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Recently, the Immunological Genome Project (ImmGen) completed the first phase of the goal to understand the molecular
circuitry underlying the immune cell lineage in mice.That milestone resulted in the creation of the most comprehensive collection
of gene expression profiles in the immune cell lineage in any model organism of human disease. There is now a requisite to
examine this resource using bioinformatics integration with other molecular information, with the aim of gaining deeper insights
into the underlying processes that characterize this immune cell lineage. We present here a bioinformatics approach to study
differential protein interaction mechanisms across the entire immune cell lineage, achieved using affinity propagation applied to a
protein interaction network similarity matrix. We demonstrate that the integration of protein interaction networks with the most
comprehensive database of gene expression profiles of the immune cells can be used to generate hypotheses into the underlying
mechanisms governing the differentiation and the differential functional activity across the immune cell lineage.This approachmay
not only serve as a hypothesis engine to derive understanding of differentiation and mechanisms across the immune cell lineage,
but also help identify possible immune lineage specific and common lineage mechanism in the cells protein networks.

1. Introduction

Recently, the Immunological Genome Project (ImmGen:
http://www.immgen.org/) consortium completed the first
phase of their objective to generate a comprehensive resource
of the gene expression repertoire across all murine immune
cells [1–5]. This massive genomics effort is the so-called “act
one” [4] in the characterization of the molecular circuitry
across immune cells.The ImmGen effort has the goal to chart
the entire immune regulatory mechanisms of the hematopoi-
etic cell lineage. Rigorous standardization procedures in flow
cytometry and gene expression microarrays are applied to
build this resource, resulting in a comprehensive database of
the gene expression profiles in the murine immune system.
This present study is motivated by the possible benefit of
auxiliary bioinformatics analysis of the ImmGen resource.
The aimof such additional bioinformatics examination of this

rich resource is to help catalyze the process of understanding
the molecular mechanisms of differentiation and functional
activity across the entire spectrum of hematopoietic cells.

As is often the case with global or systems profiling of
immune cells, the experimental approach to collate the data
often concentrates on either protein interaction networks,
using proteomics based approaches, or gene regulatory net-
works, using gene expression microarrays. Usually, these two
key types of molecular data sources are not integrated in
a combined analysis [6]. Integrated proteomics and tran-
scriptomics analysis may elucidate the underlying differential
molecular functions being driven by the regulatory networks
across all immune cells. Additionally, in the few immunolog-
ical studies that do incorporate a global systems approach to
dissect the complex network of relationships in immune cells
a limited set of hematopoietic cell lineages are studied.
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In this meta-analysis, we provide an integrative bioinfor-
matics characterization of the immune cell specific protein
networks associated with the gene expression profiles from
the ImmGen resource. The generation of such a protein net-
work perspective on the ImmGen regulatory networks may
offer immunologists an opportunity to derive hypotheses,
which can be tested experimentally and either confirmed or
refined through further in silico and experimental analyses.

The bioinformatics integration of protein networks with
large gene expression datasets was demonstrated, over a
decade ago, to be highly useful in the elucidation of signaling
functions [7]. Bioinformatics algorithms have continued to
successfully demonstrate the ability to identify key functional
relationships through challenging task of integrating tran-
scriptomics and interactome datasets [8, 9]. Such network
integration of data has since often proven to be effective
in generating hypotheses to study the precise mechanisms
in signaling networks which correspond to the observed
changes in the gene expression profiles. One example of this
approach is the integration of protein interaction networks
and gene expression data using tissue specific gene expression
profiles, which has proven to be insightful in recent years in
predicting aspects of tissue specific cell biology [10]. Similarly,
in this study we perform a tissue specific protein network
analysis based exclusively on the immune cell lineage. To
that end, we employ the resources at the Immunological
Genome Project, which consists of 816 gene-expression pro-
files across the mouse immune cell lineage and has recently
been systematically analyzed to generate the gene regulatory
circuits for each of the cell types in the immune cell lineage.
This latter effort, algorithmically named as OntoGeNet, for
the first time allowed for the comprehensive identification
of their potential regulatory modules [11]. In this study,
we use affinity propagation to describe a protein network
perspective of these gene regulatory networks driving the
gene expression across the immune cell lineage through
integrative bioinformatics approach to compute differential
protein networks functions. Affinity propagation was applied
to a protein interaction network similaritymatrix to integrate
the gene targets of the immune cell regulatory network with
possible interaction network mechanisms. This bioinformat-
ics approach can be applied to generate insights into the
underlying mechanisms governing the differentiation and
the differential functional activity across the entire murine
immune cell lineage.

