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ABSTRACT Endogenous (circadian) and exogenous (e.g., diel) biological rhythms are a prominent feature
of many living systems. In green algal species, knowledge of the extent of diel rhythmicity of genome-wide
gene expression, its evolution, and its cis-regulatory mechanism is limited. In this study, we identified
cyclically expressed genes under diel conditions in Chlamydomonas reinhardtii and found that ~50% of
the 17,114 annotated genes exhibited cyclic expression. These cyclic expression patterns indicate a clear
succession of biological processes during the course of a day. Among 237 functional categories enriched in
cyclically expressed genes, .90% were phase-specific, including photosynthesis, cell division, and motility-
related processes. By contrasting cyclic expression between C. reinhardtii and Arabidopsis thaliana putative
orthologs, we found significant but weak conservation in cyclic gene expression patterns. On the other
hand, within C. reinhardtii cyclic expression was preferentially maintained between duplicates, and the
evolution of phase between paralogs is limited to relatively minor time shifts. Finally, to better understand
the cis regulatory basis of diel expression, putative cis-regulatory elements were identified that could pre-
dict the expression phase of a subset of the cyclic transcriptome. Our findings demonstrate both the
prevalence of cycling genes as well as the complex regulatory circuitry required to control cyclic expression
in a green algal model, highlighting the need to consider diel expression in studying algal molecular
networks and in future biotechnological applications.
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Diel (24-hr, day/night periods) cycles dictate physiological changes at
different times of day in many organisms. The timing of these physi-
ological oscillations is regulated by a combination of environmental,
metabolic, and circadian signaling processes (Farre 2012; Kinmonth-
Schultz et al. 2013; Song et al. 2013; Fonken and Nelson 2014). For
example, circadian clock mutants lead to phase changes under entrained
diel conditions (i.e., light-dark cycles) and changes in photoperiod sen-

sitivity (Yanovsky and Kay 2002; McNabb and Truman 2008). Oscil-
lations can be a direct adaptation to environmental cycles, for example,
restricting photosynthesis and protection against ultraviolet radiation to
periods of light. Diel cycles also influence biotic responses such as de-
fense mechanisms (Arimura et al. 2008; Goodspeed et al. 2012; Baldwin
and Meldau 2013) and mutualistic interactions (Frund et al. 2011;
Lehmann et al. 2011). Mechanistically, many of these cycling responses
are regulated at the transcriptional level. For example, in the green alga
Chlamydomonas reinhardtii, oscillations in starch levels are partially
regulated by the cyclic expression of adenosine diphosphate-glucose
pyrophosphorylase (Ral et al. 2006). However, some circadian regulated
processes are controlled at the posttranscriptional level (Kojima et al.
2011) and/or by the interaction between transcriptional and posttrans-
lational regulation (Kinmonth-Schultz et al. 2013; Song et al. 2013).
Early transcriptome analyses of three model organisms, Arabidopsis
thaliana, Drosophila melanogaster, and Mus musculus, indicated that
between 1 and 10% of genes exhibit circadian oscillation with periods of
~24 hr (Doherty and Kay 2010). Moreover, in photosynthetic organisms,
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30–90% of genes cycle under diel conditions (Michael et al. 2008;
Monnier et al. 2010; Shi et al. 2010; Filichkin et al. 2011). In land plants,
approximately a third of the genes that cycle in light/dark are also
circadian regulated (Michael et al. 2008; Filichkin et al. 2011). Several
cis-regulatory elements (CREs) necessary for circadian-regulated gene
expression have been identified (Michael and McClung 2002; Harmer
and Kay 2005; Michael et al. 2008), although it remains an open
question how well the identified CREs explain global cyclic expression
patterns.

The green alga C. reinhardtii has been used extensively to study
physiological processes under the control of circadian and/or diel
cycle (Mittag et al. 2005; Matsuo and Ishiura 2010). C. reinhardtii’s
size, short life-cycle, and extensive genetic tool set make it an ideal
model organism (Harris 2001), particularly for studies such as exper-
imental evolution from single to multicellularity (Ratcliff et al. 2013)
and the genetic engineering of triacylglycerol accumulation in algae
(Grossman et al. 2007; Hu et al. 2008; Siaut et al. 2011). C. reinhardtii
also has been used to study rhythmic responses to light (Bruce 1970),
ammonium (Byrne et al. 1992), and nitrogen availability (Pajuelo et al.
1995). However, studies of cyclic expression in C. reinhardtii have
been limited to single (Mittag et al. 2005; Matsuo and Ishiura 2010)
or relatively small sets of genes (Kucho et al. 2005). Despite the large
evolutionary distance, there are some conserved elements between
both the circadian (Corellou et al. 2009; Matsuo and Ishiura 2010)
and the photoperiodic (Romero and Valverde 2009) oscillators of
flowering plants and green algae, raising the question whether and
to what extent cyclic expression is conserved. Therefore, a genome-
wide analysis of cyclic expression in C. reinhardtii can provide insight
not only into cyclic physiological behavior in green algae but also how
this behavior has evolved in divergent lineages of the Plantae. Such an
analysis will also be relevant to economically important processes in
algae such as oil production.

In this study, we examined gene expression patterns under diel
conditions in C. reinhardtii. We characterized the prevalence of cy-
cling gene expression in the C. reinhardtii genome and observed that
genes involved in distinct biological processes are consistently
expressed at certain times during the day/night cycle. We also inves-
tigated the conservation of cyclic expression patterns between ortho-
logs in C. reinhardtii and A. thaliana, which diverged ~6502800
million years ago (Sanderson et al. 2004) and the evolution of cycling
paralogous genes. Finally, to understand the cis-regulatory basis of diel
expression, we identified putative CREs (pCREs) associated with cyclic
expression at different phases and investigated how these pCREs can
be used to predict cycling gene expression.

