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The emergence of synchrony in 
networks of mutually inferring 
neurons
Ensor Rafael Palacios1, Takuya Isomura   2, Thomas Parr1 & Karl Friston   1

This paper considers the emergence of a generalised synchrony in ensembles of coupled self-organising 
systems, such as neurons. We start from the premise that any self-organising system complies with 
the free energy principle, in virtue of placing an upper bound on its entropy. Crucially, the free energy 
principle allows one to interpret biological systems as inferring the state of their environment or 
external milieu. An emergent property of this inference is synchronisation among an ensemble of 
systems that infer each other. Here, we investigate the implications of neuronal dynamics by simulating 
neuronal networks, where each neuron minimises its free energy. We cast the ensuing ensemble 
dynamics in terms of inference and show that cardinal behaviours of neuronal networks – both in 
vivo and in vitro – can be explained by this framework. In particular, we test the hypotheses that 
(i) generalised synchrony is an emergent property of free energy minimisation; thereby explaining 
synchronisation in the resting brain: (ii) desynchronisation is induced by exogenous input; thereby 
explaining event-related desynchronisation and (iii) structure learning emerges in response to causal 
structure in exogenous input; thereby explaining functional segregation in real neuronal systems.

Any biological or self-organising system is characterised by the ability to maintain itself in a changing envi-
ronment. The separation of a system from its environment – and the implicit delineation of its boundaries – 
mandates autopoietic, autonomous behaviour1. This rests on the capacity to resist the tendency of increasing 
disorder or entropy entailed by the second law of thermodynamics, or more exactly the fluctuation theorems 
for non-equilibrium systems2. Given the phase space of all possible states a system can occupy, a subspace can 
be identified that comprises the most likely states in which a self-organising system is found. In other words, the 
system’s (random) dynamics can be described as an itinerant orbit in phase space that keeps revisiting the same 
states (c.f., homeostasis). These states are called a pullback or random global attractor. This attracting set has an 
associated probability distribution, which is the probability of the system being found in any state; namely, the 
ergodic density3,4. Generally, the ergodic density of biological systems will have a low entropy, as the probability 
over states is concentrated within a small volume, compared to the volume of the entire state space (i.e., its char-
acteristic states that are within some physiological bounds).

The formulation of biological self-organisation in terms of density dynamics allows one to describe 
self-organisation in terms of information theory or systems that minimise variational free energy1. In brief, the 
free energy principle treats a system as a probabilistic model of its environment that minimises an upper bound 
on the self-information or surprise (i.e., negative log marginal likelihood) of sensations; referred to as variational 
free energy. From a statistical (information theoretic) perspective, this is equivalent to saying that the system 
maximises model evidence, which can be interpreted in terms of making inferences. Because Shannon entropy 
is the long-term average of surprise, under ergodic assumptions, bounding surprise is the same of limiting the 
dispersion or entropy of sensory states5. Therefore, a system that minimises variational free energy must be a 
self-organising, ergodic system endowed with a random global attractor. Our focus here is upon self-organization 
in neuronal systems, i.e., a neuronal network.

Neuronal dynamics can be governed by different types of attractors, including point attractors, periodic orbits, 
quasi-periodic orbits, and chaotic dynamics (heteroclinic channels)6,7. These attractors exhibit qualitatively distinct 
characteristics; nonetheless, any neuronal system that has an attractor, and thereby minimises free energy, must 
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maintain some sort of synchrony with its environment8. This is a property of any open self-organising system, which 
can be understood in terms of the exchange between the internal and external states of a system9. This exchange 
rests on the existence of a set of states that are internal to the system (e.g. cytoplasm within a cell, neurons within the 
brain), a set of external states (e.g. the extracellular environment or the world), and a third set of boundary states 
that separates them called a Markov blanket1,10. Crucially, the free energy formulation licenses an interpretation of 
internal states as instantiating probabilistic beliefs about external states. In other words, internal states parameterise 
a probability density over external states and can therefore be interpreted in terms of an elemental form of inference. 
This follows because internal dynamics can be expressed as a gradient flow on variational free energy. Minimising 
variational free energy implies that posterior or Bayesian beliefs encoded by internal states become a Bayes optimal 
representation of external states5. In what follows, we will use this interpretation of dynamics to talk about the beliefs 
(used in the sense of belief propagation and Bayesian belief updating – as opposed to propositional or subjective 
beliefs) of a neuron about its external states, which are the Markov blanket states of other neurons. Heuristically, this 
means that a network of coupled neurons will try to infer the states of every other neuron in the network.

In summary, the internal and environmental dynamics of any self-organising system become coupled as free energy 
is minimised, which enforces a (generalised) synchrony between internal dynamics and external states8. When extend-
ing this picture to ensembles of coupled self-organising systems, such as neurons, the internal states of one system 
become the external states of another: this means the entire state space of the ensemble can be partitioned into an 
ensemble of Markov blankets and the internal states each blanket surrounds11. Consequently, the synchronisation 
implied by free energy minimisation emerges among the internal states that are coupled via their Markov blankets12.

