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Abstract

Introduction The biological basis for the avascular state of the
intervertebral disc is not well understood. Previous work has
suggested that the presence of thrombospondin-1 (TSP-1), a
matricellular protein, in the outer annulus reflects a role for this
protein in conferring an avascular status to the disc. In the
present study we have examined thrombospondin-2 (TSP-2), a
matricellular protein with recognized anti-angiogenic activity in
vivo and in vitro.

Methods We examined both the location and expression of
TSP-2 in the human disc, and its location in the disc and
bordering soft tissues of 5-month-old normal wild-type (WT)
mice and of mice with a targeted disruption of the TSP-2 gene.
Immunohistochemistry and quantitative histology were utilized in
this study.

Results TSP-2 was found to be present in some, but not all,
annulus cells of the human annulus and the mouse annulus.
Although there was no difference in the number of disc cells in
the annulus of TSP-2-null mice compared with that of WT
animals, polarized light microscopy revealed a more irregular

lamellar collagen structure in null mouse discs compared with
WT mouse discs. Additionally, vascular beds at the margins of
discs of TSP-2-null mice were substantially more irregular than
those of WT animals. Counts of platelet endothelial cell
adhesion molecule-1-positive blood vessels in the tissue margin
bordering the ventral annulus showed a significantly larger
vascular bed in the tissue bordering the disc of TSP-2-null mice
compared with that of WT mice (P = 0.0002). There was,
however, no vascular ingrowth into discs of the TSP-2-null mice.

Conclusion These data confirm a role for TSP-2 in the
morphology of the disc and suggest the presence of other
inhibitors of angiogenesis in the disc. We have shown that
although an increase in vasculature was present in the TSP-2-
null tissue in the margin of the disc, vascular ingrowth into the
body of the disc did not occur. Our results point to the need for
future research to understand the transition from the well-
vascularized status of the fetal and young discs to the avascular
state of the adult human disc or the small mammalian disc.

Introduction
The thrombospondins (TSPs) are multifunctional matricellular
proteins; TSP-1 and TSP-2 have strong anti-angiogenic prop-
erties, are present in a number of tissues where they bind to
the extracellular matrix (ECM) and, in turn, are themselves able
to bind receptors, enzymes, cytokines, proteases, and other

ECM proteins [1-6]. TSP-1 and TSP-2 bind matrix metallopro-
teinase-2, and thereby act to clear this matrix metalloprotein-
ase from the pericellular ECM [5]. Both TSP-1 and TSP-2
function in the cellular response to injury, but only TSP-1 is
capable of activating the small latent transforming growth fac-
tor beta complex [7,8].
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Previous studies have shown that mice with a disruption of the
TSP-2 gene exhibit disordered collagen fibrillogenesis, fragile
skin, ligament and tendon laxity, and increased vascularity [4].
Recent work has also shown that the TSP-2-null mouse has a
reduction in tissue transglutaminase, an enzyme that acts to
introduce covalent intermolecular cross-links in collagen and
other proteins; this finding accounts in part for the matrix
abnormalities seen in the TSP-2-null mouse, such as fragile
skin and lax ligaments [2]. TSP-2-null mice also exhibit signifi-
cantly greater vascularity in adult and embryonic adipose tis-
sue, and in adult and neonatal dermis [4].

Bone studies have shown that TSP-2-null mice have increased
cortical density in long bones, and a mid-diaphyseal endosteal
bone formation rate that is increased compared with that of
wild-type (WT) mice [9]. TSP-2-null mice also exhibit an ele-
vated bone formation rate (compared with that of WT mice)
following mechanical loading [10].

TSP-1 is present in the outer annulus of both human and sand
rat discs and, at apparently lower levels, in the inner annulus
[11]. This work is suggestive of a role for TSP-1 in the avascu-
lar status of the disc [11].

The biological basis for the avascular state of the human adult
disc is not well understood, but this question is important
because the resulting lowered nutritive state of the disc might
be a factor in disc degeneration [12]. Nutrients are believed to
reach cells within the disc predominantly through the vertebral
endplate, and disc cells are kept viable by nutrients moving by
diffusion through the disc matrix.

Several recent studies have utilized murine cervical, lumbar or
tail discs as experimental models. The reader is referred to
recent reports that provide useful histologic data [13-16] or
biomechanical data [17] on the age-related changes in the
normal mouse disc.

