for weighting by performance in both. See [18] for

an example of use of an alternative methodology to decompose the data. The use of alternative

methods for data decomposition is subject of future research. We describe the decomposition

method we use for each dataset in Section 3. The same decomposition is also applied to the

observed time series y':

y0 ¼ y þ Δy: ð3Þ

Another option is relative decomposition. It takes the following form:

x0i ¼ xi|{z}
trend

þ �xi Δx
0

i|{z}
anomalies

; ð4Þ

where �xi is the deterministic sample mean of the ith dynamical model output, and Δx0
i are nor-

malized anomalies; and similarly for the observations:

y0 ¼ yþ �yΔy0

i ; ð5Þ

where �y is the observed mean.

Next subsections contain the following: subsection 2.3 discusses the trend submodel

weighting (which largely follows previous work), subsection 2.4 centers on the variability sub-

model weighting, section 2.5 discusses combining the component weights for each model,
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section 2.6 is dedicated to procedure for making weighted multi-model projections, and sec-

tion 2.7 presents computational details on the implementation of the method.

2.3 Weighting the trend submodels

The trend submodel weighting is implemented following prior work, and full details are pro-

vided there [9]. Essentially, this method is BMA that also considers the uncertainty due to

model error, and uncertainty in statistical properties of data-model residuals. Here, we con-

sider k competing statistical models MT,i for raw observations y’. We stress that statistical and

dynamical models are conceptually related: i.e., if the statistical model MT,i is true, it implies

that the associated ith dynamical model correctly represents the trend in the system. Each MT,i

is a hierarchical statistical model that connects modelled deterministic trend from the ith
model during the calibration period xi to real system trend y, and then the system trend to

actual observations y' (Eq 6):

y ¼ xi þ f εD

y0 ¼ yþ εNV ;

(

ð6Þ

where fεD is random discrepancy (long-term model error), and εNV is random internal vari-

ability (as well as short-term observational error).

Here we deviate somewhat from orthodox Bayesian practice. A typical Bayesian approach

would assume a distributional form for the discrepancy vector fεD. However, because this

error is likely long-term dependent, and the probability distributions for its components are

not necessarily normal, finding and justifying a proper parametric model for it is non-trivial.

To deal with this conundrum, we adopt an approach inspired by prior work [37]. We postulate

that model error can be derived from inter-model trend differences. The reasoning for this

implementation is as follows. Imagine a particular trend submodel MT,i represents the “true”

system. Associated with this system is trend xi and pseudo-observations x0i. If only the rest of

the models are available to the researcher, then the best-fit model j to these pseudo-observa-

tions is associated with trend xj. The difference between the best model and the pseudo-

observed trends is then the unscaled error of the jth model. Thus, we obtain samples for

unscaled discrepancy εD directly from the differences between each model’s trend and the

next-closest model trend (see [9] for details). We acknowledge that this parameterization is

simplified; model error is an emergent research topic [37]. We thus hope this work can galva-

nize more research on parametrizing model error.

The second non-orthodox idea, is related to the deterministic f factor (“error expansion fac-

tor”, Eq 6). This factor is a new addition to the model presented in previous work [9]. f is a

parameter that scales εD to account for potential overconfidence. The non-orthodox idea

relates to the procedure for selecting f. Specifically, we do not estimate f from present-day

observations as a strict Bayesian would do, but rather we select f that results in correct coverage

of the 90% posterior credible intervals during cross-validation experiments (different f for

each dataset). The reason for this is as follows. Using just present-day observations to estimate

f may produce small f values that result in overconfident future projections. This is because

models have been developed so that they match observed data. Philosophically, present-day

model-data agreement may be due to overfitting, and may not be reflective of the actual

amount of error in the models.

The internal variability εNV (Eq 6) is modelled as an AR(1) process with random parame-

ters θ = (σ, ρ), where σ is innovation standard deviation and ρ is autocorrelation. Following
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Bayes theorem, and marginalization theorem, the trend model weights are then calculated as:

pðMT;ijy
0Þ / pðMT;iÞ

ZZ

pðy0 jy; θ;MT;iÞpðθÞpðyjMT;iÞdydθ: ð7Þ

Here, p(MT,i) denotes the prior for the ith trend model, p(y'|y,θ, MT,i) is the AR1 likelihood

resulting from the bottom line of Eq (6), p(θ) denotes the prior for the AR1 parameters, and p
(y|MT,i) is obtained according to the top line of Eq (6) using samples from fεD as discussed

above. Unlike the previous work [9], here we assume uniform prior probabilities for trend

models p(MT,i). The integral is evaluated using Monte Carlo integration, which is simpler to

implement than Markov chain Monte Carlo methods used in some studies [2]. For the relative

low dimension parameter space that we deal with here, simple Monte Carlo is adequate. Addi-

tional experiments suggest the sample size we use for the Monte Carlo integration is reason-

able to minimize Monte Carlo error (Text A in S1 File). Once calculated, the weights are

normalized to sum to 1 to facilitate interpretation as probabilities. We provide technical details

in Text A in S1 File.