Here, we leverage the deep connection between free energy principle, self-organisation and synchrony to 
investigate synchronisation in neuronal networks comprising free energy minimising neurons. In particular, we 
ask whether the single principle of minimising variational free energy can account for some ubiquitous char-
acteristics of real neuronal networks; both in vivo and in vitro. These characteristics include the emergence of 
(identical) generalised synchronisation at particular frequencies; for example, the ubiquitous alpha frequency 
found in the resting brain13–15. When stimulated or activated by sensory input, real neuronal ensembles typically 
desynchronise, showing faster high-frequency dynamics16–18. Finally, neuronal dynamics are characteristically 
itinerant and structured19–22 showing a segregation of synchronisation during neurodevelopment and sensory 
learning23,24. This segregation is often associated with functional specialisation; for example, the celebrated what 
and where pathways in the ventral and dorsal streams of the visual hierarchy25.

Among the variety of attractors, oscillatory fluctuations are observed at all levels of the nervous system, from 
the intracellular level to the global network. For example, at the single neuronal level, the membrane potential can 
change with relatively constant period26, while oscillations are a hallmark of mesoscopic (e.g. local-field poten-
tials) and macroscopic (e.g. electroencephalography and magnetoencephalography) fluctuations27. Intrinsic oscil-
lators play a crucial role in the brain as central pattern generators in the motor system28 and cortical dynamics29,30. 
Under the free energy principle, intrinsic oscillations become the sort of dynamics a neuron expects to encounter: 
neurons have (genetically encoded) beliefs that the cause of excitatory post-synaptic potentials (EPSPs) follow 
a certain pattern31. In what follows, we will use simulations of neural networks to illustrate that (e.g. alpha) syn-
chronisation; event related desynchronisation and functional specialisation are all emergent properties of coupled 
neurons under the following two assumptions:

•	 Neuronal dynamics and plasticity minimise variational free energy, under a simple generative model.
•	 This generative model entails the prior belief that a neuron’s presynaptic inputs are generated by an external 

state with a quasi-periodic orbit.

Put more simply, all that we will assume is that neurons are equipped with the prior belief that to be a neuron 
means to participate in a network that has an attracting set (i.e., a quasi-periodic orbit).

The simulations used to illustrate the emergent properties use a biologically plausible integration scheme 
that can be described in terms of synaptic activity, plasticity and homoeostasis. This scheme has been applied in 
several domains; including, the simulation of in vivo32 and in vitro neuronal networks33. We will consider all three 
timescales of free energy minimisation, where synaptic activity corresponds to a gradient flow on variational free 
energy32,34, while slower changes in synaptic efficacy (i.e., strength or precision) perform a gradient descent on 
variational free energy35. Finally, synaptic homoeostasis is implemented using Bayesian model selection, eliminat-
ing (redundant) synaptic connections to minimise the variational free energy associated with neuronal connec-
tions36,37. Note that these three processes optimise exactly the same quantity – namely, variational free energy over 
different timescales – in a way that is very similar to real neuronal dynamics, plasticity and synaptic elimination.

In summary, this paper offers in silico demonstrations of self-organisation in neuronal networks of coupled 
intrinsic oscillators. First, we consider how neuronal dynamics and plasticity can be formulated as variational 
free minimisation – and explain the implicit (Bayesian) inference process or model inversion. Next, we perform 
numerical simulations of coupled neurons, in which each neuron is, effectively, inferring states of its colleagues, 
while undergoing short-term synaptic plasticity and pruning to adapt to their presynaptic inputs. These simu-
lations illustrate the emergence of synchronisation, desynchronisation and functional specialisation. Finally, we 
conclude with a discussion of biological interpretations of the simulation results.

Free Energy Minimisation and Variational Message Passing In Neurons
A tenet of the free energy principle is that any biological system has to minimise the surprise associated with 
sensory input or, equivalently, to minimise variational free energy5. Minimising free energy maximises the evi-
dence for a probabilistic or generative model of how observations = …o o o o( , , , )t1 2  are caused by external states 

= …s s s s( , , , )t1 2  and parameters θ of the external world. Here oτ and sτ indicate the observation and external 
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state at time τ, respectively. The variational free energy depends on generative θ|P o s m( , , ) and recognition den-
sities θ θ= ∏τ τ=Q s Q s Q( , ) ( ) ( ),t

1  expressing the prior and posterior beliefs of the system about external states and 
parameters of the world.