2. Material and Methods

2.1. Sources of Mouse Protein Networks. Protein interac-
tions were sourced from 10 integrated protein interaction
databases, as organized by the iRefIndex [12], and were
extracted from the binary physical protein interactions
through download from iRefWeb [13, 14]. The protein inter-
actions, their annotations, and their identifiers are integrated
in this resource using the iRefIndex method bymapping pro-
tein identifications across the databases, enabling systematic
backtracking to establish the nonredundant identity of the
interaction partners. A strict filtering process for each protein

interaction was applied, whereby we selected only physical
binary protein interactions from the iRefWeb that satisfied
all of the following criteria: (a) experimentally verified;
(b) within the same organism; (c) at least one supporting
publication in Medline, and (d) physically binding protein
interactions. This resulted in a mouse protein interaction
network consisting of 20,200 binary protein interactions.

2.2. Integration of Immune Lineage Regulatory Modules with
the Murine Protein Interactome. For the immune-cell lineage
specific information, we utilized the ImmGen consortium
data set (April 2012 release) which consisted of 816 expression
profiles from 246 cell types of the mouse immune system
[1]. We used each of the 7965 ImmGen genes assigned
to a network module from the OntoGeNet algorithm, as
a source to generate a protein network similarity matrix
(PNSM) from a pairwise analysis of these genes (described
below). Each target of all 81 course regulatory network
modules calculated from the OntoGeNet algorithm [11] on
the ImmGen resource was integrated into a bipartite network
analysis as described below. Of the 7965 genes among the
ImmGen modules, 2133 had at least one network partner
in the mouse interactome, reflecting the current incomplete
state of interactome databases [15]. The range of coverage of
each individual module in the interactome is illustrated in
Supplementary Figure 1 in the Supplementary Material avail-
able online at http://dx.doi.org/10.1155/2014/363408, which
plots the percentage of genes in each module holding at
least one interaction in the mouse interactome (where 2
modules had zero interactors and many have greater than
25% coverage within the module, with a maximum of 48%).

The cell types analyzed encompass all the main
hematopoietic lineages, including stem and progenitor
cells, granulocytes, monocytes, macrophages, dendritic
cells (DCs), natural killer (NK) cells, B cells, and T cells.
The T cells include many important subtypes types of 𝛼𝛽
T cells, regulatory T cells (Treg cells), natural killer T cells
(NKT cells), and 𝛾𝛿 T cells. A table of the known global
regulators that modulate the gene expression programs of
these immune cell lineages, as used in this study, is illustrated
in Table 1. These regulators inform the selection of target
genes selected based on application of OntoGeNet on the
known regulators of the immune cell lineages in mice.
OntoGeNet is an algorithm recently developed to achieve
the reverse engineering of lineage-specific gene regulatory
modules from the ImmGen gene-expression profiles. It has
an innovative feature in that it integrates the lineage tree
when predicting its gene regulatory networks, in addition to
the gene expression activity, such that the module’s genes are
recapitulated in related cell types.

2.3. Defining a Measure of Protein Interactome Similarity
Scores to Generate Protein Network Similarity Matrices. A
protein network similarity matrix (PNSM) was built and
mapped to the ontogeny of the murine immune cells gene
expression profile as catalogued at ImmGen. Each of the 7965
target genes from the gene regulatory network modules in
OntoGeNet was mapped to its protein product counterparts
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Table 1: Known transcriptional activators of the immune cell
lineages.

Immune cell
type Known transcriptional activators

B cells POU2AF1, PAX5, EBF1, SPIB, SFPI1, FOXP1
Dendritic cells RELB, CIITA, AHR, SPIB, SFPI1
Granulocytes CEBPB, NFE2, SFPI1, FOXO3, CEBPE, FLI1
Hematopoietic
stem cells HLF, LMO2, MYC, MYCN, GATA2, MEIS1, E2F6

Macrophage CEBPA, CEBPB, SFPI1
Monocytes CEBPB, SFPI1
Natural killer
cells EOMES, TBX21, SMAD3, GATA3

Natural killer t
cells GATA3, ZBTB16

abT cells TCF7, BCL11B, GATA3, IKZF2, RORC, SMAD7,
TOX

gdT Cells GATA3, SOX13, ID3

in the mouse protein interaction network (of which 2133 had
at least one interaction). We calculated a protein interaction
similarity index for all these gene pairs, which compose the
PNSM. The pairwise calculation of the protein interaction
network similarity scores across all genes in the murine pro-
tein networks was calculated by using the Simpson similarity
score. For any given pair of genes, A and B, their shared
interaction partners were calculated as (𝑁(𝐴) ∩ 𝑁(𝐵)) in
relation to the degree of𝑁(𝐴) and𝑁(𝐵) of themouse protein
interaction network overall. The Simpson index was then
calculated as the proportion of shared protein interactions
between the gene pair relative to the degree of the least-
connected gene in the murine protein interaction network.