2.4 Weighting the variability submodels

Variability models are weighted using similar ideas to the ones used in trend weight estima-

tion. We consider k competing statistical models for calibration period anomalies observations

Δy = (Δy1, Δy2, . . ., Δyn) (see Eq (3)). Each ith variability model MV,i models the anomalies

hierarchically in the following form:

θV
y ¼

�θV
M;i þ fεVð9Þ

Dyt ¼ ryDyt� 1 þ wt;

(

ð8Þ

where θV
y ¼ ðsy; ryÞ, are autocorrelation and innovation standard deviation of the real climate,

�θV
M;i ¼ ð�sM;i; �rM;iÞ are summary statistics of autocorrelation and innovation standard deviation

from ith model anomalies, fεV is model error (where εV = (εσ, ερ), and f is a deterministic

scaling factor to widen the distribution to correct for potential overconfidence), and

wt � Nð0; s2
yÞ. The top line of Eq (8) connects real system anomaly properties to model sum-

mary statistics, and the bottom line shows that observed anomalies are modelled as red noise

with parameters (σy, ρy) of the real system.

Thus, in the top line of Eq (8) instead of performing full posterior sampling to obtain sam-

ples for real system autocorrelation and innovation standard deviation parameters θV
y we

assume they are centered around summary statistics �θV
M;i of ith physical model anomalies with

an additive error fεV. Each model’s summary statistics are taken as the corresponding MLE

estimates. Again, we refrain from assuming any parametric form for εV. Similar to the error

for the trend model, here we also assume samples for εV are obtained from differences between

each model MLE summary statistics �θV
M;i ¼ ð�sM;i; �rM;iÞ and the next-closest model summary

statistics �θV
M;j ¼ ð�sM;j; �rM;jÞ. The next-closest model is found as follows: for each model i we

compare the conditional likelihood of ith model anomalies given AR(1) parameters of other

variability submodels pðDxij�θV
M;jÞ, j 6¼ i under the AR(1) statistical model, and find a model j

that maximizes this likelihood. We also add a sample of zero vector (0,0) to εV for computa-

tional stability. We post-multiply these samples by a scaling factor f to obtain samples for fεV. f
is the same parameter that is used to scale trend model discrepancy (Section 2.3).

This approach gives us only k+1 samples from fεV. To obtain a larger number of samples

which are well-dispersed, we add to fεV realizations from an independent bivariate normal

Projections accounting for model trend and variability skill
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distribution with standard deviations in each dimension set to 1/5 of the original k+1 sample

ranges. We use the value of 1/5 because it results in samples with a reasonably smooth density

that preserves large scale cross-correlation structure between the original k+1 samples of εσ
and ερ, and provides a decent approximation to the underlying pdf for fεV (Fig A in S1 File).

Sensitivity tests indicate that using lower standard deviations can degrade the smoothness of

the pdf (not shown).

Then, the posterior probability of the variability model i is, using Bayes rule [24] and proba-

bility rules:

pðMV;ijΔyÞ ¼
Z

pðMV;i; θ
V
y jΔyÞdθ

V
y / pðMV;iÞ

Z

pðΔyjMV;i; θ
V
y Þpðθ

V
y jMV;iÞdθ

V
y; ð9Þ

where pðΔyjMV;i; θ
V
y Þ is an AR1 likelihood function, pðθV

y jMV;iÞ is sampled using the top line of

Eq (8) using bootstrapping from fεV as described above, and p(MV,i) is the prior probability

(“prior”) for the ith variability submodel. We assume equal priors for all submodels. This inte-

gral is also evaluated using Monte Carlo integration. Specifically, we sample from the condi-

tional pdf of real system summary statistics given each variability model pðθV
y jMV;iÞ as

described above, and for each sample we calculate the conditional likelihood for the observed

anomalies pðΔyjMV;i; θ
V
y Þ. The integral is approximated as a simple mean of the conditional

likelihoods across the samples. Probabilities are calculated for each submodel and are normal-

ized to sum up to 1. The implementation using relative variability MV0 is identical except the

residuals Δxi and Δy are normalized by the respective model and observational means prior to

the analysis. We provide technical details on the implementation in Text B in S1 File.

