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Abstract

Lung adenocarcinoma (LUAD) is the predominant subtype of lung cancer with a relatively poor prognosis. The
dramatic improvements of new immunotherapy strategies have shown promising results in lung cancer
patients. This study aimed to elucidate the functions of immune-associated genes in LUAD prognosis and
pathogenesis by analyzing public databases. We obtained expression profiles of LUAD patients from The
Cancer Genome Atlas (TCGA) database and applied the ESTIMATE algorithm to calculate immune scores and
stromal scores. A series of microenvironment-related genes with prognostic value was then identified. Of note,
heat shock factor 5 (HSF5) was found to be decreased in LUAD patients and positively correlated with overall
survival, which was further confirmed in the Gene Expression Omnibus (GEO) database. Moreover, Gene
Ontology (GO) analysis based on the correlated genes of HSF5 demonstrated that HSF5 expression was
significantly associated with the immune response and inflammatory activities. Based on the Tumor IMmune
Estimation Resource (TIMER) and Gene Expression Profiling Interactive Analysis (GEPIA) datasets, HSF5
expression showed strong correlations with various immune cell infiltration and diverse immune marker sets.
These findings suggest that HSF5 can be used as a promising biomarker for determining prognosis and immune

infiltration in LUAD patients.
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Introduction

Lung cancer is the leading cause of cancer-
related death worldwide, and lung adenocarcinoma
(LUAD) represents the most prevalent subtype, which
comprises approximately 40% of all lung cancer cases
[1,2]. Despite the achievements in understanding the
pathogenesis of this disease and the development of
multidisciplinary therapies, the clinical outcomes for
LUAD patients remain poor, with an overall survival
rate of less than 5 years [3,4]. Therefore, there is an
urgent need to discover specific prognostic factors for
LUAD to predict the overall prognosis and improve
the therapeutic management of patients.

Tumor cells are involved in extensive and
dynamic crosstalk with the immune micro-
environment, and this correlation plays crucial roles

in cancer pathogenesis [5]. Evading immune
destruction is one of the hallmarks of cancer [6]. The
role of the immune system in lung oncogenesis is
increasingly being investigated with a focus on the
clinical responses to checkpoint blockade immuno-
therapies [7,8]. Notably, the association between the
expression levels of immune markers and the
response to immune-based therapy has been explored
in various studies [9,10]. The immune-related markers
show prognostic and predictive effects in lung cancer
patients. For example, increased cytotoxic T cell
lymphocytes (CTLs) appear to be associated with
longer survival [11]. The use of bioinformatic
technologies based on expression profiling from
public databases is an effective method to better
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understand the immune microenvironment in LUAD
patients [12,13].

Heat shock factors (HSFs) are transcription
factors that mediate responses to versatile forms of
physiological and environmental stimuli [14]. There
are several HSF isoforms in the human genome, and
studies have largely focused on HSF1 and HSF2
family members [14,15]. HSF1 has been shown to play
a vital role in innate immunity and immuno-
senescence [16]. The deregulation of HSF activity is
involved in various human diseases. For example, the
compromised activation of HSF1 has been reported to
be linked with the pathology of Huntington’s disease
and Parkinson’s disease [17,18]. Research has revealed
that HSF1 drives carcinogenesis [19-21]. However,
HSF2 has appeared to decrease in a wide range of
cancers and act as a tumor suppressor [22,23]. To date,
only a few studies have focused on HSF5, and its
detailed functional characterization in tumors has not
been performed [24].

In the present study, we evaluated the gene
expression profiles of LUAD patients from The
Cancer Genome Atlas (TCGA) database and
identified a series of microenvironment-related genes
with prognostic value. The positive correlation
between HSF5 expression and overall survival was
further validated in the Gene Expression Omnibus
(GEO) database. Moreover, we explored the
association of HSF5 with immune response and
inflammatory activities, as well as immune cell
infiltration and diverse immune marker sets in
LUAD. This study revealed the crucial role of HSF5 in
LUAD and an underlying mechanism between HSF5
and tumor-immune interactions.

Materials and Methods

Database

The RNA-Seq dataset of LUAD patients and
corresponding clinical information were obtained
from the TCGA database (https://gdc.nci.nih.gov/).
We adopted two datasets (GSE31210 and GSE37745)
from the GEO database. The data of GSE31210 were
based on GPL570 platforms (HG-U133_Plus_2
Affymetrix Human Genome U133 Plus 2.0 Array) and
included 226 lung adenocarcinoma patients. The
GSE37745 data were based on GPL570 platforms and
included 106 lung adenocarcinoma patients. Immune
scores and stromal scores were calculated by the
ESTIMATE algorithm of the downloaded database.

