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Introduction

Measles remains a significant cause of

childhood morbidity and mortality. Hall-

mark of the disease is a generalized

immune suppression that can last for

several weeks to months after resolution

of measles virus (MV) infection [1–3],

resulting in increased susceptibility to

opportunistic infections [4–7]. At the same

time, measles is associated with immune

activation and induces strong MV-specific

immune responses that confer lifelong

immunity [8]. This contradiction is known

as the ‘‘measles paradox’. Although mea-

sles-associated immune suppression has

been a subject of study since the beginning

of the 20th century [9], the importance of

possible underlying mechanisms remains

disputed.

The Immune System as ‘‘Viral
Friend’’

From the perspective of MV, cells of the

immune system are both friend and foe.

MV efficiently replicates in cells of the

immune system, especially during the

initial stages of the infection [10,11].

However, the virus preferentially infects

specific subsets of lymphocytes and den-

dritic cells (DCs). The relative susceptibil-

ity of these cells to MV infection is

governed by their expression level of the

cellular receptor CD150 [11–14]. Memo-

ry T-lymphocytes, which express CD150,

are preferentially infected [13,14]. In

secondary and tertiary lymphoid tissues,

the virus also replicates to high levels in

follicular and marginal zone B-lympho-

cytes [10,11,13]. DCs can also be infected

by MV [11,15–17] and may serve as initial

target cells [18,19].

The Immune System as ‘‘Viral
Foe’’

In the majority of cases MV infection is

self-limiting and induces strong virus-spe-

cific cellular and humoral immune respons-

es resulting in lifelong immunity [20]. Virus

neutralizing antibodies are an important

correlate of protection against MV infec-

tion, but cytotoxic T-lymphocytes are

crucial for clearance of infected cells [21–

23]. Resolution of MV infection is associ-

ated with increased lymphoproliferation

[8,24] and enlargement of lymph nodes

[13]. Thus, the immune system efficiently

restricts MV replication and clears MV-

infected cells.

Mechanisms of Measles
Immune Suppression

Measles is associated with lymphopenia

[25] and extensive depletion of lympho-

cytes from lymphoid tissues [13,26,27].

However, lymphocyte numbers return to

normal within a week after clinical symp-

toms of measles have disappeared, while

measles immune suppression extends for

several weeks to months. Therefore, im-

mune cell depletion was initially dismissed

as a mechanism for measles immune

suppression [3]. Alternative mechanisms

have been proposed to explain measles-

associated immune suppression, as sum-

marized in Table 1. However, the rele-

vance of these observations to enhanced

susceptibility to opportunistic infections in
vivo remains unclear.

Is Suppressed
Lymphoproliferation
Important?

Reduced responsiveness of peripheral

blood mononuclear cells to stimulation

with mitogens in vitro has been considered

an important mechanism underlying

measles-associated immune suppression.

Although the observations in these studies

are not disputed, we find it difficult to

reconcile this in vitro observation with the

observed immune activation in vivo.

Measles results in dramatic expansion of

MV-specific lymphocytes followed by res-

olution of viremia and lymphopenia

[8,25,28]. We recently demonstrated ex-

tensive lymphoproliferation in lymphoid

tissues early after MV infection in vivo
[13]. Thus, there is no evidence of

suppressed lymphoproliferative responses,

at least towards MV, in vivo. Rather, we

believe that alterations in the composition

of the peripheral lymphocyte populations

before and after measles may explain these

in vitro observations [13].

Do Dendritic Dells Play a Crucial
Role?

DC subsets have been shown suscepti-

ble to MV infection in vitro [15–17] and

in nonhuman primates in vivo [11,19].

Therefore, it is likely that infection,

depletion, or functional modulation of

DCs contributes to measles-associated

immune suppression. Nevertheless, anti-

gen presentation does not seem to be

impaired in vivo, as strong MV-specific

immune responses develop during the

acute stage of the disease.