2.5 Combined weights and Bayesian model averaging

In the next step, the weights for the two submodels are put together to form a single combined

model weight. Using probability laws:

pðMijy;ΔyÞ ¼ pðMT;i;MV;ijy;ΔyÞ ¼ pðMT;ijMV;i; y;ΔyÞ � pðMV;ijy; ΔyÞ: ð10Þ

We make two simplifying assumptions. First, we observe that in the datasets described in

Section 3 typically the relationships between the variability summary statistics �sM;i and �rM;i on

one hand, and trend model probability on the other hand, appear to be weak (Figs B-K in S1

File). In addition, the corresponding linear coefficients are almost always weak (weak is

defined as the absolute values less than 0.5). Assuming that the relationships based on the sam-

ple summary statistics are a good proxy for those based on the population properties, we make

an assumption that the probability of the trend model is independent of the variability model:

pðMT;ijMV;i; y;ΔyÞ � pðMT;ijy;ΔyÞ ¼ pðMT;ijy
0

Þ; ð11Þ

which allows us to directly plug in trend model weights obtained using the method in Section

2.3. Second, since only anomalies are used to weight the variability model:

pðMV;ijy; ΔyÞ ¼ pðMV;ijΔyÞ: ð12Þ

This quantity is obtained following Section 2.4. As a result, the combined weights can be

expressed as a product of the trend and variability submodel weights:

pðMijy;ΔyÞ ¼ pðMT;ijy;ΔyÞ � pðMV;ijΔyÞ: ð13Þ
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We stress that even though the independence assumption generally appears reasonable

here, it may not always apply. Hence, it is recommended to check it when applying the meth-

odology to new datasets. Incorporating the potential dependence between the trend and vari-

ability submodels into our framework is the subject of future research. Once calculated, the

probabilities are normalized to sum up to 1, meaning that we restrict our probability space to

the union of available models Mi.

2.6 Future Projections

Future model projections are implemented largely following previous work [9]. Once the

weights are obtained, the statistical model for system change between projection reference and

projection periods Δ follows the BMA formula [20,21]:

pðDjDÞ ¼
Xk

i¼1
pðDjMi;DÞpðMijDÞ ¼

Xk

i¼1
wipðDjMi;DÞ; ð14Þ

where D = (y, Δy) is collection of all available observations, p(Δ|Mi, D) is conditional probabil-

ity for the change given than ith dynamical model is correct, and wi = p(Mi|D) is the probabil-

ity for the ith model (i.e., model weight) found earlier (Eq (13)) as the product of the trend and

variability model probabilities. This represents a skill-weighted mixture of pdfs from individ-

ual models. Here we consider Δ to be a simple difference between projection period mean and

forecast reference period mean. Future predictions are largely modelled following prior work

[9]. Just as for the calibration period, we assume a deterministic decomposition of projection

period output into trend and anomalies:

x
0ðf Þ
i ¼ xðf Þi

trend
þΔxðf Þi|ffl{zffl}

anomalies

ð15Þ

The exact decomposition method for each dataset is listed in Section 3. Next, we consider

the following statistical model for dynamical system time-series projections (all quantities are

vectors):

y0ðf Þ ¼ xðf Þi þ bðf Þ þ εðf ÞS;i ; ð16Þ

where y'(f) is the projection time series, xðf Þi is ith model trend output from Eq (15), b(f) = b(f)1

is random time-constant bias, and εðf ÞS;i is random short-term internal variability in each model.

Thus, we assume fthat if ith model is correct, the vector projection is the sum of ith model

trend, a time constant bias, and internal variability. Here we again deviate somewhat from the

traditional Bayesian theory in that the components of this model are partially informed by

inter-model differences, and by model output during cross-validation experiments. Such steps

are necessitated by the absence of actual system observations over the projection period to

inform us about these components. We model the bias parameter as bðf Þ � Nð0; f �s
ðf Þ
b Þ where

�s
ðf Þ
b is sample standard deviation of future period-mean next-closest model differences

(where next-best is used in the l1 distance sense), and f is the deterministic model error expan-

sion factor (the same factor that is used for model weighting). Two different formulations are

implemented for internal variability. In the first formulation (“boot”; [9]) we use simple boot-

strapping from Δxðf Þi to generate internal variability samples. In the alternative formulation

(“ar1”) we sample εðf ÞS;i as a red noise process with parameters θðf Þi ¼ ð�s
ðf Þ
i ; �r

ðf Þ
i Þ, the sample

innovation standard deviation and autocorrelation of future anomalies. An improvement

would be to consider the uncertainty in the AR1 parameters; we do not do this here to simplify

the method. To obtain projection period mean changes from the reference period, we take
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weighted samples of future projections using Eqs (14) and (16), and simply subtract projection

reference period mean modeled value for each model. As in previous work [9], we use 100,000

samples for all experiments.