MATERIAL AND METHODS

Growth of Chlamydomonas reinhardtii cultures
C. reinhardtii dw15.1 was grown in Tris-acetate-phosphate media in
flasks without aeration, shaken at 100 rpm, at 22�. Although the
acetate present in this media provides an alternative source of carbon,
allowing for C. reinhardtii to grow in the dark, previous studies have
shown that that the cell-cycle (Voigt and Munzner 1987; Davies and
Grossman 1994) and other metabolic cycles (Ral et al. 2006) are still
synchronized in C. reinhardtii grown in acetate-containing media un-
der light/dark cycles. Additionally, the amplitude and phase of cell-
cycle gene expression in our study and in previous studies where
cultures were grown under autotrophic conditions (Bisova et al.
2005) are similar (Supporting Information, Figure S1). An initial
200-mL culture was grown to a density of 25 million cells mL21 in
constant light (50 mmol s21 m22) and used to set up 50 mL cultures

of 0.5 million cells mL21 that were transferred to 12-hr light (50 mmol
s21 m-2) and 12-hr dark conditions for 48 hr before sampling. Two
biological replicates were collected every 3 hr between ZT (i.e., Zeit-
geber time, hours since last dawn) 0 and ZT 21. Each sample origi-
nated from an independent 50-mL culture. Samples collected during
the light to dark or dark to light transition were taken just before the
change of conditions. For collection, 2 mL of the culture was placed in
a 2-mL tube and centrifuged at max speed in at 4� for 10 min. Amber
tubes were used for samples collected during the dark period and the
supernatant was removed under weak green light. The pellets were
snap frozen in liquid nitrogen. The frozen samples were ground using
the QIAGEN tissue lyser for RNA extraction.

RNA sequencing
RNA was extracted using the Omega eZNA Plant RNA kit. The RNA
was eluted in 50 mL of diethylpyrocarbonate-H2O, and the concen-
tration was measured using a Nanodrop (Thermo-Fisher). A portion
of the RNA was diluted to 1 ng mL21 to check the RNA Integrity
Number with a Bioanalyzer (Agilent). All samples had a RNA In-
tegrity Number equal to or greater than 7. Library preparation and
sequencing was performed at the MSU-Research Technology Support
Facility using the Illumina Tru-Seq Stranded kit with an Illumina
HiSequation 2500. Eight samples were sequenced in each lane using
a custom bar-coding, but the two biological replicates from the same
time point were run in separate lanes. The average number of RNA-
Seq reads per sample was 1.81e7, and they ranged between 7.07e6 and
2.58e7. The reads from each of 16 samples (eight time points, two
samples each time point) were mapped to the C. reinhardtii genome
(version 4.3 from Phytozome) using Tophat (Trapnell et al. 2009)
with default parameters except for intron length (min 13, max
8712) and max-multi-hits (1). Gene models on nonchromosomal
fragments were not considered. Fragments per kilobase of transcript
per million mapped reads (FPKM) per gene were calculated using
Cufflinks (Trapnell et al. 2010) with parameter –I 8712. A high per-
centage of reads mapped to the genome: the least mapped sample had
82% of reads mapped and the average of all samples was 85%. Upper
quartile normalization was applied to all samples to correct for tech-
nical variation as recommend in Bullard et al. (2010). The two bi-
ological replicates were appended and used as two consecutive days
for downstream analysis. Raw read data are available through the
National Center for Biotechnology Information Sequence Read Ar-
chive, BioProject accession [PRJNA264777].

Identification of cycling genes
Two programs were used to identify cyclic patterns of expression in
FPKM data, COSPOT (which is described in Panda et al. 2002) and
an application of the discrete Fourier transform (DFT). The DFT has
been applied previously to the analysis of cyclic expression using
RNA-Seq data (Rodriguez et al. 2013), but our method is based pri-
marily on PRIISM (Rosa et al. 2012). We chose to use both COSPOT
and the DFT in conjunction because we found that the combination
of methods had superior coverage of known cycling genes without
a substantial increase in the expected false positive rate (see File S1)

In our application, we take the DFT of each gene expression vector
in the C. reinhardtii FPKM data set, converting a set of ‘N’ FPKM
values (x) in terms expression vs. time to new values (y) in terms of
expression vs. frequency such that:

yk ¼
XN21

n¼0

xn � e2i2pkn
N (1)
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Where xn is the FKPM value at the nth time point and yk is the kth
frequency component with period T/k, where T is the time period
spanned by the expression vector. The set of frequency components
represents the power spectra of the associated expression vector, that
is, the contribution of each periodic cycle to the overall data. In
calculating the power spectra of the expression data, we employed
a nonwindowed application of Welch’s method (too few data points
were present tolerate the loss of information involved in windowing)
to average the power spectra over subsets of the expression vector
with T = 24 hr. This was done to reduce bias in the calculation of
the power spectra that might be induced by a particular subset of the
expression data at the cost of reducing the overall resolution of
the power spectra (although this loss of resolution was primarily
at the extreme ends of the spectra and should not affect our results).
Furthermore, the coefficients of each power spectra were normalized
prior to averaging using the following equation:

y
k
� ¼ yk 2 ymin

ymax 2 ymin
(2)

Where ymin is the smallest coefficient of the power spectra and ymax

is the largest. As such, the normalized values,yk�, are on the interval
[0,1], further reducing the affect that a single subset can have on the
average power spectra. The “cyclic score” of each gene is defined as
the normalized value of the 24 hr frequency component. This score
is equated to a P-value by randomizing the order of values in each
expression vector and scoring the vectors in this random population.
For this study, we tested cyclic score thresholds equal to the fifth,
second, and first percentiles of the score distribution of the randomized
data (equal to 0.745, 0.808, and 0.841 respectively) and chose the second
percentile as our cutoff for calling cycling genes (equivalent to a P-value
of 0.02). In comparison, the fifth percentile of cyclic score for the set of
predicted cycling genes in C. reinhardtii was 1. Additional information
about how these thresholds were determined as well as a comparison to
COPSPOT can be found in File S1.