𝑁(𝐴) ∩ 𝑁 (𝐵)

min (|𝑁 (𝐴)| , |𝑁 (𝐵)|)
. (1)

For each of these similarity scores, a real-valued matrix
S was constructed, in which an entry 𝑆

𝐴𝐵
corresponded to

a value measuring how similar gene 𝐴 was to gene 𝐵 in the
mouse interactome.

The Simpson index captures the proportion of shared
interaction partners between each gene pair, relative to the
degree of the least-connected gene [16]. The choice of using
Simpson index as the similarity score to build the PNSM
was motivated by its effective comparison of two diverse sets
of gene pairs in the network, and by so doing not penalize
pairs which have large differences in their node degree in
the interactome network [16]. Such large differences often
occur in molecular networks due to the scale free property
of these networks, as well established in recent years [17].
Other similarity indices can be used to compare networks,
each having their strengths and weaknesses depending on
the biological application. The Jaccard index, for example,
effectively captures the proportion of shared nodes between
the gene pairs. However this is in proportion to the total
number of nodes in both genes irrespective of their individual
node degree. Other similarity indexes are more suitable to

capture communities within networks or predict biological
function, and all of these indices have been extensively
surveyed recently [16] and their optimal use characterized.

2.4. Affinity Propagation Applied to the Protein Interaction
Similarity Matrix (PNSM) to Identify Exemplar Protein Net-
work Signatures. In recent years there has been a great deal of
development of methods to detect clusters, modules, or com-
munities inmolecular networks [18, 19] and also to predict the
interrelatedness of these groups [20, 21]. The strengths and
weaknesses of these different methods have been profiled in
recent bioinformatics perspectives [22]. In this study affinity
propagation (AP) was applied to the PNSM to identify the
differential protein interaction network mechanisms associ-
ated with each of the 10 immune cell types analyzed [23, 24].
Affinity propagation holds an advantage over other clustering
procedures applied to similarity matrices in that the method
does not require values to be in a specific range. Additionally,
although there are similar methods which compete with the
performance of AP applied to smaller networks [25], the
AP method performs optimally on large similarity matrices
[26] such as the PNSM developed in this study whereby all
pairwise datapoints are considered as candidate exemplars
(clusters). Additionally, the exact number of clusters does
not need to be specified. Furthermore, the choice of using
the AP algorithm for clustering the similarity matrices has
the advantage over classical clustering methods in the fact
that AP can determine the appropriate number 𝑘 of clusters,
depending on a vector of the median of similarities as input
preference for all genes in the mouse genome. The suitability
of AP applied to the PNSM for the functional analysis of the
immune cell lineage in this study may also be delineated by
the feature of AP not only to identify clusters but also to
capture compressed information summarizing the identified
clusters [23, 27].

The affinity propagation procedure analyzed measures of
protein interaction network similarity between all pairs of
proteins built into the PNSM and simultaneously considered
all pairwise comparisons as potential exemplars (exemplars,
in this setting, are groups of proteins which have similar
interactions partners in the mouse interactome). Real-valued
matrix so-called “messages” which passed between each
pairwise comparison are exchanged between data points until
a high-quality set of exemplars (or clusters) eventually emerge
as the algorithm iterates. In affinity propagation, there are
two different types of messages exchanged between each
pairwise similarity in the PNSM: “availabilities” (𝑎 (𝐴, 𝐵))
and “responsibilities” (𝑟 (𝐴, 𝐵)). The “availability,” sent from
candidate exemplar geneB to data point geneA, is a reflection
of how each gene B is suitable to be available for gene A to
become an exemplar cluster. The “responsibility,” sent from
data point geneA to candidate exemplar geneB, is a reflection
of how each gene A is suitable to serve as exemplar in B. The
PNSM, a real-valued matrix 𝑆

𝐴𝐵
, 𝑠 (𝐴, 𝐵) described above, is

taken as input for the affinity propagation algorithm. Each
data point is assessed for its suitability to be a candidate
exemplar. The details of the updating functions computed as
affinity propagation iterates are described extensively by Frey
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Figure 1: Workflow of affinity propagation on the PNSM and the differential network analysis. The known activator genes which drive the
differentiation of the main immune cell types (see Table 1) were used to query the list of their target genes as computed from the OntoGeNet
algorithm on the ImmGen resource. The protein network neighborhood of each of the 7965 genes assigned to an ImmGen network module
of was integrated with their target lineage information, computed from an integrated set of validated protein interaction network databases.
Then, using the Simpson similarity index, their PNSM was computed. Affinity propagation or “message passaging” was then applied on
the PNSM, to capture features of the immune lineage network. The resulting exemplars computed from the affinity propagation allows for
differential functions to be captured through the lineage tree.