The overall algorithm for the method is illustrated in Fig 2. The method estimates model

weights from calibration period observations, and has one fixed parameter f, quantifying

model error. Larger f values lead to higher model errors, and as a result broader projections

with higher coverage of the 90% posterior credible intervals. Unlike standard Bayesian analy-

sis, we first choose f to obtain approximately correct empirical coverage of the 90% posterior

credible intervals during cross-validation. For the cross-validation, each model is selected as

Fig 2. “trend+var” algorithm.

https://doi.org/10.1371/journal.pone.0214535.g002
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the “truth” one-at-a-time. Models are weighted using the output from the “true” model. The

“true” model is then excluded from the model set, and the future weighted projections from

the remaining models are compared to the output from the “true” model. Once f achieves

approximately correct empirical coverage, the method is used for actual projections con-

strained by real observations. If there are many replicates (or regions) of the system, cross-vali-

dation can also be performed by splitting the calibration period into two subperiods. In step 1,

observations during the first subperiod in each region/replicate can be used to assign replicate/

region-specific weights. In step 2, observations during the second subperiod can test the

empirical coverage of the posterior credible intervals. Here, however, we focus on the one-at-

a-time cross-validation using future model output. This is because (i) the length of historical

record for which high-quality observations are available is too short for most of the experi-

ments [38,39], (ii) observational records suffer from observational errors, and (iii) climate sig-

nal (e.g., the magnitude of climate changes) is quite low in the historical period. We choose

various variables and periods to test the method under different conditions.

2.7. Computational details

All experiments have been performed on an Intel Xeon CPU X5650 @ 2.67GHz GNU/Linux

2.6.18-164.el5 supercomputer, using R programming language version 3.3.3. For other

required packages the following versions were used: mblm 0.12 and KernSmooth 2.23–15. We

provide the R code as S2 File. This code is provided under the GNU general public license v3.

In the next section we describe several cross-validation experiments for our method and

compare the performance of the method (which we call hereafter “trend+var”) with a BMA

method where all variability submodel weights are set to equal (termed hereafter “trend”).

Note that “trend” method is BMA which still weights models by their performance in terms of

trend.

3 Leave-one-out cross-validation experiments to test method skill

3.1 Overview of leave-one-out cross-validation experiments

To evaluate method performance, we carry out leave-one-out cross-validation experiments

with several simulated and observed datasets: (i) Atlantic meridional overturning circulation

(AMOC) strength [Sv] from 13 global climate models (GCMs) (AMOC experiment), (ii)

Korean summer mean maximum temperatures from 29 GCMs (Korea_temp), (iii) Korean

temperatures with an extended calibration period (Korea_temp_long), (iv) winter East Sea

surface temperatures (SSTs) (Winter SST Experiment), (v) temperature-based AMOC Index

(temperature in northern North Atlantic “gyre” minus Northern Hemisphere temperature)

from 13 GCMs (AMOCIndex), and (vi) the same as (v) but also considering information from

climate observations (AMOCIndex_obs). We discuss each experiment in greater detail in the

following subsections. The cases differ in terms of the calibration, projection, and projection

reference periods (Table 1). In experiments involving model output only, each of the models is

selected as “truth” one at time, and its output is used to weight the models. Then, during the

validation period, the projected pdfs of changes using the remaining models are compared to

the “true” model output. The set-up for the AMOCIndex_obs is slightly different: both calibra-

tion and validation periods have available instrumental observations. Here, instead of selecting

each model output as pseudo-observations one-at-a-time, we simply use actual observations to

both weight the climate models, and to evaluate the projections. All experiments are performed

with both “trend” and “trend+var” methods. Both methods have been calibrated for each

experiment to have approximately correct coverage (correct % of cases where the “truth” is

outside the 90% posterior credible intervals) by adjusting the model error expansion factor f
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(Table 1). The calibrated values of f for the AMOCIndex experiments are also used for the cor-

responding AMOCIndex_obs experiments. We focus on the Winter_SST experiment here,

however summary results for all experiments are also provided.

3.2 AMOC experiment

For the AMOC experiment (Table 1), data extraction and processing largely follow previous

work [9]. The Climate Model Intercomparison Project phase 5 (CMIP5; [40]) model output

for this (and other) experiments has been obtained from the ESGF LLNL portal [41]. Future

forecasts use the RCP8.5 emissions scenario [42]. We use robust locally-weighted “lowess”

regression [36] to obtain the trend model component during the calibration period, and Theil-

Sen slopes [43]–in the validation period. We set the “lowess” smoother span parameter to 0.8

during the smoothing. We use this span value because it appears effective at removing interde-

cadal variability. The smoothed model output is illustrated in Fig 3. Importantly, we see non-

linearities in the modeled trends. Previous variability weighting work does not account for

such nonlinearities [35]. During the trend weighting we use smoothed output as anomalies

with respect to the entire calibration period. We use normalized (by the absolute AMOC)

anomalies to weight the variability models. Future projections use the “boot” variant of the

method.