The objective of the present work was to examine mice with a
targeted disruption of the TSP-2 gene to determine whether
mice lacking TSP-2 would show enhanced vascularity of the
adult annulus. We first determined the immunolocalization of
TSP-2 in the human disc and the normal mouse disc, and sub-
sequently examined mice with a targeted disruption of the
TSP-2 gene with respect to the morphology and cellularity of
the annulus, the presence of vascular beds within the disc, and
vascularity of the soft tissue margin of the disc that serves to
supply nutrition to the disc via diffusion. Our studies confirm
the expression of TSP-2 in both the human annulus and the
WT mouse annulus, but show no vascular ingrowth into the
discs of TSP-2-null mice.

Materials and methods
Clinical study population
The experimental study of disc specimens was approved pro-
spectively by the authors' Human Subjects Institutional
Review Board at Carolinas Medical Center. The need for
informed consent was waived since disc tissue was removed
as part of routine surgical practice. The Thompson grading
system is used to score disc degeneration over the spectrum
of stages from a healthy disc (Thompson grade I) to discs with
advanced degeneration (Thompson grade V) [18].

Patient specimens were derived from surgical disc proce-
dures performed on individuals with herniated discs and
degenerative disc disease. Surgical specimens were trans-
ported to the laboratory in sterile tissue culture medium, less
than 30 minutes after surgical removal, and were placed in
10% neutral buffered formalin for no longer than 24 hours.
Care was taken to remove all granulation tissue and to sample
only disc tissue. Nonsurgical control donor disc specimens
were obtained via the National Cancer Institute Cooperative
Human Tissue Network; the specimens were shipped over-
night to the laboratory in sterile tissue culture medium and
were processed as described below. Specimen procurement
from the Cooperative Human Tissue Network was included in
our approved protocol by our human subjects Institutional
Review board.

Human disc tissues were processed undecalcified and
embedded in paraffin, and were processed for immunohisto-
chemistry as described below.

TSP-2 immunolocalization in human disc specimens
Four specimens of human disc tissue were utilized for localiza-
tion of TSP-2 with immunocytochemistry: a surgical specimen
from a 16-year-old female, L3 to L4 (Thompson grade II); a sur-
gical specimen from a 42-year-old female, C5 to C6 (Thomp-
son grade III); a Cooperative Human Tissue Network
specimen from a 40-year-old male (Thompson grade II); and a
Cooperative Human Tissue Network specimen from L5 to S1
from a 33-year-old female, L3 to L4 (Thompson grade IV).

Gene expression studies in human disc cells
Human disc tissue, annulus cells in monolayer, and annulus
cells in three-dimensional culture were assayed for gene
expression using the Affymetrix microarray system (Affymetrix,
Santa Clara, CA 95051, USA). Cells from the annulus were
examined from four subjects: a 52-year-old female, Thompson
grade III; a 63-year-old male, Thompson grade IV; a 65-year-
old female, Thompson grade IV; and a 33-year-old female con-
trol donor, Thompson grade III.

Disc tissue was studied using laser capture microdissection to
harvest cells, followed by microarray analysis as previously
described [19]. Cultured cells were placed in Extraction Buffer
from the PicoPure RNA Isolation Kit (Arcturus, Mountainview,
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CA, USA). Total RNA was extracted from the tissue according
to instructions in the PicoPure RNA Isolation Kit, reverse-tran-
scribed to double-stranded cDNA, subjected to two rounds of
transcription, and hybridized to the DNA microarray in the
Affymetrix Fluidics Station 400. Affymetrix human U133 X3P
arrays were used. The GCOS Affymetrix GeneChip Operating
System (version 1.2) was used to determine gene expression
levels for TSP-2 (NM_003247.1).

Animal studies
Animal studies were performed after approval by the Institu-
tional Animal Care and Use Committee at the University of
Washington. The WT control mice and the TSP-2-null mice
studied here have been described previously [4].

Light microscopy studies of disc tissues
Light microscopy was performed on the lumbar and thoracic
spines of four WT mice and four TSP-2-null mice, aged 5
months. Specimens were fixed in either 10% neutral buffered
formalin or 70% ethanol, and were decalcified in a solution of
22.5% formic acid (Allegiance, McGraw Park, IL, USA) and
10% sodium citrate (Sigma, St Louis, MO, USA). Complete
decalcification was determined by radiography. The spine was
cut in sagittal section, embedded in paraffin, and sectioned at
4 μm. Sections were stained with Masson-trichrome stain for
the evaluation of general disc features, for polarized light
microscopy, and for cell counts.