Clustering cycling genes according to phase
Cycling genes in C. reinhardtii were first divided by their phase of
expression, that is, the ZT at which peak expression occurred in the
FPKM data set. Within each phase cluster, genes were ordered using
hierarchical clustering implemented in R for display purposes. Phase
clusters were further broken down using two-rounds of k-means clus-
tering, implemented using custom Python scripts. K-means clustering
involves initially selecting “k” random centers in parameter space and
assigning genes to clusters based on their distance to the nearest
center. The mean of each cluster is then used to define new centers
which in turn are used to redefine clusters; this process is repeated
until the clusters converge or the amount change per iteration falls
below a specified threshold. The final clusters used for pCRE identi-
fication contained 10290 genes. Enrichment of Gene Ontology (GO)
terms and pCREs in phase groups was done using the Fisher exact
test, and the resulting P-values were corrected for multiple hypothesis
testing using the method of Benjamini-Hochberg (Benjamini and
Hochberg 1995).

Conservation of cyclic expression and phase of
expression among duplicate genes
Gene trees in C. reinhardtii were defined using the pipeline described
in Zou et al. (2009) using a set of protein domains defined using
PFAM (Punta et al. 2012). These domains were extracted from protein
sequences and aligned using MAFFT (Katoh et al. 2002), and a phylog-

eny was inferred using RAxML (Stamatakis 2006) with parameters
-f d -m PROTGAMMAJTT. Large domain families were divided by build-
ing neighbor joining trees with PHYLIP (Felsenstein 2005) and cutting
a at distance to root $ 0.05 to create subclusters between 4 and 300
genes in size. Domains were mapped back to C. reinhardtii genes to
infer gene trees. The gene trees, including the divided trees for large
domain families, were reconciled with an existing species tree (Moreau
et al. 2012) using NOTUNG (Chen et al. 2000). An archive of these
gene trees in Nexus (.nex) format has been included as File S2. Branches
containing A. thaliana and C. reinhardtii genes were extracted from the
overall tree. The significance of the retention rate of cyclic expression
and the phase of cyclic expression was determined by randomly pairing
genes in the set of duplicates 100,000 times and comparing retention
among actual duplicates to the random population.

Modeling cycling state divergence of duplicate genes
The divergence of duplicate genes was modeled using a system of
three difference equations with a common rate ‘d’ for the divergence
of both cycling and noncycling duplicates and a common rate ‘s’ for
the reversion of diverged duplicates back to an identical state. Dupli-
cate gene pairs were binned according to Ks (width = 0.3), and we
assume that the initial frequency of duplicates was the same within
each bin (if the initial conditions were significantly different, we would
expect to see deviation from the observed frequencies in the model
predictions, which was not the case). We then solved for values of ‘d’
and ‘s’ using the observed change between consecutive bins, arriving at
a solution with the same qualitative behavior as the observed data. A
detailed description of the model can be found in File S1.

Identification of pCREs and phase prediction
Identification of pCREs in the promoter regions of C. reinhardtii
genes followed the pipeline described in Zou et al. (2011). Cycling
genes were clustered according to phase and expression profile as
previously described. For each cycling gene the promoter region, de-
fined as the first 1-kb upstream of the transcription start site less any
bases that overlap with another gene, was isolated. Six motif finders,
AlignAce, MDscan MEME, Motif Sampler, Weeder, and YMF, were
used to identify motifs enriched in the promoter region of each phase
cluster compared with the promoters of all cycling genes. The result-
ing motifs were merged using UPGMA to reduce the number of
motifs and remove redundant motifs. Merged motifs were mapped
back to the C. reinhardtii genome using a threshold P-value of 1e-05.

The presence or absence of pCREs was used to predict the phase of
expression of cycling genes using a support vector machine (SVM)
implemented in Weka (Hall et al. 2009). Given a test-set of positive
and negative examples defined using n-variables (in this case, presence
or absence of pCREs), SVM seeks to define a linear classifier (i.e.,
a hyperplane in variable space), that best divides positive and negative
examples. This classifier is then used to assign subsequent data points
to either the positive or negative set. A grid search of two parameters,
the minimum distance between positive and negative groups (C) and
the ratio of negative to positive examples in the training set (R), was
used to optimize separation and pick the best classifier. The tested
range of each parameter was as follows: C = (0.01, 0.1, 0.5, 1, 1.5, 2.0)
and R = (0.25, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4). Results were validated using
10-fold cross validation, which involved dividing positive and negative
examples for each phase into training test sets using stratified random
sampling. Each of the 10 test sets was classified by an independent
SVM run and the average of the 10 runs was used to score the
performance of the parameter set.
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Identifying groups of genes with common expression or
common function
Cyclic genes with common expression were defined using k-means
clustering as described previously. Cyclic genes with common
function were defined as those that shared the same GO annotation.
For the purpose of predicting cyclic expression, we used only those
GO annotations overenriched in at least one phase of cyclic expression
and where at least eight annotated genes were overenriched in the
same phase.