3.3 Korea_temp and Korea_temp_long experiments

Korea_temp and Korea_temp_long differ only in the calibration periods and the error expan-

sion factors f, with Korea_temp_long using a longer calibration period. These experiments use

output from historical and future RCP8.5 runs of 29 CMIP5 model runs (Table 1, Table A in

S1 File). First, Korean daily maximum temperatures are calculated as spatial averages over

land grid cells (cells with more than 80% land) between 34–40˚N and 125–130˚E [38]. The JJA

(June, July, August) means are then obtained for each year. Theil-Sen slopes are used for

obtaining model trends during the model output decomposition. During the weighting,

smoothed output is used as anomalies with respect to the entire calibration period. Future

projections use the “boot” variant of the method. Note that the Korea_temp “trend+var”

Table 1. Basic information about the design of leave-one-out cross-validation experiments, and the method performance. Bold font indicates improvement of the

“trend+var” method, compared to the “trend” method. k is the number of models in the ensemble; MCIW is mean 90% credible interval width; MAE is mean absolute bias

of the mean; CIW is 90% credible interval width; AB is absolute bias of the mean.

Experiment k Calibration Period Projection Reference Period Projection Period Trend f Trend+Var f Metric Trend Trend+Var

AMOC 13 1880–2004 1960–1999 2060–2099 1.5 1.5 MCIW 9.53 Sv 9.46 Sv

MAB 2.30 Sv 2.06 Sv

Korea_temp 29 1973–2005 1973–2005 2081–2100 1.55 0.75 MCIW 4.34 K 3.23 K

MAB 1.01 K 0.88 K

Korea_temp_long 29 1950–2005 1950–2005 2081–2100 2.22 2.3 MCIW 4.28 K 3.60 K

MAB 0.96 K 0.79 K

Winter_SST 26 1941–2000 1941–2000 2061–2000 2.5 2.05 MCIW 3.40 K 2.90 K

MAB 0.86 K 0.78 K

AMOCIndex 13 1880–1945 1880–1945 1965–2004 3.75 3.75 MCIW 1.42 K 1.44 K

MAB 0.23 K 0.23 K

AMOCIndex_obs 13 1880–1945 1880–1945 1965–2004 3.75 3.75 CIW 1.42 K 1.43 K

AB 0.42 K 0.41 K

https://doi.org/10.1371/journal.pone.0214535.t001
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experiment has a slightly elevated coverage of 93%. Decreasing f to obtain approximately 90%

coverage is expected to improve performance metrics, but also to make probability densities

too discontinuous. Hence, we use the value of f = 0.75.

3.4 Winter_SST experiment

Winter_SST experiment uses winter sea surface temperatures from the East Sea from historical

and future RCP8.5 runs of 26 CMIP5 climate models (Table 1, Table B in S1 File). We select

this dataset because we find considerable relationships between present-day internal variability

properties and future SST change in this region and season (Fig 4; for model number corre-

sponding to each model see Fig L in S1 File). We define the East Sea as the area between 35 ˚N

and 42˚N, and between 130 ˚E and 139 ˚E. We use a simple average of all ocean points in this

region. During the weighting we use the output as anomalies with respect to the calibration

period. Furthermore, we use Theil-Sen slopes to obtain model output trends. Future projec-

tions use the “ar1” variant of the method, since we detect a considerable autocorrelation in the

model output anomalies.

3.5 AMOCIndex experiment

AMOCIndex experiment (Table 1) relies on historical output from the same 13 CMIP5 models

used for the AMOC experiment. AMOC Index is defined as sea surface temperature in north-

ern North Atlantic “gyre” minus Northern Hemisphere temperature. It is physically linked to

northward heat transport by the AMOC, and hence can be used as a proxy for AMOC [9,44].

Data extraction and processing follow [9], with a few changes. The Index is used as an anomaly

with respect to the entire historical period 1880–2004. We then use a portion of the historical

period (1880–1945) for calibration, and another portion (1965–2004) for projections. Smooth-

ing is performed using Theil-Sen slopes. Projections use the “ar1” variant of the method.

Fig 3. AMOC anomaly trends for the calibration period [Sv], as simulated by the CMIP5 climate models.

https://doi.org/10.1371/journal.pone.0214535.g003
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Fig 4. Relationship between sample innovation standard deviations �sM;i (normalized in the AMOC experiment) and

sample lag-1 autocorrelations of model anomalies during the calibration �rM;i for each model, and projected changes

(projected mean minus reference period mean) for the experiments using simulated data.

https://doi.org/10.1371/journal.pone.0214535.g004
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3.6 AMOCIndex_obs experiment

For the AMOCIndex_obs we use actual observations both to weight the models, and to vali-

date the probabilistic projections. Otherwise, the experiment relies on the same model output

as AMOCIndex experiment. The observations are a simple average of two AMOC Index ver-

sions: one calculated with ERSSTv4 SSTs [45–47], and one with COBE-SST2 SSTs [48].