DEG identification and functional enrichment
analysis

All the LUAD patients were classified into high-
and low-score groups based on their immune/

stromal scores. Data analysis was performed by using
the package edgeR. In this study, genes with a p value
< 0.05 and | fold change | > 1.5 were defined as
differentially expressed genes (DEGs). Database for
Annotation, Visualization and Integrated Discovery
(DAVID) (https://david-d.ncifcrf.gov/) was applied
to analyze the gene functions.

Survival analysis

Kaplan-Mejer plots were constructed to
investigate the correlation between gene expression
and the overall survival of LUAD patients. The
statistical significance of the correlation was tested by
a log-rank test. The online Kaplan-Meier plotter
database (http://kmplot.com/analysis/) was used to
verify the prognostic values of the identified genes.

Immune-associated analysis

The correlations between continuous variables
were investigated by Spearman correlation analysis.
Gene set variation analysis (GGVA) was conducted as
previously described [25]. Gene Ontology (GO)
analysis of the most related genes was constructed by
Heatmap. The GO gene set was obtained from the
AmiGO 2 Web portal (http:/ /amigo.
geneontology.org/amigo/landing).  Inflammatory-
related metagenes were selected as described
previously [26,27]. The metagene expression values
were determined by assessing the mean of the
normalized expression values of all genes in a
respective cluster [27]. The Tumor IMmune
Estimation Resource (TIMER) database (https://
cistrome.shinyapps.io/timer/) was applied to
estimate the abundance of immune infiltrates and the
correlations between HSF5 expression and the gene
markers of immune cells. The online database Gene
Expression Profiling Interactive Analysis (GEPIA)
(http:/ / gepia.cancer-pku.cn/index.html) was used to
further validate the significantly correlated genes in
TIMER.

Results

Identification of DEGs based on immune
scores and stromal scores

The complete gene expression profiles and
clinical information of 517 LUAD patients were
downloaded from the TCGA database. We calculated
the immune scores and stromal scores of all these
patients with the ESTIMATE algorithm and plotted
the distribution of the scores according to stage
classifications of LUAD patients. As shown in Figure
1A, the immune scores were significantly associated
with the pathologic stage, while the stromal scores
displayed no statistically significant differences.
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Figure 1. Identification of DEGs based on immune scores and stromal scores. (A) Distribution of immune scores and stromal scores for LUAD pathologic stage. (B)
The Kaplan-Meier survival curve reveals that high immune scores are associated with significantly longer overall survival. The high stromal score group showed a longer median
overall survival than the low-score group, with no significant difference. (C) The commonly changed DEGs in the stromal and immune score groups (34 up- and 43 downregulated
genes) were identified. (D) GO term enrichment analysis of the common DEGs.
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To explore the potential correlation of overall
survival with immune scores and stromal scores, we
classified the 517 LUAD cases into high- and
low-score groups based on their scores (the top 259
scores are the high score group and the rest are the
low score group). The Kaplan-Meier survival analysis
(Figure 1B) demonstrated that the median overall
survival of patients with high immune scores was
longer than that of patients with low scores (1725 d vs.
1229 d, p = 0.0094). Moreover, patients in the high
stromal score group had a longer median overall
survival rate than patients in the low-score group, but
with no significant difference (1600 d vs. 1293 d, p =
0.0767).

Setting p < 0.05 and | fold change | > 1.5 as the
cut-off criteria, we identified 311 and 204 DEGs
between the high and low immune score/stromal
score  groups, respectively. The integrated
bioinformatic analysis revealed that 34 genes were
commonly upregulated and 43 genes were commonly
downregulated in the high-score group (Figure 1C).
Subsequently, we conducted a functional enrichment
analysis of the common DEGs with the DAVID gene
annotation tool. As shown in Figure 1D, the top GO
terms identified included extracellular region, soluble
fraction, regulation of cell development and
regulation of natural killer cell-mediated immunity.