RESULTS

Cycling gene expression is extensive in the
C. reinhardtii genome
To characterize cyclic expression in C. reinhardtii, the expression
profiles of 17,114 annotated C. reinhardtii genes were defined from
samples taken at 3-hr intervals over two 24-hr time courses (see the
section Materials and Methods). A gene was defined as cyclically
expressed if it exhibited statistically significant, nonrandom variation
at a regular period as identified by either COSPOT or DFT (see the
section Materials and Methods). The union of predictions for both
methods covered 8072 cyclically expressed genes (47.2% of the
C. reinhardtii genome), which we hereafter refer to as “cycling genes.”
Both approaches generated cyclic expression models that correlated
with the original expression data, with an average Pearson correlation
coefficient of 0.987 for COSPOT and 0.880 for DFT. The correlation
for COSPOT models is greater compared with that of DFT because
COSPOT models are fit directly to the overall pattern of the data
whereas the DFT models are based only on variations that occur at
a period of 24 hr. Taken together, cyclic variation in gene expression
represented the predominant form of nonlinear variation in RNA
content at both the genome-wide and individual gene level.

Cyclic variation can be described using three parameters: period,
amplitude, and phase (Figure 1A). Using the fitted models, we inferred
the period, amplitude, and phase of all cycling genes in the C. reinhardtii
genome. The distribution of period for our set of cycling genes
was centered around 24 hr (+/2 1.10 hr, 95% confidence interval;
Figure 1B and Figure S2A). The amplitude of cyclic expression was
highly correlated with mean expression level (r2 . 0.7) and, on av-
erage, was only half the size of the mean, indicating that most cycling
genes are expressed at some constitutive level even during the trough
of the cycle (Figure 1C and Figure S2B). The phase distribution of
cycling genes was bimodal with one peak at around ZT 0 (20.6% of
cycling genes) and a second around ZT 12 (16.4% of cycling genes),
corresponding to the night-to-day and the day-to-night transitions,
respectively (Figure 1D and Figure S2C). Our finding concurs with the
phase distribution reported for A. thaliana and other plant species
under diel conditions (Michael et al. 2008; Filichkin et al. 2011) as well
as a subset of circadian genes in C. reinhardtii (Kucho et al. 2005).

Phases of cycling gene expression are associated with
a succession of biological functions
Earlier studies have shown that multiple processes in C. reinhardtii have
specific rhythms, including the expression of key photosystem compo-
nents (Hwang and Herrin 1994; Jacobshagen and Johnson 1994) and
the timing of gametogenesis (Jones 1970). Thus, we first asked which
processes tend to be rhythmic by identifying GO terms with an over-
represented number of cycling genes. We found that cycling genes were
enriched in 44 GO terms, including those related to the chloroplast,
photosynthesis, and ribosomal subunits (Table S1). Among these terms,
the most striking pattern was that 207 of 252 flagella related genes

showed cyclic expression. In particular, 80% of cyclically expressed
flagella genes (167 of 207) had peak expression at ZT 21, suggesting
that biological functions can be phase specific. To further explore the
association between phase and function, cycling genes were assigned to
eight “phase clusters” (ZT 0, 3, 6, 9, 12, 15, 18, and 21; Figure 2A), and
enrichment of GO categories within each cluster was determined.

We found that 237 GO terms had overrepresented numbers of
genes in $1 phase cluster (Figure 2B). Enrichment values for each
term in each phase group can be found in File S3. The greatest
number of enriched terms was found in the ZT 21 cluster, just before
the night-day transition, (40/237, 16.7%) and the ZT 9 cluster, just
before the day-night transition (61/237, 25.7%). We also observed that
overrepresented GO terms tended to be phase-specific: of all 237
terms, only 19 were enriched in .1 phase, and 12 of those were
enriched only in two adjacent phases (Figure 2B and Figure S3A).
In contrast, the majority of underrepresented categories (51%)
spanned $4 phases (Figure S3B). Thus, genes involved in the same
process not only tended to be enriched in a particular phase of ex-
pression but were also depleted in other phases. This phase-specificity
of functional categories was consistent with previous studies of light-
response, metabolism, cell division, and flagellum biogenesis in
C. reinhardtii demonstrating cyclic behavior at a specific time of the
day (Jones 1970; Cavalier-Smith 1974; Teramoto et al. 2002). For
example, DNA replication and mitotic events in C. reinhardtii are
restricted to the early hours of the dark period (Jones 1970): not only
is the transition into darkness required for normal cell division (Voigt
and Munzner 1987), but DNA replication and cell separation occur
between 2 and 5 hr after the light-dark transition (Fang et al. 2006).
This specific timing of DNA replication after the light to dark tran-
sition matches the phase of expression for cycling genes related to this
process. Alternatively, the gradual increase in expression of replication
associated genes toward a peak early in the dark period may track with
increases in cell size, as it has been shown that the concentration of

Figure 1 Period, amplitude, and phase of cyclic expression. (A) Three
properties of cyclic variation: period, amplitude, and phase. (B) The
distribution of period of cycling genes identified in C. reinhardtii. (C)
The relationship between amplitude and mean expression level in
FPKM (fragments per kilobase of transcript per million mapped reads).
(D) The distribution of the phase of cycling genes.
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cell cycle regulatory proteins HA-MAT3, DP1, and E2F1 remain con-
stant despite the increase in cell volume during G1 (Olson et al. 2010).
We should note that many of the phase-specific functional categories
uncovered here, such as amino acid biosynthesis, phosphorelay activity,
and mRNA splicing were not previously known to show time-specific
cycling behavior in C. reinhardtii. Although correlation alone is insuffi-
cient to prove causation, the coordination between cyclic expression and
function is highly suggestive that timing of transcription can regulate the
timing of higher order biological processes.

Based on the apparent association between phase and function in
this as well as in previous studies, GO terms were classified into broad
“functional groups”: (1) ribosome and translation, (2) photosynthesis
and light response, (3) mitochondria and metabolism, (4) cell cycle
and mitosis, and (5) microtubules and flagella (Figure 3 and Table S2).