TSP-1 and TSP-2 in the mouse disc
TSP-1 was identified in the mouse disc with an antibody that
recognizes primarily TSP-1 (AB-4, Clone A6.1; LabVision Cor-
poration, Freemont, CA, USA) at a concentration of 8 μg/ml,
as previously described [11]. The negative control used with
each experiment was mouse IgG1 (Dako-Cytomation, Carpin-
teria, CA, USA) used at the same concentration. Positive con-
trols (skin and breast tissue) were also included.

Immunolocalization of TSP-2 was performed with an anti-TSP-
2 antibody specific for TSP-2, as previously described [20],
with antigen retrieval. Antigen retrieval was performed using
Dako Target Retrieval Solution, pH 6.0, for 20 minutes at
95°C, followed by cooling for 20 minutes. Negative controls
were processed in the absence of the primary antibody.

Scoring of PECAM-1-positive blood vessels
Platelet endothelial cell adhesion molecule-1 (PECAM-1) was
identified as follows: sections were deparaffinized in xylene
(Allegiance) and were rehydrated through graded concentra-
tions of alcohol (AAPER, Shelbyville, KY, USA) to distilled
water. As shown previously, antigen retrieval methods were
required [21]; antigen retrieval was performed using Dako Tar-
get Retrieval Solution, pH 6.0, for 20 minutes at 95°C, fol-
lowed by cooling for 20 minutes. Endogenous peroxidase was
blocked with 3% H2O2 (Sigma). Slides were incubated over-
night at 4°C with anti-PECAM-1 IgG (Santa Cruz Biotechnol-

ogy, Santa Cruz, CA, USA) at a 1:100 dilution. Goat IgG
(Vector Laboratories, Burlingame, CA, USA) was used as a
negative control. The secondary antibody was biotinylated rab-
bit anti-goat IgG (Vector) applied for 20 minutes, followed by
peroxidase-conjugated streptavidin (Dako) for 10 min and
Vector NovaRed (Vector) for 5 minutes. Slides were rinsed in
water, counterstained with light green (Polysciences, War-
rington, PA, USA), dehydrated, cleared, and mounted with res-
inous mounting media. Control tissues included mouse spleen
and human tonsil.

The number of PECAM-1-positive vascular structures in 40×
magnification fields was scored along the border of the ventral
disc margin. Only tissue bordering the disc (not including adja-
cent end plates) was scored. The margins of 20 discs for WT
mice and of 15 discs for TSP-2-null mice were evaluated.

Quantitative histomorphometry
Histomorphometry was performed on the annulus of lumbar
discs to determine cell densities in WT mice and TSP-null
mice. Quantitative histomorphometry was performed on tissue
sections stained with Masson-trichrome dye using the
OsteoMeasure system (OsteoMetrics, Atlanta, GA, USA).

Statistical analyses
Standard statistical methods employed SAS software (version
9.1; SAS Institute, Cary, NC, USA), and GraphPad InStat®

(version 3.06; GraphPad Inc., San Diego, CA, USA). P < 0.05
was considered statistically significant. Analyses performed
included calculation of descriptive statistics and the Wilcoxon
rank sum test, which was utilized to assess data from counts
of PECAM-positive blood vessels in the soft tissue of the disc
margins. Data are expressed as the mean ± standard error of
the mean (number).

Results
TSP-2 and its gene expression in human discs
Previous studies of TSP in the human disc and the sand rat
disc – with an antibody that recognized primarily TSP-1 –
showed TSP-1 in the outer annulus, and some cells with reac-
tivity in the inner annulus [11]. In the present study, TSP-2 was
identified in some, but not all, outer and inner annulus cells in
the human disc (Figures 1a,b; Figure 1c presents a negative
control). Affymetrix gene array expression analysis also pro-
vided independent confirmation of the expression of TSP-2 in
the annulus of four human specimens (Thompson grades III
and IV). The mean relative gene expression level was 8,539 ±
2,617 (n = 4).