Survival analysis of the DEGs

To determine the potential association of the
total 77 DEGs with the overall survival of LUAD
patients, we constructed Kaplan-Meier survival
curves. Seventeen DEGs (8 upregulated DEGs and 9
downregulated DEGs) were significantly associated
with overall survival in the log-rank test (p < 0.05).
The 8 upregulated DEGs of prognostic value are
shown in Figure 2. The prognostic evaluation of these
genes in the Kaplan-Meier plotter database was
consistent with our results (Supplementary Figure
S1). Furthermore, we evaluated the prognostic
potential of these genes in the GEO database
(GSE31210 and GSE37745). Among the 8 upregulated
DEGs, HSF5 was further confirmed to be positively
associated with the overall survival of LUAD patients
(Figure 3A). Additionally, we analyzed the
differences in HSF5 expression in various tumor and
normal tissues. As shown in Figure 3B, HSF5
expression was significantly lower in LUAD tissues
than in adjacent normal tissues. Downregulated HSF5
expression was also observed in various cancers,
including bladder urothelial carcinoma (BLCA), colon
adenocarcinoma (COAD), kidney chromophobe
(KICH), lung squamous cell carcinoma (LUSC),
prostate adenocarcinoma (PRAD) and thyroid
carcinoma (THCA). These results confirmed the

decreased expression and prognostic value of HSF5 in
LUAD.

HSFS5 is associated with the immune response
and inflammatory activities in LUAD

According to the above results, HSF5 may play a
crucial role in the biological functions of LUAD,
which has not been reported previously. To better
understand  the relevance and underlying
mechanisms of HSF5 in LUAD, 1296 genes were
screened to be significantly correlated with HSF5
based on the TCGA dataset and Spearman's
correlation analysis (Spearman R > (.3). The biological
functions of these related genes were further analyzed
by DAVID. GO analysis revealed that the related
genes were mainly involved in the immune response,
lymphocyte activation, the inflammatory response
and the regulation of T cell activation (Figure 4A).

Subsequently, we performed GSVA analysis to
explore the relationship between HSF5 and the
immune response in LUAD (Figure 4B). The results
showed that HSF5 was positively correlated with the
adaptive immune response, T cell costimulation, T cell
activation, the T cell receptor signaling pathway, the
humoral immune response and the regulation of
immune response. These results indicated that HSF5
may play an important role in the immune response,
especially in T cell immunity. Additionally, we
conducted a Spearman's correlation analysis on the
expression of HSF5 and a variety of immune
checkpoints from the TCGA dataset, such as PD-L1,
PD1, CTLA-4, and IDO1. As shown in Figure 4C,
HSF5 demonstrated a high correlation with ICOS and
BTLA, followed by PSGL-1, CTLA4 and TIM-3.

To further understand HSF5-related
inflammatory  activities, we analyzed seven
metagenes by a previously described method [26,27].
We found that HSF5 expression was positively
associated with HCK, LCK, MHC-I, MHC-II, STAT1,
and IgG but not significantly associated with
interferon in the TCGA database (Figure 4D). This
result revealed that HSF5 was mainly associated with
the activities of macrophages, the signal transduction
of T cells, B cells and antigen-presenting cells.
Together, these findings indicate that HSF5 has
crucial immune and inflammatory functions in
LUAD.

HSF5 expression is correlated with the
immune infiltration level in LUAD

Based on the TCGA dataset, we assessed the
relationship between HSF5 expression and various
immune cell populations by the Microenvironment
Cell Populations-counter method as previously
described [28]. As shown in Figure 5A, HSF5 was
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significantly associated with T cells, B lineage,
monocytic lineage and cytotoxic lymphocytes. In
addition, we evaluated the correlations of HSF5 with
immune infiltration levels in LUAD from TIMER. The
result showed that the HSF5 expression level has
strong positive relevance with infiltrating levels of B
cells (r = 0.439, P =2.86e-24), CD8+ T cells (r = 0.301, P
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=1.21e-11), CD4+ T cells (r= 0.421, P = 3.52e-22),
macrophages (r = 0.238, P = 1.12e-07), neutrophils (r =
0.318, P = 8.93e-13) and dendritic cells (DCs) (r =0.411,
P = 2.63e-21) in LUAD (Figure 5B). These findings
suggest that HSF5 plays a specific role in immune
infiltration in LUAD, especially in T cells and B cells.
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Figure 2. Correlation between individual DEG expression and the overall survival of LUAD patients in TCGA. Kaplan-Meier survival curves with the log-rank
test are represented for the upregulated DEGs. ADGRG4, adhesion G protein-coupled receptor G4; GPR31,G protein-coupled receptor 31; HEMGN, hemogen; HSF5, heat
shock transcription factor 5; PIK3CD-AS1, PIK3CD antisense RNA 1; MUSK, muscle associated receptor tyrosine kinase; ANGPTL?7, angiopoietin like 7; OVCHI, ovochymase 1.
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Figure 3. The HSF5 prognostic value in GEO and expression in different cancers. (A) HSF5 was further confirmed to be positively associated with the overall survival
of LUAD patients in the GEO dataset (GSE31210 and GSE37745). (B) HSF5 expression levels in different types of human cancers were investigated by TIMER, red indicate the
mRNA expression of HSF5 in tumor tissues; blue indicate the mRNA expression of HSF5 in normal tissues; purple indicate the mRNA expression of HSF5 in metastatic tissues

(*p < 0.05, ®p < 0.01, #¥p < 0.001).