and Dueck [23]. Briefly, the availabilities and responsibility
functions are computed as log likelihood ratios, reflecting
the evidence accumulated iteratively for how well suited each
data point may serve as a candidate exemplar. Initially, the
availability is set to zero. The responsibility updates are then
computed as

𝑟 (𝐴, 𝐵) ← 𝑠 (𝐴, 𝐵) −max {𝑎 (𝐴, 𝐵) + 𝑠 (𝐴, 𝐵)} . (2)

The above function allows all candidate exemplars in
the PNSM to compete for inclusion of a data point. The
availability update then accumulates evidence scores from
all data points as to whether each candidate exemplar has
likelihood of emerging as an optimal exemplar, using the
following update function:

𝑎 (𝐴, 𝐵) ← min {0, 𝑟 (𝐵, 𝐵) +∑max {0, 𝑟 (𝐴, 𝐵)}} . (3)

This availability update functions sets the availability of
a candidate exemplar to the sum of the positive responsi-
bilities, 𝑟 (𝐴, 𝐵); the candidate exemplar receives from all
other data points plus the self-responsibility 𝑟 (𝐴, 𝐵). This
self-responsibility, 𝑟 (𝐵, 𝐵), is an evidence score that ranks
whether gene B is an exemplar based on the input preferences
in the procedure. More extensive details of the affinity
propagation algorithm are available in the Frey and Dueck
paper [23], which described its development. The functional
analysis on the computed exemplars was performed based
on structured vocabularies from the Gene Ontology project
[28] biological process tree, using a combination of DAVID
functional association tools [29] and the gene set enrichment
analysis, through the use of GSAT [30, 31]. The bipartite
networks, which illustrate the properties of the computed
protein networks exemplars with activators of immune cell

differentiation, the groups (modules) of coexpressed genes
from ImmGen, and the immune cell types, were visualized
using the Cytoscape network analysis toolkit [32].

3. Results and Discussion

3.1. Affinity Propagation on Protein Network Similarities,
Informed by the Immune Cell Lineage. A protein interaction
network similarity matrix (PNSM) was built by computing
the similarity in protein interaction partners for all pairwise
combinations of genes assigned to modules in ImmGen
having been identified as targets of the transcriptional acti-
vators driving immune cell lineages as computed from the
OntoGeNet algorithm. Affinity propagation was applied on
the PNSM in order to identify groups of genes (or “exem-
plar” clusters), which correspond to similarity in protein
interaction network partners. The outcome of this particular
approach is the computation of exemplars (or clusters) of
genes that share similar protein interaction partners in
the mouse interactome. Integrating this level information
with the gene regulatory network information captured by
OntoGeNet [11] using the ImmGen resource allowed for the
capturing of common functional mechanisms among the
immune cell lineage. The workflow of the approach applied
to achieve this bioinformatics integration of diverse datasets
in systems immunology is described in Figure 1.The outcome
of the workflow defined by this strategy is illustrated in
Figure 2(a).The resulting exemplars (characteristic groups of
proteins which have similar interaction partners in themouse
interactome) computed by the affinity propagation are both
illustrated in Figure 2 and listed in SupplementaryTable 1. It is
evident that exemplars with diverse functions were captured
using the approach. The nature of this diversity was also
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Figure 2: Affinity propagation clustering of the protein interaction association similarity matrix of OntoGeNet target module genes. (a) The
PNSM is illustrated for both the entire list of target genes computed from the OntoGeNet algorithm on the ImmGen resources. The degree
of red color in the heatmap corresponds with the strength of similarity in the protein network for each gene pair. The exemplars as computed
from affinity propagation are illustrated in the annotated color bars and the resulting hierarchical clustering (see Table 1 for list of the protein
network exemplars). (b) Exemplifies the effect of application of the affinity propagation workflow applied to protein interaction networks,
on hubs only. The hub analysis highlights the possible most influential interaction mechanisms activated by the gene regulatory networks
(OntoGenet), which govern the immune cell lineage. (c) A differential functional analysis using the Gene Ontology Biological Process (GO-
BP) tree is illustrated for two of the computed exemplars. The trajectory of functional significance of GO-PB terms from the two exemplar’s
genes from Figure 2(b) (indicated by the arrows) is illustrated through the GO-BP tree. GO-BP terms significant for the gene list within the
exemplars are highlighted in a red color.
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Figure 3: Integrated protein interaction networks perspective on the gene regulation networks driving immune cell lineages.The immune cell
lineage network is depicted as a bipartite network with multiple edges representation. Each edge represents a protein network exemplar. The
multiple edges connect the different node types and reflect the regulator activity superimposed on the multiple protein network exemplars
activated by immune lineage regulators. Each relationship is a representation of the gene regulation modules from the ImmGen resource
connecting with the known regulators of immune cell lineages. Each edge in the network represents a relationship between an immune cell
line lineage type (see legend in Figure 3(1)) and one of the known activating factors regulating the differentiation of that lineage (see Table 1 for
list of the known activators used). An edge is drawn in the network if there is connection between a regulator gene (triangle node) and a course
module (groups of commonly expressed genes) calculated from OntoGenet (circle nodes). The number of lines between a regulator and a
module is a measure of how many “protein network exemplars,” as calculated from the affinity propagation (see main text), are associated to
the regulatory module (and therefore a possible measure of the diversity of signaling networks activated in driving the lineage of the immune
cell type).