TSP in the mouse lumbar disc
In the mouse disc, TSP-1 was located in some, but not all, cells
in annulus tissue from both WT mice (Figure 2a) and TSP-2-
null mice (Figure 2b). Figure 2c presents a negative control.
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TSP-2 was present in some cells in the outer annulus of the
disc in WT mice (Figure 3a) and in some cells in the region
between the central part of the nucleus pulposus and the adja-
cent vertebral endplate (similar to the localization pattern
shown in Figure 2b for TSP-1) (data not shown). As expected,
TSP-2 was not observed in annulus specimens from TSP-2-
null mice (Figure 3b). A negative control section is shown in
Figure 3c.

Annulus cell numbers in lumbar discs of WT mice and 
TSP-2-null mice
Seven lumbar discs were examined from levels L1 to the L6-
sacrum for each spine from each mouse. Routine staining with
Masson-trichrome dye showed that neither WT mice nor TSP-
2-null discs exhibited vascularity in dorsal or ventral portions of
the annulus. As shown in Figure 4, the cellular density also
appeared to be similar. This finding was confirmed by quanti-
tative histomorphometric cell counts, which showed no differ-
ences in ventral annulus cell densities (WT mice, 2,990 cells/
mm2 ± 353 (n = 4) versus TSP-2-null mice, 2,708 ± 192 (n =
4)).

Morphology of collagen in discs of WT mice and TSP-2-
null mice
Examination of collagen in the lamellar regions of the discs of
WT mice and TSP-2-null mice was performed using Masson-
trichrome-stained sections viewed with regular light micros-
copy and with polarizing light microscopy. This technique
showed a regular, even pattern of collagens in the annuli of
discs from WT mice (Figure 5a,b). In contrast, discs from TSP-
2-null mice were characterized by a more irregular (woven)
birefringent pattern compared with that of discs from WT mice
(Figure 5c,d).

Peripheral vascularity around lumbar discs of WT mice 
and TSP-2-null mice
Vascularization in soft tissue bordering the ventral annulus in
discs from WT animals was sparse (Figure 6a). Although small
blood vessels containing red blood cells could be visualized in
Masson-trichrome-stained tissue (Figure 6b), empty or very
small vessels were difficult to identify. To overcome this prob-
lem, we performed immunolocalization of PECAM-1, which is
expressed on the plasma membrane of endothelial cells [22].
PECAM-1 has been shown to recognize only vascular
endothelial cells [23].

Figure 7a shows a representative immunolocalization image of
PECAM-1-positive vessels along the margin of discs from WT
mice or TSP-2-null mice (Figure 7b). Counts of PECAM-1-
positive blood vessels in tissue along the margin of the ventral
annulus were performed on the margins of 20 control mouse
discs and 15 TSP-2-null mouse discs. The resulting data are
indicative of a significantly larger vascular bed in TSP-2-null
mice compared with WT mice (19.8 ± 2.75 versus 6.2 ± 1.08,
respectively; P = 0.0001). In addition to increased vascular
numbers, the organization of these vascular beds was notably
less regular in the TSP-2-null mice (Figure 7b) compared with
WT control mice (Figure 7a). No vascularization within the
annulus or nucleus was detected by anti-PECAM-1 IgG in
either TSP-2-null mouse discs or WT mouse discs.

Discussion
TSP-2 in the disc
TSP-2, a matricellular protein with recognized anti-angiogenic
activity in vivo and in vitro, was found to be present in some,
but not all, cells of the human and mouse annulus. Microarray
analysis also verified expression of TSP-2 in the human annu-
lus.

It is interesting that the response to a lack of TSP-2 expression
in null mice was insufficient to produce vascular ingrowth into

Figure 1

Location of thrombospondin-2 in the human annulusLocation of thrombospondin-2 in the human annulus. (a) Positive identification of thrombospondin-2 (TSP-2) is present in some cells in the outer 
annulus. (b) Localization was also positive for cells in the inner annulus, including cells present in clusters. (c) Adjacent section processed in the 
absence of antibody as a negative control. Magnification, ×300.
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the disc. The disc may indeed be unusual in this regard, since
surrounding soft tissues bordering the disc displayed the
expected increased vascular bed previously seen in soft tis-
sues of the TSP-2-null animal [4]. The annulus contains TSP-
2, but apparently does not rely solely upon it to inhibit blood
vessel growth; TSP-2 may therefore not participate in regres-
sion of neonatal vessels in the disc.