Measles Damages the
Respiratory Epithelium

Whereas MV targets CD150 to infect

lymphoid and myeloid cells, the virus uses

poliovirus receptor like 4 (also known as
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nectin-4) as an alternative cellular receptor

to infect epithelial cells [29–31]. Whilst

infection of epithelial cells contributes to

viral transmission [32], MV also causes

extensive epithelial damage in the respira-

tory tract [33,34]. This epithelial injury

may provide an opportunity for respirato-

ry bacteria to adhere, replicate, and

invade with increased efficiency [35].

Table 1. Reported mechanisms of measles immune suppression.

Functional Impairment

Mechanism References

Suppression of lymphocyte proliferation [41–45]

Altered cytokine profiles [42,43,46–50]

Lymphoproliferation defect due to MV-infected DC [15,17,51]

Immune modulation mediated by viral proteins [44,52–56]

Modulation of cell membrane components [57,58]

Inhibition of hematopoiesis [59,60]

Depletion

Mechanism References

Lymphocyte infection & depletion [11,13,14,46,61–64]

Bystander lymphocyte apoptosis [65–67]

DC infection & depletion [11,16,68,69]

T-cell apoptosis after interaction with MV-infected DC [16,70]

doi:10.1371/journal.ppat.1004482.t001

Fig. 1. Schematic representation of the measles paradox. Different levels of lymphopenia (A), systemic virus loads (B), and virus-specific
immune responses (C) after subclinical (blue), mild (green), moderate (black), or severe (red) morbillivirus infections. Panel D shows a model for
immune suppression caused by moderate morbillivirus infection as shown in panels A, B, and C (adapted from [13]).
doi:10.1371/journal.ppat.1004482.g001
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Attenuated, Mild, Moderate, or
Severe Morbillivirus Infections

MV infections display a large variability

in clinical severity, ranging from vaccina-

tion with attenuated viruses, via subclinical

or mild infections, to severe disease. Closely

related animal morbilliviruses may even

overwhelm the immune system, resulting in

functional paralysis and virtual absence of

virus-specific immune responses [36–40].

This variation is also reflected in a wide

range of levels of lymphopenia, viremia,

and specific immune responses (Fig. 1A–C)

[13]. Natural MV infection of the naive

host will normally follow the pattern of

either a mild or moderate infection as

displayed in Fig. 1. Whereas mild measles

results in limited depletion of pre-existing

CD150+ memory lymphocytes, moderate

measles is associated with infection and

subsequent depletion of a large fraction of

those lymphocytes (Fig. 1D). Whether this

depletion is mediated by necrosis, apopto-

sis, pyroptosis, or cytotoxic T-cells remains

to be determined, but the effect is always

the same: to a varying degree, measles

erases immunological memory.

Future Directions: Studies in
Naturally Infected Measles
Patients

To improve our understanding of mea-

sles immune suppression, a transition from

in vitro to in vivo studies is required. Two

aspects are of crucial importance: viral

tropism and depletion of immune cell

subsets. We feel that it is important to

characterize the phenotype of MV-infected

cells during the prodromal phase of natural

measles, with special emphasis on infection

of DCs and memory lymphocytes. Further-

more, to address depletion of immune cell

subsets, paired blood samples from children

before and after measles will be required.

Staining of immune cells specific for

previously encountered pathogens, rather

than functional assays, will allow us to

distinguish between subset depletion and

functional paralysis.

Conclusions

Experimental MV infections in animal

models have demonstrated that percent-

ages of infected lymphocyte subsets are

higher than previously thought, especially

in secondary and tertiary lymphoid tissues

[11,13]. We believe that measles immune

suppression mainly results from depletion

of immune cell subsets, which is masked by

the rapid proliferation of MV-specific and

bystander lymphocytes (Fig. 1D). This

model is fully compatible with the measles

paradox. Clinical studies are required to

test our hypothesis that measles immune

suppression is mainly a numbers game.
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