illustrated using the same workflow implemented on target
proteins that are also hubs in the mouse protein interaction
network (as depicted in Figure 2(b)). A differential functional
analysis using the Gene Ontology Biological Process (GO-
BP) tree was also applied using gene set enrichment statistical
approaches to analyze some of the resulting exemplars [31].
This differential functional analysis is illustrated for two of
the computed exemplars in Figure 2(c). The trajectory of
functional significance of GO-PB terms from selected two
exemplar’s genes in Figure 2(c) highlights immune relevant
yet diverse, functional mechanisms captured and possibly
implicated as important, in immune lineage differentiation.
The two GO-BP functional analyses illustrated in Figure 2(c)
highlight significant associations for immune relevant terms,
and the different exemplars protein networks which were
used to generate these associations have differential func-
tional paths through the GO-BP process tree.

3.2. Diverse Quantity and Type of Protein Network Exemplars
Associated to Gene Expression Programs among the Immune
Cell Lineage. In Figure 3, a bipartite representation of the

affinity propagation on the PNSM is depicted. This bipar-
tite network of protein network exemplars and OntoGeNet
gene expression modules driven by well-known activators
of immune lineage gene expression (Transcription factors
fromTable 1) is illustrated usingmultiple edges, whereby each
edge is color coded to represent an exemplar as computed
using the affinity propagation algorithm on the PNSM.
This immune lineage network in Figure 3 illustrates how
certain specific clusters in the protein similarity network
(exemplars) are potentially activated in specific immune cell
types, as indicated by the single color of the respective edges
representing the protein network exemplars, while others are
potentially activated in multiple lineages during immune cell
differentiation, as indicated by many colors of the respective
local network. From the strategy employed in this study,
as outlined in Figure 1, it is apparent, for example, that
there are possibly many distinct protein interaction network
mechanisms (as represented by the multiple exemplar edges)
associated in the bipartite network with the T cell lineage
(where the protein network exemplars are color coded as
blue edges in the network), some of which are also shared
with natural killer (NK) cells (where the protein network
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the protein network exemplars are represented as circles (the names and genes in these exemplar groups are listed in Table 1), and immune
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of common protein network exemplars. (These two types of patterns are listed in Table 2 and 3, resp.). The protein network exemplars are
ordered, 1−10, according to their connectivity to the ten immune cell types in the bipartite network.

exemplars are color coded as red edges in the network).
This NK cell and T cell example are indicative of shared
protein network functions in these two different immune
cell lineage types, which may be implicated in their shared
cytotoxic abilities and immune cell effector functions. The
observation is interesting when considering that although
NK cells are not generated in the thymus, they share some
key molecular characteristics and protein interactions with
T cells. For example, they both have some common surface
markers. Additionally, NK cells also use the same generic
killing mechanisms as cytotoxic CD8+ T cells, although NK
cells do not have rearranged T-cell receptor molecules and
therefore belong to the innate immune system. Although
being regulated by different activators, most of the immune
cell types appear to be activated by some common mecha-
nisms with the cells protein network (as illustrated by the
activator to module relationships hosting protein network
exemplars associated to multiple colors representing all the
immune cell types).