Morphology of the annulus in the TSP-2-null mouse
Although there was no difference in the number of disc cells in
the annulus of TSP-2-null mice versus WT animals, an impor-
tant finding in the present study is the irregular, uneven colla-
gen lamellar structure seen by polarized light microscopy in
null mouse discs versus WT mouse discs. Appropriate annular
morphology and integrity are essential to the function of the
intervertebral disc, and cells in the outer annulus are polarized
for directed secretion of ECM components [24]. Ultimately it
is the ECM that undergoes failure with disc degeneration;
dehydration and matrix fraying culminate in tears within the
annulus during biomechanical loading and torsion. Nucleus
pulposus and annulus material rupture through these tears,
and impinge on nerves, thus causing pain.

Kyriakides and colleagues found that dermal collagen fibers
were disorganized in the TSP-2-null mouse, and that the skin
of these mice displayed decreased tensile strength [4]. These
authors hypothesized that TSP-2 might function as a collagen
fibril-associated protein that participates in the regulation of

Figure 2

Location of thrombospondin-1 in the annulus of the mouse interverte-bral discLocation of thrombospondin-1 in the annulus of the mouse interverte-
bral disc. Dark-stained cells show localization of thrombospondin-1 
(TSP-1) in (a) the outer annulus of wild-type (WT) mice and (b) the 
annulus adjacent to the central portion of the nucleus pulposus. (c) 
Negative control. Magnification, ×300.

Figure 3

Location of thrombospondin-2 in the mouse annulusLocation of thrombospondin-2 in the mouse annulus. (a) Thrombospon-
din-2 (TSP-2) is present in many cells in the annulus of wild-type (WT) 
mice. (b) TSP-2 is absent in cells of the annulus in TSP-2-null mice. (c) 
Negative control processed in the absence of primary antibody. Magni-
fication, ×300.
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collagen fibril diameter and fibrillogenesis. This hypothesis
suggests another avenue to be explored in disc cell biology.
Other possibilities include the ability of TSP-2 to regulate the
activity of matrix metalloproteinase-2 [5] and tissue trans-
glutaminase [2]. Additional studies of the disc characteristics
of the TSP-2-null mouse are needed to determine whether
there are ultrastructural changes in collagen fibers similar to
those seen in the tendons of TSP-2-null mice (that is,
increased numbers of large-diameter fibrils) and to determine
whether there is decreased tensile strength in TSP-2-null
discs.

Vascular changes in soft tissue bordering the disc in the 
TSP-2-null mouse
Although there is a rich vascular supply to the developing and
newborn disc, vascularity decreases with maturity, and the
adult human disc is avascular. This condition is also present in
many other species, including the sand rat, a small rodent
model of spontaneous, age-related disc degeneration [25,26].

The small vascular beds along the dorsal and ventral annular
surfaces, and vascularization of the vertebral endplate, consti-
tute the main accesses to vasculature for the disc, and nutri-
ents subsequently reach the cells of the disc via diffusion
through the disc ECM. In humans and in some animals, includ-
ing the sand rat, the endplate undergoes calcification with
increasing age, and access to nutrients thus decreases further
[26-31].

Previous work has shown that the majority of cells in the outer
annulus of the human disc and the sand rat disc contain TSP-
1. Since TSP-2 has established anti-angiogenic properties,
we hypothesized that this matricellular protein might contrib-
ute to the avascular state of the disc by its capacity to inhibit
vascular ingrowth along the disc margin. One objective of this

work was to examine mice with a targeted disruption of the
TSP-2 gene to determine whether mice lacking TSP-2 would
show enhanced vascularity of the adult annulus. Our studies
show that, even in the absence of expression of the TSP-2
gene, vascular ingrowth into the body of the disc did not
occur.

The results of the quantitative assessment of the vascular bed
in soft tissue along the disc margins that we presented here
are similar to those previously published by Kyriakides and col-
leagues, who counted blood vessels in adipose, dermis, and
thymic tissues of WT mice and TSP-2-null mice [4]. A similar
increase in vasculature was therefore seen in the TSP-2-null
mouse tissue in the margin of the disc. It is interesting to note
that the previous investigators also showed that the differ-
ences seen in neonatal or embryonic dermis were not as great
as those in adult tissue.

In the TSP-2-null specimens examined here, the expected
increased vascular bed was present in the soft tissue margin
adjacent to the disc. Although we have not measured any
nutrient diffusion rates in these discs, we note that this
increased adjacent vascularity may potentially result in an
increased availability of nutrients to the disc.