We found that group 1, 2, and 3 were overrepresented in the middle of
the day (ZT 3 and 6), group 4 in the early and mid-night (ZT 12 and
15), and group 5 at the end of the dark-period (ZT 21) (Figure 3A).
Consistent with the pattern of phase-specific enrichment of genes
in different functional groups, the normalized expression profiles
of cycling genes in each functional group clearly demonstrated
phase specificity (Figure 3, B2F). The diel expression data also
highlighted the possibility of distinguishing different components
of a biological process. For example, group 5 genes are involved in
forming microtubules and subsequently flagella. Within this group,
genes associated with the microtubule cytoskeleton peaked earlier
in the dark period whereas those associated with flagellum assem-
bly peaked toward the end (Figure 3L), representing a clear de-
lineation between spindle body formation and flagellar regeneration as
described previously (Cavalier-Smith 1974). Taken together, our
findings suggest that the timing of biological processes (trans-
lation, cell-replication, and regeneration of the flagellum) may be
determined by transcriptional regulation.

C. reinhardtii and A. thaliana orthologs have limited
conservation in cycling gene expression patterns
To test whether the functional coordination and phase specificity of
cyclic expression observed in C. reinhardtii can be found in related
multicellular species, cycling genes were identified in A. thaliana using
the same methods and cutoff values applied to C. reinhardtii on an
existing diel expression data (Blasing et al. 2005). A total of 4945 genes
in A. thaliana were identified as cycling (21.7% of the annotated
genes), less than half of what was seen in C. reinhardtii. This difference
is in part due to a lower sampling density of the A. thaliana data (once
every 4 hr), though the overall time span covered was longer (3 d). It is
also possible that the mixture of different cell types in A. thaliana
samples could mask some rhythmic expression patterns. We also ob-
served that 992 GO terms in A. thaliana were overrepresented in $1
phases compared with 237 in C. reinhardtii, which is likely a function
of significantly better annotation (Figure 2C). Enrichment values for
each term in each phase group can be found in File S4.

In contrast to the strict phase-specificity in C. reinhardtii, A. thaliana
group 2 GO terms (photosynthesis and light response) were enriched
among cycling genes in all six time points but were predominant at ZT
4. The other three groups (group 1, 3, and 4) were restricted to at most
two adjacent phases (Figure 3G). Compared with C. reinhardtii, there is
a greater variance in the phase of expression among the A. thaliana
cycling genes within each group, potentially due to the fact that the
A. thaliana expression data were derived from samples of mixed tissues
and cell types. Nonetheless, the peak expression of photosynthetic, mi-
tochondrial, and ribosomal genes occurred at a similar time, as was
observed in C. reinhardtii (Figure 3, H2K). These results suggest that
cyclic expression is conserved between a subset of functionally related
genes, in both unicellular and multicellular plant systems.

Because of the concern that the phase-specificity differences between
C. reinhardtii and A. thaliana might be due to annotation quality
difference, we next examined the degree to which cycling gene expres-
sion was conserved between orthologous genes in these two species.
Among 11,845 putative orthologs, 1464 (12.4%) showed cyclic expres-
sion in both species (referred to as “co-cycling” orthologs), which is
significantly greater than the random expectation (x2 test, P , 0.001).
The conserved co-cycling genes encode components of the ribosome
(particularly the small subunit), plasma, and thylakoid membrane com-
ponents, or are involved in stress response (Fisher exact tests, P, 0.05).
Nonetheless, we should emphasize that the difference between the ob-
served and expected proportion of co-cycling orthologs was only 2.4%.

Figure 2 Phase of gene expression and cyclically expressed GO terms.
(A) The normalized (relative) expression of each cycling gene in C. rein-
hardtii (each row) across the 48-hr period (columns). Genes were assigned
to phase clusters based on the predicted time of peak expression. Genes
in each phase cluster were ordered using hierarchical clustering. The
white and black bars below indicate samples from the light and the dark
periods, respectively. (B) The test statistics of GO term (rows) enrichment
in each phase (columns) in C. reinhardtii. The 2log(p-value) of the Fisher
exact test is plotted. GO terms are ordered along the y-axis according to
the most enriched phases and hierarchically clustered within each phase.
(C) The test statistics of GO term enrichment in each phase in A. thaliana.
Methods for assigning GO terms to phase, clustering, and the color
legend are the same as in (B). GO, Gene Ontology.
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Thus, most cycling genes in C. reinhardtii are not cyclic in A. thaliana
and vice versa. In addition, although the amplitude of cyclic expression
is significantly correlated among co-cycling orthologs (r2 = 0.30, P ,
102100), there are only weak relationships between their phases (r2 ,
0.01, P , 0.006). The A. thaliana and C. reinhardtii lineages diverged
6502800 million years ago (Sanderson et al. 2004) and have extensive
differences in life histories, distribution, complexity, and physiology.
Thus, the conserved components of cyclic expression are likely core
processes strongly selected to be maintained, including photosynthetic,
mitochondrial, and ribosomal genes (Figure 3, H2K). However, most
orthologs between green algae and flowering plants have divergent
patterns of cyclic expression, and the extent of cyclic expression
divergence highlights the fact that cycling gene expression can be
plastic.

Conservation of cyclic expression is more prevalent
among older duplicate genes
To further assess how quickly cyclic expression divergence occurred,
we asked how the pattern of cycling gene expression evolved between
duplicated genes in C. reinhardtii. Gene trees were inferred based on
similarity of known protein domains, and we retained only the closet
pairs of paralogs (i.e., those separated by only a single ancestral node)
for subsequent study (see the section Materials and Methods). The
frequency with which the pattern of gene expression (cycling or non-
cycling) was identical or divergent was compared with the timing of
the inferred duplication event, estimated using the synonymous sub-
stitution rate (Ks) (Figure 4A). The overall frequency of diverged
duplicates (one paralog cycling, the other noncycling) increased with
Ks, approaching an asymptote of ~0.45 for Ks . 0.9. Although the
frequency of noncycling duplicates decreased with Ks, the frequency
of cycling duplicates was greater on average for Ks . 0.9 indicating
a net gain of cycling expression as duplicates age. We hypothesized
that this gain of cycling expression results from a bias in the rate at
which duplicate genes diverge that favors the cycling state.