Correlation of HSF5 expression and immune
marker sets

To validate the relationship between HSF5 and
immune cells, we further estimated the correlation
between HSF5 and the immune marker genes of
various immune cells in LUAD based on the TIMER
and GEPIA databases. We focused on the association
between HSF5 and immune marker sets of diverse
immune cells, including CD8+ T cells, T cells
(general), B cells, monocytes, tumor-associated
macrophages (TAMs), M1 and M2 macrophages,
neutrophils, natural killer (NK) cells and DCs (Table
1). Specifically, we showed that CD8A and CD8B of
CD8+ T cells, CD3D, CD3E, and CD2 of general T

cells, CD86 and CD115 of monocytes, and CD19 and
CD79A of B cells are significantly associated with
HSF5 expression (Figure 5C). Subsequently, we
employed the GEPIA dataset to validate the above
correlations (Table 2, Supplementary Figure S2).
These findings were consistent with the correlation
analysis between HSF5 expression and immune cells,
indicating that HSF5 plays a vital role in the immune
response in the microenvironment of LUAD.

Discussion

LUAD remains one of the most aggressive and
fatal tumor types despite the dramatic improvements
of new therapeutic strategies [3,4]. In this study, we
analyzed microenvironment-associated genes of

http://www.medsci.org



Int. J. Med. Sci. 2021, Vol. 18 454

prognostic value to LUAD based on the TCGA and  The immune scores were significantly correlated to
GEO databases. HSF5 was found to be decreased in  the pathologic stage and overall survival of LUAD
LUAD patients and positively correlated with overall  patients. Consistent with our results, a recent study
survival. Furthermore, we demonstrated that HSF5is  revealed that a high immune score was associated
significantly associated with immune response and  with better progression-free survival (PFS) of lung
inflammatory activities, as well as immune cell cancer patients based on clinical data [33]. The
infiltration and diverse immune marker sets immune microenvironment is widely recognized to
(Figure 6). influence lung cancer outcomes by contributing to

The ESTIMATE algorithm is designed to  inflammation, angiogenesis, immune modulation and
calculate immune and stromal scores according to  the response to therapies [34,35]. Much effort has been
gene expression data and signatures [29]. Various put into exploring immune biology and developing
studies have employed this algorithm to explore the  effective immunotherapeutic strategies for lung
microenvironment of prostate cancer [30], colon cancer [36,37]. Thus, integrating and reanalyzing
cancer [31] and glioblastoma [32]. Here, we first  genomic profiles from public databases are important
assessed the infiltration of stromal and immune cells  to obtain a better understanding of the immune
in LUAD patients based on the ESTIMATE algorithm. = microenvironment in LUAD.
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Figure 5. HSF5 expression is correlated with the immune infiltration level in LUAD. (A) The association between HSF5 expression and immune cell populations was
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Figure 6. Work flow of the current study. The expression profiles of LUAD patients from TCGA database and immune scores and stromal scores, calculated from the
ESTIMATE algorithm. HSF5 (microenvironment-related genes with prognostic value) was then identified, and further confirmed in the GEO database. Moreover, GO and GSVA
analyses demonstrated that HSF5 expression was significantly associated with the immune response and inflammatory activities. According to TIMER and GEPIA datasets, the
HSF5 expression significantly correlated with various immune cell infiltration and diverse immune marker sets.

The common DEGs between the high and low
immune score/stromal score groups were identified,
followed by an overall survival analysis. The results
demonstrated that 17 DEGs were significantly
associated with the prognosis of LUAD patients. The
prognostic value of these genes was also confirmed in
the Kaplan-Meier plotter database. Of note, HSF5 was
further verified to be positively associated with the
overall survival of LUAD patients from the GEO
database. Additionally, we revealed that HSF5
expression was significantly downregulated in LUAD
tissues compared with adjacent normal tissues.
Moreover, lower HSF5 expression was also observed
in bladder, colon, kidney, prostate and thyroid
cancers based on TIMER. Consistent with this result,
another HSF family member, HSF2, has been reported
to be frequently decreased in several human
malignancies and acts as a tumor suppressor [23].
However, the major stress-responsive factor HSF1
appears to support cancer cell growth, survival and
metastasis [19,21]. HSF5 has not previously been
connected to cancer, and in this study, we
demonstrated the low expression and prognostic
value of HSF5 in LUAD.