ERSSTv4 data is publicly curated by National Oceanic and Atmospheric Administration [49],

while COBE-SST2 observations are provided by M. Ishii on the servers of Hokkaido Univer-

sity, Japan [50]. Both versions use GISTEMP Northern Hemisphere temperatures [51].

GISTEMP observations are maintained by NASA Goddard Institute for Space Studies [52].

For comparison with model output the COBE-SST2 SSTs are first interpolated to a 2×2˚ grid

using bilinear interpolation, while the ERSSTv4 observations are already on such a grid. For

both “trend” and “trend+var” experiments, f is taken from corresponding AMOCIndex

experiments.

4 Results of leave-one-out cross-validation experiments

The new method tends to be better able to correctly identify the “true” model from pseudo-

observations (Fig 5, Fig M in S1 File). This is not surprising since it uses extra variability infor-

mation that is not available to the “trend” method. This extra information can provide a pow-

erful constraint because models differ considerably in their representation of internal

variability, based on sample estimates of the variability properties (Fig 4). The most striking

improvement is obtained for the AMOC experiment while arguably the least improvement–

for the AMOCIndex (Fig M in S1 File).

Another important metric is the factor f that provides calibrated projections. This factor

can be interpreted as a rough measure of model error relative to the next-closest inter-model

Fig 5. Model weights for Winter_SST cross-validation experiments. Rows represent different “true” models. Color represents model weight.

https://doi.org/10.1371/journal.pone.0214535.g005
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differences in output space. The values feature a substantial range from 0.75 to 3.75 (Table 1).

For experiments AMOC, AMOCIndex, and Korea_temp_long, f is the same or similar for

both methods. Thus, under our statistical model, the best dynamical models for both “trend”

and “trend+var” experiments are approximately equally close to the “true” unobserved trends

in the real system, in both calibration and projection periods. However, for the rest of the sim-

ulated data experiments the new method achieves a lower f. Here, the best model for the

“trend+var” method is closer (more than twice as close for Korea_temp) to the “true” trend of

the system, compared to the best model under the “trend” experiment, both in calibration and
projection periods.

We now turn our attention to the question of future prediction. First, it is worth noting that

we do not find a significant bias between projections and “true” model output in any of our

leave-one-out cross-validation experiments. The new method tends to improve in terms of the

mean 90% credible interval width as well as mean absolute bias of the mean (Table 1, Figs 6

and 7, Figs N-Q in S1 File). Specifically, in the Korea_temp experiments, the forecast 90%

credible intervals on average sharpen by about 25%. For some cases (e.g., models 3 and 22 of

the Korea_temp experiment), the improvements are particularly dramatic, featuring a drastic

sharpening of the pdf and a strong reduction in the 90% credible intervals, with a low bias;

Figs P and Q in S1 File). The only cases with no improvement are AMOCIndex, and corre-

sponding AMOCIndex_obs (Table 1). We note that these experiments rely on the same model

output. They also use a weaker historical climate forcing during the projection period, whereas

other experiments use stronger RCP8.5 future forcing. It is worthwhile noting that the experi-

ments with the improvement boast a visual relationship between sample estimates of variabil-

ity properties and future changes (Fig 4). Specifically, models with higher innovation standard

deviation tend to produce higher summer mean maximum temperature warming in the

Korean temperature experiments. A positive relationship between standard deviation and

future temperature change has been previously found in previous work for many regions [6].

The relationships for the AMOC experiment are different: future AMOC slowdown appears to

be stronger for models with higher autocorrelation and low normalized innovation standard

deviation. In the Winter_SST experiment, the relationships also involve both variability prop-

erties: higher �sM;i and low �rM;i in the models are associated with smallest future warming.

Thus, we speculate that the degree of improvement may be related to the strength of statistical

relationships between the variability parameters and future change. Testing this hypothesis is

left to future work. There can be considerable shifts in the pdf between the “trend” and “trend

+var” method (Figs N-Q in S1 File). This is consistent with the fact that additional fluctuation

data can provide a relatively independent constraint on the model weights.

We note that the improvement in performance by the “trend+var” method is not caused by

any increase in number of parameters resulting in overfitting. The overall statistical model for

the projections is the same in both cases: a weighted mixture of pdfs from individual models.

The increase in skill is due to better estimation of individual model weights wi in the “trend

+var” model through using new variability data constraints on the models.