Additionally, the immune cell lineage network in Figure 3
also illustrates protein network exemplar relationships that
possibly conform to immune cell lineage specific functions
(as illustrated by the activator to module relationships host-
ing protein network exemplars associated to single color
representing the immune cell type). This is exemplified in
the exemplars specific to the hematopoietic stem cell (HSC)
lineage depicted as grey edges in the bipartite network in
Figure 3. Here, the protein network exemplars activated in
the HSC immune cell types are not activated in others
in the lineage network, indicating a possible diminishing
importance or deactivation of these functions as immune
cells terminally differentiate beyond the HSC lineage.

3.3. Functional Similarity from a Lineage Specific and Com-
mon Lineage Perspectives. A different node-type of bipartite
network representation of the protein network exemplars
with the ten different immune cell types are represented
in Figure 4. In this network, the two nodes categories
are immune cell types and the calculated protein network
exemplars. It is evident that the strategy of applying affinity
propagation on the PNSM allows for the capturing of both
lineage specific and shared protein network exemplars with
diverse functions implicated. These clusters correspond to
groups of proteins whose interactions in the cell are possibly
more important for the functional activity of lineage specific
and common immune cell lineage functions. Such bipartite
network representations of protein network exemplars and
immune cell types may serve as useful descriptions of both
common and more specialized protein interaction functions
among immune cell types. In Table 2, an overview of the
range of lineage specific protein network exemplars illus-
trated in the bipartite network in Figure 4 is provided, with
some indication of their functional associations. Similarly,
lists of those protein network exemplars identified as com-
mon to all ten immune cell types analyzed are provided in
Table 3.

The gene functions associated with the lineage specific
exemplars range from a possible activation of a cell spe-
cific Jak-Stat pathway in hematopoietic stem cells (HSC)
to the lineage specific gene regulation activity in dendritic
cells (see Table 2). It is interesting to note that the Jak-
Stat pathway is established to be critically important in
regulation of the differentiation mechanisms among stem
cells. Additionally, mutations in the Jak-Stat pathway are
known to cause destabilization of HSC homeostasis and lead
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Table 2: Lineage specific protein network exemplars.

Exemplar
ID

Genes assigned to the protein
network exemplar Functional annotation 𝑃 value Immune cell type

102 EPOR, PTPN1, STAT5B Jak-STAT signaling pathway
(KEGG) 5.20𝐸 − 02 Hematopoetic stem cells

20 CCNT1, EIF2B1, MYC Hematopoetic stem cells
86 EZR, NGFRAP1, NTF3 Neurotrophin signaling pathway 4.50𝐸 − 02 Granylocytes
49 GRB7, TIA1 Hematopoetic stem cells
104 ARRB1 BGN PTS Macrophages
96 PLCB2, POLA1, VIM Granylocytes

98 POT1A, TERF1 Telomere maintenance via
telomerase (GO-BP) 5.90𝐸 − 04 Hematopoetic stem cells

7 AR, ATRX, CTCF, SMC1A, SMC3 Cell cycle (KEGG) 4.40𝐸 − 02 Dendritic cells
119 CRE, PRPF40A, SMC2 Nucleoplasm (GO-CC) 8.00𝐸 − 02 Dendritic cells

61 CLDN11, CNOT6L, ITGA5, ITGB1,
SPARC

Cell adhesion molecules (CAMs)
(KEGG) 7.80𝐸 − 02 Macrophage

10 BICC1, CREBBP, CSK, KHDRBS1,
PRMT1, RBM39

Control of Gene Expression by
Vitamin D Receptor (KEGG) 7.00𝐸 − 02 Ggranylocyte

97 EIF3L, POLR1B, POLR1E RNA polymerase (KEGG) 4.70𝐸 − 03 Hematopoetic stem cells
41 BRCA2, CEBPD, FANCD2 Cell cycle process (GO-BP) 5.70𝐸 − 02 Macrophages
70 ADRB2, DLL1, MAGI3 Plasma membrane (GO-CC) 5.40𝐸 − 02 abTcells

88 CHORDC1, IGBP1, NR3C1, PPP5C Transition metal Ion binding
(GO-MF) 3.90𝐸 − 02 Hematopoetic stem cells

75 MEOX1, MEOX2, TLE4 Transcription factor activity 3.40𝐸 − 03 Granylocytes
42 FBXW7, NOTCH1, NPM1 STAT4 Notch signaling pathway 1.20𝐸 − 02 Hematopoetic stem cells