HSF5 belongs to the heat shock transcription
factor family, which is involved in differentiation,
reproduction, and stress-induced adaptation [14].
Previous studies have revealed that HSF5 plays a
critical role in germ cell development and meiotic
progression [24,38]. However, the functional
characterization of HSF5 involved in cancer and the

immune response has not been conducted. In this
study, we showed that HSF5-related genes were
mainly enriched in the immune response, lymphocyte
activation, and the inflammatory response in LUAD.
Further GSVA analysis also demonstrated that HSF5
was positively correlated with the adaptive immune
response, T cell activation, the T cell receptor
signaling pathway, and the regulation of the immune
response. Consistently, another HSF family member,
HSF1, has been reported to enable the normal
function of the immune system [16,39]. These results
indicated the potential role of HSF5 in the immune
response, especially in T cell immunity.

Another important aspect of this study is that
HSF5 expression is associated with diverse immune
cell infiltration and immune marker sets in LUAD.
Our analysis demonstrated that there was a strong
positive correlation between HSF5 expression level
and infiltrating levels of B cells, CD8+ T cells, CD4+ T
cells, macrophages, neutrophils and DCs in LUAD.
Importantly, the correlation between HSF5 expression
and the marker genes of these immune cells
implicates the function of HSF5 in regulating tumor
immunology. In lung cancer, the prognostic and
predictive significance of immune markers has been
elucidated in various studies [8,40]. CD8+ T cells,
CD4+ T cells and mature DCs appeared to be
associated with good prognosis. Regulatory T cells
(Tregs), immature DCs, and M2 macrophages were
shown to be related to poor outcomes [41]. In recent
years, immunotherapy has changed the therapeutic
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strategy and shown promising results in lung cancer
patients [7,42]. Ongoing immunotherapy biomarker
research is essential to develop more accurately
customized immunotherapy strategies [8]. Our
findings suggest that HSF5 plays an important role in
the regulation of immune infiltration and may be a
biomarker for immunotherapy in LUAD. The detailed
function and underlying mechanism of HSF5 need to
be further investigated.

Table 1. Correlation analysis between HSF5 and relate genes and
markers of immune cells in TIMER

Description Gene markers LUAD
None Purity Age
Cor P Cor P Cor P
exhaustion
CTLA4 054  ** 0429 xx* 0.542 ek
LAG3 0363  *** 0.264 *** 0.369 il
TIM-3 (HAVCR2) 0.448 *** 0.329  *x* 0.443 ek
GZMB 0247 *** 0119 * 0.249 ok

LUAD, lung adenocarcinoma; TAM, tumor-associated macrophage; Th, T helper
cell; Tfh, Follicular helper T cell; Treg, regulatory T cell; Cor, R value of Spearman’s
correlation; None, correlation without adjustment. Purity, correlation adjusted by
purity. Age, correlation adjusted by age. *P < 0.01; **P < 0.001; ***P < 0.0001.

Table 2. Correlation analysis between HSF5 and relate genes and
markers of immune cells in GEPIA