To test this hypothesis, we examined whether the observed changes
in the frequency of retention can be explained without assuming
different rates of divergence. Therefore, a null model of duplicate gene
divergence was created using a system of difference equations (see the
section Materials and Methods). We fit the transition probabilities
using the difference in frequencies between Ks 0.6 and 0.9, and the
predicted frequencies of identical and divergent duplicates closely
matched our observed results at all time points (root mean squared
error = 0.03), showing the same pattern of increases and decreases
(Figure S4). Hence, we have no evidence of a differential rate in di-
vergence between cycling and noncycling duplicates, however the
predicted probability of transition from identical to divergent (0.42)
is less than the probability of transition from divergent to identical
(0.53), suggesting that there is a preference for maintaining duplicates
in an identical state. This finding is consistent with our finding that
the observed frequency of paralogs with identical states tends to be
significantly greater than expected under random association (Z-test,
P , 10217; Figure 4B). In contrast, the frequency of paralogs with
divergent state is significantly lower than expected (Figure 4B).

Next, we examined the frequency with which phase is identical
among pairs of the cycling duplicates. Overall, the number of co-
cycling paralogs for which the phase of cyclic expression was identical
is more than twice the number randomly expected (Z-test, P, 10285)
with 33.7% of co-cycling duplicates sharing the same phase. The
identical phase state was more common among cycling duplicates
with lower Ks, and there was a sharp decrease in the frequency of
duplicates with identical phases going from a Ks of 0.9 to 1.2 (Figure

Figure 3 Phase specific expression of broad functional categories. (A)
Enrichment test statistics in each functional group (row) and in each
phase cluster (column) among C. reinhardtii cycling genes. The
color indicates the averaged –log(p-value) of GO terms in a func-
tional group Table S2 (B2F) Normalized expression profiles of genes
in each functional group in C. reinhardtii. The black line indicates
average expression values. The gray area represents 1/21 SD. (B)
Ribosomes/translation; (C) photosynthesis/light-response; (D) mitochon-
dria/metabolism; (E) cell-cycle/Mitosis; (F) microtubules/flagella; (G) en-
richment test statistics for functional groups in A. thaliana. The functional
group designation and color legends are the same as (A). Gray: not
applicable. (H-K) Normalized expression profiles of genes in each func-
tional group in A. thaliana. (H) Ribosomes/translation; (I) photosynthesis/light-
response ;(J) mitochondria/Metabolism; (K) cell-cycle/mitosis; (L) expression
profiles of genes in the microtubule cytoskeleton (red), flagellum assembly
(blue), and cell projection organization (black) categories.
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4C). Next we explored whether there was a bias in the magnitude of
phase change between co-cycling duplicates (Figure 4D). We found
that small phase divergences of +/2 3 hr (covering 28.3% of all
duplicates) tended to be enriched relative to random expectation, in
particular at ZT0/ZT3 and ZT12/ZT15, although the identical phase
state is still the most highly enriched scenario. Additionally, there was
an inverse, linear relationship between the magnitude of the difference
in phase between cycling duplicates and the enrichment of phase-shift
events relative to random expectation (all cycling duplicates, r2 = 0.91;
duplicates with Ks. 0.9, r2 = 0.93), indicating that large differences in
phase between duplicates occur less frequently than expected by ran-
dom chance. Furthermore, we found 33 GO terms enriched (adjusted
P-value , 0.05) among cycling duplicates with the same phase, the
majority of which (88%) were previously found to be enriched in
a specific phase of cyclic expression.

Cycling genes are enriched for specific pCREs
The coordinated expression of functionally related genes suggests the
existence of one or more regulatory mechanisms that drive phase
specific expression. Although mRNA levels may be affected at
multiple levels of regulation, we chose to focus on transcriptional
regulation driven by cis-regulatory sequences as circadian rhythm re-
lated cis-elements have previously been identified in plant and animal
models (Michael and McClung 2002; Ueda et al. 2005; Michael et al.
2008). Using a motif finding pipeline (Zou et al. 2011), we found 687

pCREs in the 1-kb regions upstream of the transcriptional start sites of
cycling genes for each of the eight C. reinhardtii phase clusters (Fisher
exact test, adjusted P , 0.05). The top enriched motifs for each phase
can be found in Figure 5, and the entire list of enriched motifs can be
found in File S5. Each phase had 60-84 associated pCREs, except for
ZT 15 with 169; however, more than 20% of pCREs (141/687) were
enriched in .1 phase and 43.8% of ZT 15 pCREs (74/169) were
enriched in $1 other phases (mostly ZT 12; Figure 6A). Therefore,
each pCRE was assigned to the phase cluster in which it was most
significantly enriched.