36 AEBP2, EED, MORC3, SETX,
UHRF1 Nucleoplasm (GO-CC) 2.30𝐸 − 03 Dendritic cells

38 EIF3A, EIF3B, EIF3I, EIF4E Translational initiation (GO-BP) 2.00𝐸 − 08 Hematopoetic stem cells

to many blood disorders [33]. Notably, many of the lineage
specific exemplars in supplementary Table 1 and the bipartite
network in Figure 4 are associated toHSCs (42%).This is also
illustrated in the network of regulatory and exemplar activity
in Figure 3. The increasing degree of promiscuity among
the protein network exemplars is evident in the bipartite
network by the number of connections of an exemplar
to different immune cell type ranges from lineage specific
associations to increasingly common lineage associations.
One such common lineage protein network exemplar listed in
Table 3 is cytokine-cytokine receptor signaling, centered on
tumor necrosis factor (TNF) superfamily protein interactions
(associated to all ten immune cell types in the bipartite
network). As expected, such important protein interactions
are preserved across all ten of the protein lineages identified,
as TNF-TNF receptor signaling mechanisms are critical
for the intercellular communication common to immune
cell activity ranging from cell proliferation to apoptosis of
immune cell populations.

4. Conclusions

In this study,we have described how the integration of protein
interaction networks with the most comprehensive database

of gene expression profiles of the immune cell lineage (Imm-
Gen) can be used to generate insights into the underlying
mechanisms governing the differentiation and the differential
functional activity across all immune cell types. To perform
this bioinformatics integration efficiently, and at a large scale,
we used affinity propagation applied on a similarity matrix
of immune lineage targets gene’s interaction partners in
the mouse interactome (the PNSM). The approach outline
here not only may serve as hypothesis engine to derive
understanding of differentiation and mechanisms across the
immune cell lineage, but also help identify possible immune
lineage specific and common lineage mechanism with the
protein networks of the various cell types.

The potential value in applying affinity propagation on
the mouse PNSM as a viable strategy to characterize pro-
tein network clusters important for immune cell function
in human studies is a questionable issue, considering the
evolutionary distance between mouse and human [34]. It
could be argued, therefore, that bioinformatics strategies such
as that described in this study may not be directly applicable
to human studies which attempt to capture signatures of
immune cell activity using protein networks [35]. However,
as mouse is an often used and a powerful model organism for
human medicine, it will be exciting to assess the impact of
this and similar bioinformatics procedures on the inference
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Table 3: Common protein network exemplars.

Exemplar
ID Genes assigned to the protein network exemplar Functional annotation 𝑃 value

127 TANK, TNFRSF11A, TNFRSF4, TNFRSF9, TRAFD1,
ZBP1

Cytokine-cytokine receptor
interaction (KEGG) 3.50𝐸 − 06

32

ATP6V1A, BAIAP2, CAMK2D, CLU, DLG4, DYNLL1,
EPS8, FZD1, FZD4, GRIA3, HCK, INADL, KCNJ10,
NSF, OPRD1, PACSIN1, PACSIN2, PGK1, PHB2,
PPP3CA, RGS12, SEMA4B, SEMA4C, SLC9A3R1,
STXBP1, SYT1

Wnt signaling pathway (KEGG) 1.60𝐸 − 03

44
CD2AP, DAPK1, EFNA2, EPHA4, FGR, FYN, PKD2,
RAVER1, RGS1, SH2D1A, SH3BP1, SLAMF1, VAV1,
VAV2, ZAP70

T cell receptor signaling pathway
(KEGG) 26.7

93 HNRNPA1, LGALS3, NCOA3, PIAS1, RNF19A Transcription cofactor activity
(GO BP) 5.30𝐸 − 02

29 CLNK, FYB, LYN, PECAM1, SKAP2 Leukocyte activation (GO BP) 6.30𝐸 − 02

62
CSF2RB, EIF2AK2, GHR, GMCL1, GNB2L1, HES1,
IFNGR1, IL6ST, JAK1, JAK2, JAK3, LMO4, NCL, PAG1,
SLC40A1

Jak-STAT signaling pathway (KEGG) 2.10𝐸 − 09

139 BRCA1, CIITA, GTF2H2, KDM5D, PDLIM4, POLR1A,
POLR2B, TRIP4, TRPS1, ZFP111, ZFP292 Zinc ion binding (GO BP) 5.30𝐸 − 07