5 Real-Case application: Projecting korean summer mean

maximum temperature

We now apply both the “trend” and “trend+var” methods to make projections of Korean

summer mean maximum temperature. Specifically, we use 29 GCMs from Coupled Model

Intercomparison Project phase 5 (CMIP5, [40]) model runs (the same model set as for the

Korea_temp experiment). The models are weighted using 1973–2005 station observational

data provided by Korean Meteorological Administration (KMA) weather stations [38,53]. We
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Fig 6. Probabilistic projections for winter East Sea surface temperature change from 1941–2000 to 2061–2100 [K] under the RCP8.5

emissions scenario for the “trend only” Winter_SST cross-validation experiment. Subplots differ in the assumed “true” model. Red

circles are deterministic projections from each remaining model, red dotted lines are 90% posterior credible intervals. Black lines are

changes from the “true” models.

https://doi.org/10.1371/journal.pone.0214535.g006
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Fig 7. As Fig 6, but for “trend+var” experiment implementing the new proposed method.

https://doi.org/10.1371/journal.pone.0214535.g007
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apply simple area average to daily mean maximum temperatures from the stations before cal-

culating summer mean values. We use this short period because it has the best observational

coverage, however to provide a liberal estimate of the uncertainty we take model error expan-

sion factors f from the corresponding longer-period Korea_temp_long experiments. Future

changes (2081–2100 minus 1973–2005) under the RCP8.5 emissions scenario [42] are pre-

sented in Fig 8. The results show (a) notably higher projected warming and (b) considerable

reduction of the low-warming (< 2 K) tails after the variability weighting. Specifically, the

mean increases from 4.9 K to 5.6 K, and the 5th percentile from 1.8 K to 3.2 K. The new projec-

tion mode leaps from 5.3 K to 6.6 K (Table 2). In addition, the 90% credible interval shrinks

from 5.5 K to 4.3 K (22% reduction).

Fig 8. Probabilistic projections of summer mean maximum temperature change 1973–2005 to 2081–2100 over Korea under the RCP8.5 emissions

scenario using “trend” and “trend+var” methods. Vertical lines are the means and the 90% posterior credible intervals.

https://doi.org/10.1371/journal.pone.0214535.g008

Table 2. Summary of Korean summer mean maximum temperature change probabilistic projections from 1973–2005 to 2081–2100 under the RCP8.5 emissions

scenario from the “trend” and “trend+var” methods.

Experiment Mean Median Mode 90% Credible Interval

Trend 4.9 K 5.0 K 5.3 K (1.8, 7.3)

Trend+var 5.6 K 5.9 K 6.6 K (3.2, 7.5)

https://doi.org/10.1371/journal.pone.0214535.t002
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6 Discussion

Here we present a novel method “trend+var” to weight models of complex dynamical systems

by their skill at representing both autocorrelated variability and trend in observations. The key

step is association of two statistical models with each dynamical model: a trend statistical

model, and a variability statistical model. The component submodels are weighted separately

using relevant observations, and then the weights are combined. The combined weights are

used to make weighted probabilistic multi-model projections. In a series of cross-validation

experiments, we show that the new method appears to better identify the “true” model com-

pared to the trend-only weighting method (“trend”). The new method also tends to perform

better in terms of mean 90% posterior credible interval and mean absolute bias. Our analysis

deviates in some aspects from the traditional Bayesian framework, in order to avoid making

difficult-to-justify parametric assumptions about model error, and to alleviate potential over-

confidence in one-at-a-time cross-validation experiments.

Applying the new method to the real case of projecting Korean summer mean maximum

temperature change by the end of this century considerably increases future projections. These

projections are more informative than from the “trend” method because they use the addi-

tional variability and short-term memory (quantified by the lag-1 autocorrelation coefficient)

information from both models and observations. Since the BMA predictive model is the same

(Eq 14), the increase in skill is not due to an increased number of parameters, but is derived

purely through better estimation of model weights. Recent work has found correlations with

absolute values of up to approximately 0.8 between present-day interannual summer tempera-

ture sample standard deviation in global and regional climate models, and long-term future

mean and/or variability changes for some regions [6,25]. This suggests that historical variabil-

ity in those regions may provide a valuable constraint on the models. Applying the method to

those regions should be considered for future work.

It is worth discussing differences between this study and previous Bayesian work. Here we

for the first time implement a quasi-Bayesian statistical method that weights models by their

performance in terms of both trend, variability, and short-term memory (as quantified by the

lag-1 autocorrelation) for a relatively general case: arbitrary (potentially non-linear) trend

function and red noise variability. The method can be extended to more complex variability

structures. Model weights are obtained by constraining the method with calibration period

observations, while a parameter controlling model error assumptions is calibrated using cross-

validation experiments. Some prior work does also incorporate variability into model weights

[35], however their method has so far been demonstrated on a simple case: serially uncorre-

lated variability, and a linear mean function. Other studies [3,4,6] also incorporates variability

into the analyses. However, these studies do not actually use variability performance to weight

the models and ignore autocorrelation skill. Unlike previous work, we do consider autocorre-

lation, which is a common feature of variability in many observed and modeled processes [54–

56].