To further assess whether the pCREs are meaningful, they were
used to establish classifiers to predict cyclic expression in different
phases. First, the pCREs assigned to each phase were used to predict
which genes are cyclic in a naïve manner. That is, for pCREs
enriched in a particular phase, we simply predicted that all genes
with $1 pCREs mapped to their promoters would cycle at that
phase. The performance of these predictions was assessed using
the area under the receiver operating curve (AUC-ROC), a metric
that quantifies the ability of a method to predict positive examples
which, in our case, is phase specific expression. Perfect predictors
have an AUC-ROC of 1, whereas random guessing has a value of 0.5;
our naïve classification of phase had AUC-ROCs that ranged from
0.58 (ZT 9) to 0.62 (ZT 12) indicating that this simple classification
procedure performed marginally better than randomly assigning
phase (Figure 6B). The same conclusion can be reached based on
the F-measure, another prediction performance metric (Figure 6C).
Next, to further improve the prediction of the phase of cyclic

Figure 4 Conservation of cyclic expression and phase of cyclic ex-
pression. (A) The frequency at which duplicate pairs of genes in C.
reinhardtii maintain cycling expression, maintain noncycling expression,
or diverge as a function of the synonymous substitution rate (Ks). (B)
Distribution of cycling retention, noncycling retention, and divergence
between duplicate pairs in random simulations. The black bars cover the
interquartile range of each distribution, and error bars represent the 95%
confidence interval. Observed values are indicated by asterisks. (C) The
frequency at which the phase is retained in pairs of cycling duplicates as
a function of Ks. (D) Enrichment values for phase retention (diagonal
values) and phase change (off diagonal values) between actual dupli-
cates and duplicate pairs in random simulations.

Figure 5 Top three pCREs enriched in each phase cluster of cyclic
genes. Sequence logos representing the top three putative cis-regulatory
elements (pCREs) enriched in each phase cluster of cycling genes in
C. reinhardtii.
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expression, we used the SVM algorithm to classify cycling genes
according to the presence or absence of all pCREs (see the section
Materials and Methods). The SVM classifier shows improved
performance compared to naïve classification (Figure 6, B and
C and Table S3) but AUC-ROC values are still relatively low,
ranging from 0.58 (ZT 9) to 0.65 (ZT18) (Figure S5). We also
identified two pCRE association rules enriched in specific phases
of cyclic expression using CBA (Liu et al. 1998); however, adding
these rules to the SVM prediction models did not significantly
improve the overall predictive power of our pCREs as the AUC-
ROC increased by at most 0.01.

Given that the C. reinhardtii pCREs are computationally derived,
we next asked how well a known, experimentally verified, phase-
specific CREmay predict cyclic expression. For this purpose we examined
the Evening Element that is necessary and sufficient to drive circadian
expression in A. thaliana (Michael and McClung 2002; Harmer and
Kay 2005; Michael et al. 2008). Using motifs related to the Evening
Element identified in Michael et al. (2008), we generated a cycling
gene classifier to predict the phase of the 4945 A. thaliana cycling
genes introduced in the earlier phase-specificity comparison section.
The optimal AUC-ROC of the Evening Element classifier was 0.57
and 0.56 at ZT 0 and 12 hr, respectively (compared with 0.5820.65 in
C. reinhardtii pCRE predictions). Therefore, although the Evening
Element is known to function as a circadian regulator, similar to
C. reinhardtii pCRES, it has only limited predictive power on a genome
wide scale. To obtain accurate predictions the presence or absence of
pCREs needs to be supplemented with additional information regard-
ing the regulation of cycling expression.

Phase of cyclic expression can be predicted for groups
of genes with common expression patterns or
common function
The weak predictive power of pCREs likely results from an underlying
complexity in the regulation of the phase of cyclic expression, either in

the form of additional control mechanisms or the existence of more
discrete regulatory groups. Timing of cyclic expression may be
modified by interactions among regulatory motifs or posttran-
scriptional mechanisms. It is also possible that our phase clusters
might consist of multiple regulatory subgroups. To address the latter
possibility, we further classified genes in each phase group into
subclusters containing genes with highly similar expression profiles
(phase-expression clusters). Using SVM, 28 of 190 phase-expression
clusters covering 584 genes (7.23% of cycling genes) could be
classified with an AUC-ROC . 0.7 (these clusters are described in
File S6), which is better than any individual phase alone. The best
predicted phase-expression clusters do not necessarily have stronger
cyclic signals (Figure 7A) compared with the worst predicted (Figure
7B). Additionally, we eliminated size (r2 = 0.15) and the correlation of
expression profiles within each phase-expression cluster (r2 , 0.01) as
possible variables explaining the observed variance in AUC-ROC
(Figure S6). These results suggest that phase-specific regulation does
occur at the cis-regulatory level for particular groups of cycling genes
and that presence or absence of pCREs alone is sufficient to accurately
predict the pattern of phase specific expression for these clusters. Those
pCREs which were informative (i.e., had the non-zero weights) when
predicting the 28 best phase-expression clusters are listed in File S7.

In addition to using highly similar expression patterns as a way of
subdividing phase clusters, we looked for evidence of phase specific
regulation among groups of genes in the same phase cluster that had
related annotated function (phase-function clusters). Among 71 phase-
function clusters, genes belonging to 12 of these clusters could be
classified with an AUC-ROC . 0.7. These clusters covered 12.2%

Figure 6 Enrichment and performance of phase-specific pCREs. (A) The
enrichment test statistics of 687 pCREs (rows) in genes of each phase
cluster and noncyclic genes (columns). (B) The area under the curve of the
receiver operating characteristic (AUC-ROC) for phase expression pre-
diction with naïve (green) and support vector machine (SVM, white) clas-
sifiers. (C) The F-measures for phase expression prediction based on
random guess (black), naïve (green), and SVM (white) classifiers.