135 RIPK2, TAX1BP1, TIFA, TNFAIP3, TNIP2 Apoptosis (GO BP) 6.70𝐸 − 03

112 ANXA2, BMYC, GAB2, PRKCE, PRMT5, S100A10 Fc epsilon RI signaling pathway
(KEGG) 1.40𝐸 − 02

140 CCNG1, CCNG2, E2F1, GSTA4, NR4A3, SWAP70,
TRIM32, TRP53 Cell cycle (GO BP) 1.60𝐸 − 03

124 HSPA5, HSPA9, HSPD1, PDXK, RAPGEF4, STIP1,
YWHAE

Adenyl ribonucleotide binding
(GO MF) 6.60𝐸 − 04

79
ALDOA, CD40, IL1R1, IL1RAP, IL1RL1, IRAK3, IRAK4,
IRF4, IRF5, LRRFIP1, MYD88, TIRAP, TLR4,
TNFRSF13B, TUBA1A

Cytokine-mediated signaling pathway
(GO BP) 2.50𝐸 − 07

126 BCAR1, BLK, CD22, CD247, CLEC7A, ERBB2, IL15RA,
ITGB3, RANBP2, SYK, TUBA4A, WIPF1

Cell surface receptor linked signal
transduction (GO BP) 4.10𝐸 − 03

21 CCL3, CCL4, CCR1, CCR3, CCR5 Chemokine signaling pathway
(GO BP) 9.80𝐸 − 07

63
APOE, CASK, CNN3, CTTN, HSP90B1, IPO11,
KCNMA1, LDHA, MYO5A, NDEL1, NUDC, PRDX2,
RAB6B, ROCK2, SH3BP4, TPM1, TPT1, TRF, TUBB5

Cellular homeostasis (GO BP) 9.20𝐸 − 04

80 MYO1C, PCDH15, RICTOR, RRN3, VPS35 Cytoskeleton organization (GO BP) 9.30𝐸 − 02

92 GFR, PDGFRA, PDGFRB, PTEN, SLC9A3R2
Transmembrane receptor protein
tyrosine kinase signaling pathway

(GO BP)
2.80𝐸 − 06

142 CSNK1E, NXN, PLCG2, RAD51, VANGL1, VANGL2 Wnt signaling pathway (KEGG) 3.90𝐸 − 03

48 GRB10, IGF1R, MAP3K5 Insulin-like growth factor receptor
signaling pathway (KEGG) 1.30𝐸 − 03

50 HCST, IL2RB, KLRK1, TYROBP Integral to membrane (GO BP) 9.50𝐸 − 02

52
ANP32A, DACH1, FOSB, HDAC2, HDAC9, L3MBTL2,
MTA1, MTA3, RBBP7, REST, SP3, TCF7L2, WDR5,
ZDHHC13, ZFPM1

Regulation of transcription (GO BP) 4.00𝐸 − 09

116 F2RL2, MAP3K2, SMAD1, SMAD5, TOB1, ZEB2 Cell surface receptor linked signal
transduction (GO BP) 4.60𝐸 − 01

59 CASP1, CASP3, CASP8, CEBPB, GZMB, IL1B Regulation of apoptosis (GO BP) 1.30𝐸 − 05

46 E2F2, GATA1, GATA3, GFI1B, LMO2, NFYA Transcription (GO BP) 1.30𝐸 − 03
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Table 3: Continued.

Exemplar
ID Genes assigned to the protein network exemplar Functional annotation 𝑃 value

94

AXL, CD19, EPHA2, IL4RA, INSR, IRS2, KRAS,
NEDD9, NME2, PDCD4, PIK3AP1, PIK3CA, PIK3CB,
PIK3CD, PIK3R1, PLCG1, PTK2B, RALGDS, RASSF5,
SIRPA, SOCS6, TEK, TLR2

Cell surface receptor linked signal
transduction (GO BP) 2.10𝐸 − 03

of activated protein networks exemplars in disease associated
hematopoietic cells in mice models. One such powerful
application, for example, is that of gene expression profiles
tumor specific CD4+ T cells in a mouse model of multiple
myeloma [36], which could possibly capture tumor specific
protein interaction network mechanism using the approach
described here. Additionally, the gene regulatory network
programs we used from OntoGeNet and the expression
profiles from ImmGen are conserved between mice and
human [37].With that inmind it is likely thatmany inferences
can be made from mouse model to human immune cell
biology using the bioinformatics strategy described here. A
natural extension, however, is to apply this strategy to infer
protein interaction network mechanisms on similar projects
to ImmGen from the compendiums of human immune
cells. Namely, the Human Immunology Project Consortium
(HIPC) is currently developing standards for data collection,
integration, data exchange, and development of a central
database of systems immunology data in human samples.
The bioinformatics approach described may be fruitful when
applied to these and similar upcoming large-scale data sets.
Such a protein network integration of the immune system’s
gene expression compendiums of model organisms may help
identify protein interaction mechanisms which are shared
among immune types linked to their differentiation, in addi-
tion to immune lineage specific immunological mechanisms
in protein networks.
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