7 Caveats

Our study is subject to several caveats. First, the anomalies around the long-term trend, as well

as model-observational residuals are assumed to be red noise processes. However, our frame-

work can be extended to more general cases in the future. We compare the spectra of model

anomalies (normalized in the AMOC experiment) for each model and experiment to the 90%

confidence intervals for the corresponding AR1 process spectra, based on 1000 random reali-

zations (Figs R-T in S1 File). Relevant comparison for the AMOCIndex experiment is shown

in Fig 4 of a preceding study [9]. These results indicate that AR1 process is a reasonable
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approximation to the internal variability for these systems. Second, when combining the

weights of the variability and trend submodels we are assuming independence. While this

assumption appears to be generally reasonable here, it may not apply for other datasets. Incor-

porating dependence should be considered in future studies. Thus, our method is expected to

be ideal for cases where there is at least some relationship between present-day variability and

future changes, yet the relationship between present-day trends and variability in the models is

sufficiently weak to justify the independence assumption we make here. Third, by using a com-

mon error expansion factor f for the internal variability, trend submodel errors, as well as for

the forecasts, we are assuming the magnitudes of errors in these three components are linked.

A way forward in subsequent work may be to assume different f for trend and variability. The

best f values could then be found using constrained optimization (optimizing future perfor-

mance metrics while constraining coverage to be correct). This is beyond the scope of this

study. Fourth, when sampling future internal variability, we do not consider the uncertainty in

the AR1 parameters of the anomalies. However, as explained in Section 3, we calibrate our

method to account for potential overconfidence by scaling the magnitude of the model errors.

Other caveats include the simplicity of the future model bias and of the cross-validation experi-

ments, as well as no explicit representation of observational error. For the future Korean tem-

perature projections, the high density of observational network mitigates some of these

concerns, as random errors are expected to decrease after averaging across many stations. In

addition, theoretically if modelled and observed data from multiple regions are used together

in a cross-validation framework, the observational error will be implicitly incorporated into

the analysis after nudging the f parameter. Nonetheless, an explicit representation of observed

error should be considered in the future.

While the focus on this paper is on the statistical weighting methodology by trend and vari-

ability performance, the simplicity of the decomposition into trend and variability (e.g., lowess

method or linear detrending) deserves mention. The nonlinear trends discussed here may

include residual contributions from long-term internal climate variability. However, this can

be handled by the trend-weighting part of the method since this part accounts for long-term

model error [35]. The unfiltered long-term variability in each model can be simply considered

as part of this long-term model error. Previous work provides examples of using a more

sophisticated decomposition [18]. Improving the decomposition methodology is beyond the

scope of the paper, and is subject of future work.

This work assumes stationarity of model weights: if a model is correct during the calibration

period, it is also assumed to be correct in the validation period. This is a standard assumption

of the BMA method [1,5,20,21,35].

Notably, this work does not properly confront the issue of model dependence (e.g., the fact

that models coming from the same research group, or models with similar outputs are depen-

dent in the general sense of the term) [12,57–60]. This needs to be addressed in future work.

The best new datasets to apply the method to are the ones either with many regions, or with

repeated experiments, and where a long calibration period can be split into two subperiods. In

this case method performance can be systematically assessed using real observations in cross-

validation experiments, and f can be properly calibrated. However, any assumption about f
under new conditions is inherently untestable. Hence, we recommend including equal weights

projections along with projections from this (or any other) weighting scheme. In the absence

of many regions, and with only short time series available, one has to resort to simulated cross-

validation experiments using calibration, projection, and projection reference period model

output to calibrate the method. In such cases, if models share common errors, the real value of

f may be higher than estimated.
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8 Conclusions

We present a statistically-rigorous novel method to weight multiple models of stochastic

dynamical systems by their skill at representing both internal variability (including autocorre-

lation) and a nonlinear trend of a time series process, and to make predictions of system

change under new conditions. The weight is interpreted as a likelihood of a dynamical model

being adequate at capturing both trend and variability aspects of the process. This is a particu-

larly important diagnostic given the broad relevance of variability (e.g., variability can affect

extreme events such as heat waves and droughts in climate science). We show that the pro-

posed method tends to better identify “true” models in a suite of leave-one-out cross-validation

experiments compared to a typically-used trend-only BMA weighting method. The new

method also tends to improve forecasts, as judged by the mean 90% credible interval width

and mean absolute bias. This has important implications specifically for multi-model climate

projections. Applying the method to project Korean summer mean maximum temperature

changes over this century considerably increases future projections. Specifically, the mode of

1973–2005 to 2081–2100 warming under the RCP8.5 emissions scenario increases by 1.3 K to

6.6 K, while the mean shifts from 4.9 K to 5.6 K. Furthermore, the pdf becomes 22% sharper as

measured by the 90% posterior credible interval.
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