It is also of interest to comment on the question of potential
compensation between the two TSPs. There is no evidence to
date for compensation. Although we have not tested whether
upregulation of TSP1 might contribute to the lack of vascular-
ization of the annulus in TSP-2-null mice, the evidence in the

Figure 5

Morphology of collagen lamellae in the annulus of a mouse discsMorphology of collagen lamellae in the annulus of a mouse discs. The 
morphology was examined with Masson-trichrome stain and with polar-
ized light microscopy of the same field. (a) and (b) Annulus of the wild-
type (WT) mouse shows regular, even lamellar layers. (c) and (d) Annu-
lus of the null mouse shows less regular polarized light patterns in (d). 
Thoracic disc, magnification, ×300.

Figure 4

Morphologic features of wild-type and thrombospondin-2-null mouse ventral annuliMorphologic features of wild-type and thrombospondin-2-null mouse 
ventral annuli. The morphologic features of the (a) wild-type (WT) 
mouse ventral annuli and (b) thrombospondin-2-null mouse ventral 
annuli are similar. Masson-trichrome stain, magnification, ×300.
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literature suggests that compensation by either of the two
TSPs does not occur [32].

Angiogenesis is seen in herniated disc tissue, and basic
fibroblast growth factor has been noted in at least some of the
blood vessels in the prolapsed disc. In contrast, no immunore-
activity for fibroblast growth factor was seen in intact, nonher-
niated discs [33]. Vascular endothelial growth factor and
platelet-derived growth factor have also been identified in her-
niated disc tissue [34-37].

There is a complex biological relationship between the intact
disc matrix and cells, and the nearby vasculature outside the
disc. We now recognize a number of inhibitors of angiogen-
esis, as discussed in several reviews [38-42]. There are ang-
iogenesis inhibitors that function by inhibition of one, or more
than one, angiogenic protein. Endogenous anti-angiogenic
proteins have a number of interesting properties [43]; some
can specifically target newly-formed vasculature, but not older
blood vessels. Relevant to the disc, tissue inhibitor of metallo-
proteinase-1 and ECM fragments, including those from colla-
gen, merit further study of their anti-angiogenic potential. Also
relevant to the disc are the findings that aggrecan may act in

an anti-angiogenic factor [44], as may other matrix proteogly-
can components [45].

Chondromodulin-I, which is present in the disc [46], also acts
as an endothelial cell growth inhibitor in fetal bovine cartilage,
in growth plates, and in embryonic cartilaginous sites. In addi-
tion to TSPs, this matrix protein might exert an anti-angiogenic
influence in the TSP-2-null mouse discs studied here. The
work presented here points to the importance of additional
studies of TSP-1-null mice and TSP-2-null mice. In addition,
future studies of anti-angiogenic factors in the disc are needed
to understand the change from the well-vascularized status of
the fetal and young discs to the avascular adult human disc or
small mammalian disc.

Conclusion
There is a complex biological relationship between the intact
disc matrix and cells and the nearby vasculature outside the
disc. We have shown that although an increase in vasculature
was present in the TSP-2-null tissue in the margin of the disc,
vascular ingrowth into the body of the disc did not occur. The
present study also identified a change in lamellar collagen
structure in the annulus of the TSP-2-null mouse disc. Our
results point to the need for future research to understand the
transition from the well-vascularized status of the fetal and
young discs to the avascular state of the adult human or small
mammalian disc.

Figure 7

Location of small blood vessels along the margin of the ventral portion of the annulusLocation of small blood vessels along the margin of the ventral portion 
of the annulus. Small blood vessels were visualized with platelet 
endothelial cell adhesion molecule-1 immunohistochemistry (red locali-
zation product). (a) Modest vasculature is present in the tissues near 
the disc in the wild-type (WT) mouse. (b) In the thrombospondin-2-null 
mouse, a much larger vascular bed is present. Magnification, ×500.

Figure 6

Blood vessels in soft tissues on the margin of the ventral annulusBlood vessels in soft tissues on the margin of the ventral annulus. (a) 
Wild-type (WT) specimen with modest vascularization. (b) Larger 
number of vessels (arrow) in the margin of a disc from a thrombospon-
din-2-null animal. Ann, annulus; arrow, capillary containing red blood 
cells. Masson-trichrome stain; magnification, ×600.
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