Figure 7 Expression of best predicted coexpression cluster and GO
terms. (A) Averaged, normalized expression profile of genes in the top
28 coexpression clusters whose phase of expression can be predicted
with AUC-ROC . 0.7. (B) Averaged, normalized expression profiles of
genes in the bottom 28 coexpression clusters whose phase of expres-
sion can be predicted with AUC-ROC , 0.56. (C) Averaged, normal-
ized expression profiles of genes in the 12 GO terms whose phase of
expression can be predicted with AUC-ROC . 0.7. Both cycling and
noncycling genes annotated in each GO term are included. GO,
Gene Ontology.
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(175/1434) of genes present in all phase-function clusters, a greater
percentage than the phase-expression clusters, although they constitute
a smaller portion of all cycling genes due to limited GO annotation in
C. reinhardtii (these cluster are described in File S8). Genes in most of
these functional groups displayed a clear cyclic signal (Figure 7C),
except for the groups related to the nucleolus and cell wall, which were
predominantly non-cyclic genes but had a statistically significant subset
of phase-specific genes. Among the best classified subclusters contained
genes relating to the large cytosolic ribosomal subunits (AUC-ROC =
0.73), cilium (0.72), small cytosolic ribosomal subunit (0.72), translation
(0.71), and the chloroplast (0.68). This supports our earlier observation
that the cyclic patterning of large scale processes such as photosynthesis,
translation, and motility may be regulated at the transcriptional level.
The pCREs which had non-zero weights when predicting the 12 best
phase-function clusters are listed in File S9.

DISCUSSION
We have determined that cyclic expression is prevalent in the C.
reinhardtii genome, and nearly half of all annotated genes cycle under
diel conditions. There is a strong link between rhythmic patterns at
the molecular and physiological levels. Diel cycling expression is influ-
enced both by environmental factors, such as the availability of light,
and endogenous factors, including metabolism and the circadian clock
(Farre 2012; Kinmonth-Schultz et al. 2013; Song et al. 2013; Fonken
and Nelson 2014). Although the importance of photoperiod can be
inferred for light-dependent (i.e., photo-synthesis) and light-sensitive
(i.e., DNA replication) processes, for most cycling related functions it
remains an open question as to what extent each factor influences
cycling expression. This is particularly true of functions which were
not previously known to exhibit cycling expression in green algae, for
example, the regulation of RNA processing and amino-acid synthesis.

In addition to the relationship between cyclic expression and gene
function, we found that cyclic expression was significantly conserved
between paralogous genes. The proportion of divergent duplicates
reaches an asymptote at Ks . 0.9, which is similar to what was pre-
viously observed for stress responsive duplicate genes (Zou et al. 2009).
However, although there appears to be a clear preference for the par-
titioning of ancestral expression states in stress responsive genes (Zou
et al. 2009; Dong and Adams 2011), we found that duplicates genes
tend to share the same expression state with respect to cycling and that
cycling duplicates preferentially retain the same or similar phase of
expression. We hypothesize this pattern of cyclicity/phase conservation
among duplicates points to a fundamentally distinct regulatory logic
from that of stress response. In stress response, a duplicate that has lost
response to one condition may still be responsive to other conditions
and thus retained. However, either loss or gain of cyclicity in a duplicate
gene would mean it is no longer temporally in sync with other genes in
the processes which it was originally involved in. For example, if a rep-
lication initiation factor duplicate was not in sync with the expression
of other components of the replication machinery, the duplicated fac-
tor would not be functional and eventually eliminated from the ge-
nome. This argument may also apply to the conservation of phase
among duplicate cycling genes. Indeed, we found that most GO terms
enriched among co-cycling duplicates with the same phase were highly
phase specific, including those associated with DNA replication
and flagellar components.

Based on previous studies of stress response genes (Zou et al.
2009), we expected that the conservation of cycling expression state,
particularly the phase of expression, would be correlated with the
presence of shared CREs. However, contrary to this expectation, the
set of putative CREs enriched in cycling genes does not accurately

distinguish phase expression. Although our results suggest that cis-
regulation plays a significant role in controlling cyclic expression in
C. reinhardtii, the presence or absence of promoter elements alone
was insufficient to fully explain the observed patterns of cyclic varia-
tion across the entire C. reinhardtii genome. This finding suggests that
additional regulatory components are involved in controlling cyclic
expression. In other organisms, the combinatorial interactions among
regulatory factors play an important role in controlling the phase of
cyclic gene expression (Harmer and Kay 2005; Ueda et al. 2005), but
in C. reinhardtii there is evidence that response to changing light
levels is mediated by multiple copies of the same or similar promoter
elements (von Gromoff et al. 2006). Although we did not see signif-
icant improvement when rules considering combinatorial relation-
ships between pCREs were included in our model, this may be due
to the fact that we were able to explore only a subset of all possible
combinatorial interactions in our pCRE set. Additionally, posttran-
scriptional regulation has been implicated in regulating circadian pro-
cesses in Neurospora crassa, A. thaliana, and D. melanogaster (Kojima
et al. 2011). In C. reinhardtii, the over- or underexpression of the
RNA-binding protein CHLAMY1 is known to result in the disruption
or loss of circadian rhythms (Iliev et al. 2006). Further studies in-
corporating posttranscriptional regulatory features will be necessary to
improve the prediction of phase-specific cyclic expression.

The inability of pCREs to classify phase specific cycling expression
on a genome-wide scale does not contradict previous observations
that certain cis-elements are necessary for cycling expression (Michael
and McClung 2002; Harmer and Kay 2005; Michael et al. 2008).
Rather it suggests that cis-elements alone are insufficient to explain
the variation in cycling expression on a genome wide scale and that
additional regulatory components remain to be discovered. Posttran-
scriptional regulatory mechanisms and chromatin state are two prom-
ising avenues of investigation which, in conjunction with the cis
elements we have identified, could be used to better predict the state of
cycling expression. Although there remains substantial room for fur-
ther improvement, our findings contribute to a better understanding
of both the function and evolutionary origins of cyclic expression in
a green alga, laying the foundation for further molecular dissection of
the relationships between the rhythmic gene expression and physio-
logical functions for potential biotechnological applications.
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