Description Gene markers LUAD
None Purity Age
Cor P Cor P Cor P
CD8+ T cell CD8A 0475  *** 0.378 *** 0.466 ok
CD8B 0401 *** 0319 *** 0.399 ok
T cell (general) CD3D 0.547  *** 0443  *** 0.534 ok
CD3E 0.612  *** 0.526 *** 0.6 o
CD2 0.608  *** 0515 *** 0.596 ok
B cell CD19 0517 *** 0433 *** 0.525 ok
CD79A 0425 *** 0318 *** 0.428 ok
Monocyte CD86 0463  *** 0.345 *** 0.46 o
CD115 (CSFIR)  0.437  *** 0.328 *** 0.433 ok
TAM CCL2 0.297  ** 0.197  *** 0.288 ok
CD68 0353  *** 0.247  *** 0.356 ok
1L10 0403 *** 0.299 *** 0.404 ok
M1 Macrophage INOS (NOS2) 0.056 0.206 -0.024 0.596 0.041 0.370
IRF5 033 ** 0.227 *** 0.337 x
COX2 (PTGS2)  -0.088 0.0471 -0.083 0.0645 -0.087  0.057
M2 Macrophage CD163 0351  *** 0.243  *** 0.354 ok
VSIG4 0.349  ** 0.253 *** 0.348 o
MS4A4A 0414 *+* 0.306 *** 0.414 x
Neutrophils CD66b 0.241  ** 0.228  *** 0.217 ok
(CEACAMS)
CD11b (ITGAM) 0.418 *** 031 ** 0.418 ok
CCR7 0.63  *** 0.561 *** 0.623 ok
Natural killer ~ KIR2DL1 0134 * 0.074 01 0.128 *
cell
KIR2DL3 0139 * 0.043 0337 0.165 **
KIR2DL4 0111 0.0121 0.027 0.555 0.119 *
KIR3DL1 0122 * 0.059 0.189 0.121 *
KIR3DL2 022w 0144 * 0.223 ok
KIR3DL3 0.024 0.594 -0.003 0.946 0.019 0.676
KIR2DS4 0144 * 0.058 0201 0.154 >
Dendriticcell ~ HLA-DPB1 0.504  *** 0413 *** 0.487 x
HLA-DQB1 0357  *** 0.254 *** 0.341 ok
HLA-DRA 0474+ 0376 *** 0.46 ok
HLA-DPA1 0471 *** 0.379 *** 0.457 o

BDCA-1(CDIC) 0435 ** 0369 ** 0412  *=*
BDCA-4 (NRP1) 0101 0.0216 005 0266 0.09

CD11c (ITGAX) 0451 *** 0.338  *** 0.463 o
Thl T-bet (TBX21) 0477 *+* 0.378  *** 0.465 ok
STAT4 0476 *** 0.371 *** 0.463 i
STAT1 0.269  *** 0.161 *** 0.272 b

IFN-y (IENG) 0326 *** 022 0.324 o
TNF-a (TNF) 0306 *** 0.178  *** 0.291 ok

Th2 GATA3 0.388  *** 0.266 *** 0.38 i
STAT6 0.09  0.0416 0.104 0.0204 0.072 0.117
STAT5A 0.489  ** 0.38  ** 0.476 b
1L13 0244 *+* 0.178  *** 0.225 o

Tth BCL6 0.019 0.671 0.007 0.872 0.003 0.504
IL21 0.269  *** 0.206 *** 0.289 i

Th17 STAT3 0.01 0826 0.03 0511 -0.001  0.986
IL17A 0262 *** 0.199 *** 0.274 o

Treg FOXP3 0.505  *** 0.391  *** 0.501 ok
CCR8 0.536  *** 0.429 *** 0.538 i
STAT5B 0302 ** 0.295 *** 0.303 b
TGFp (TGFB1) 0295  *** 0.2 i 0.28 b

T cell PD-1 (PDCD1) 0473 *** 0.38  ** 0.466 ok

Description ~ Gene markers LUAD
Tumor Normal
R P R P
CD8+Tcell CDSA 0.45 il -0.035  0.79
CD8B 0.37 o 0.07 0.6
CD8A and CD8B 0.42 i 0.014  0.01
T cell CD3D 0.51 bl -0.071  0.59
(general)
CD3E 0.61 bl 0.12 0.38
CD2 0.6 il -0.09 05
CD3D, CD3Eand CD2  0.89 o -0.04 076
B cell CD19 0.49 i 0.16 0.22
CD79A 0.4 bl 0.011  0.94
CD19 and CD79A 0.45 il 0.039 077
Monocyte CD86 0.48 o 0.043 075
CD115 (CSFIR) 0.46 i 0.21 0.1
CD86 and 0.48 bl 0.17 0.19
CD115(CSF1R)

LUAD, lung adenocarcinoma; tumor, correlation analysis in tumor tissue of TCGA;
normal, correlation analysis in normal tissue of TCGA. ***P < 0.0001.

In conclusion, we explored the micro-
environment-associated genes of prognostic value to
LUAD through integrated bioinformatics analysis.
We found that HSF5 was downregulated and
positively correlated with the overall survival of
LUAD patients.

Moreover, HSF5 is involved in the immune
response and potentially contributes to the regulation
of B cells, CD8+ T cells, CD4+ T cells and DCs. These
findings suggest that HSF5 plays a crucial role in the
immune microenvironment and as a prognostic
biomarker in LUAD patients.
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