In this construction, the posterior beliefs are parameterised by the internal states of the system and the var-
iational free energy is a functional of these beliefs and observations (i.e., presynaptic inputs generated by other 
neurons that constitute a single neuron’s external states):

∑ θ θ

θ θ

≡ − | − | +

+ − | +
τ θ τ τ τ τ τ

θ

= −τ τ−
F P o s m P s s m Q s

P m Q

E [ ln ( , , ) ln ( , , ) ln ( )]

E [ ln ( ) ln ( )] (1)

t
Q s Q s Q

Q

1 ( ) ( ) ( ) 1

( )

1

Neuronal dynamics and synaptic plasticity can be cast in terms of an inference or evidence accumulation 
by minimising this functional with respect to internal states and parameters (encoding the posterior beliefs). 
This means the resulting dynamics and plasticity depend only upon the generative model34. Although neuronal 
dynamics are usually described in terms of differential equations32,38, the generative model employed here is dis-
crete. The justification for this is that we model spiking neurons, whose inference process predicts the generation 
of discrete action potentials.

In our setup, each neuron acts as both the process generating observations – for other neurons – and the gen-
erative model that infers the cause of its own observations. Suppose a network comprises n neurons. As a genera-
tive process, neuron i becomes a discrete, one-dimensional hidden cause ∈τ−s {0, 1}i

1  that can be either in a silent 
(0) or firing (1) state. If it is firing, the pre-synaptic neuron i causes a single EPSP at the subsequent time τ in a 
post-synaptic neuron ′ = …i n1, 2, ,  (upper brown panel in Fig. 1). The EPSP becomes the sensory input or 
observation τo( )i  for the post-synaptic neuron. In terms of inference, each neuron processes a continuous, 
one-dimensional internal state ∈τs [0, 1] that encodes its belief (i.e. expectation) about the hidden state of the 
external world. Here, this hidden state represents the expected state of the network; i.e., the average propensity of 
a neuron to fire. The i-th neuron then generates action in a form of discrete outcome ∈τ+o {0, 1}i

1  at time τ + 1, 
with = …i n1, 2, ,  synapses. Note that the action of one neuron constitutes the observed outcomes for another 
(at the subsequent time step). A neuron therefore fires with a probability that corresponds to its beliefs about the 
state of the network in which it participates. Synaptic connections are represented internally by neuronal param-
eters in terms of a likelihood or A matrix, which encodes the probability of observing a particular τoi given sτ. The 
ensuing generative model is shown in Fig. 1 (upper light blue panel) as a probabilistic graphical model, which 
takes the form of a hidden Markov model34. In this generative model, the network state depends only on the pre-
vious state sτ − 1 (actually use a semi-Markovian process as described below) and the current observations. The 
conditional dependence of sτ on sτ − 1 is then parameterised by a transition or B matrix.

The generative process for neuronal states differs from the neuronal beliefs about this process: neurons encode 
the network as a single hidden state, generating high dimensional observations, via different connections. In real-
ity, the network comprises many neurons, each generating its own outputs, conveyed through distinct synapses 
(upper brown panel in Fig. 1). Neurons are therefore encoding the expected state of the network by averaging over 
the EPSPs impinging on them, through spatial summation. Formally speaking, this is a mean field approximation, 
as the interactions among pre-synaptic neurons are treated as negligible fluctuations around a mean interaction 
between the network and the post-synaptic neuron. We now look more closely at the neuronal dynamics and 
plasticity implied by the minimisation of variational free energy under this minimal setup.

Variational message passing.  Interpreting neuronal dynamics in terms of model inversion enables us to 
associate neuronal processes with inference about external states and learning of model parameters. In the fol-
lowing, we first focus on neuronal dynamics and inference. The requisite inversion scheme – for discrete models 
– rests upon variational message passing of the sort used in approximate Bayesian inference. This message passing 
is illustrated in the Forney factor graph39 in Fig. 1 (upper right green panel).

The associated belief update equations are shown in the lower green panel of Fig. 1 (the derivations of these 
equations are described in Methods). Inference about the external state at each moment in time depends on 
messages derived from present observations, a forward message or prediction and a backward message or 
postdiction. Observations consist of EPSPs that sum at the level of the soma, whereas predictions impose an 
activity-dependent modulation; e.g. frequency adaptation driven by the recent neuronal activity history40 on the 
biophysical machinery (e.g. voltage-gated sodium channels) controlling the voltage at the soma (in particular, 
near the axon hillock). We can ignore the postdiction in our modelling of neuronal dynamics, as it plays a negligi-
ble role in the inference process (postdiction is informed by expectations about hidden states in the future, which 
in turn rely on beliefs about the policy or course of action a system entertains, which are not part of the neuronal 
generative model).

At each time point, these messages converge, driving a change in the log expectation of the external state 
via an error term. This log expectation can be thought of as the voltage at the neuron’s soma, and its change as 
depolarisation. This renders the softmax operator equivalent to a (sigmoid) firing rate-depolarisation activation 
function, and the associated expectation the instantaneous firing rate34. In other words, a neuron’s belief about the 
state of the network is encoded in the probability of firing an action potential. Unbeknown to itself, it broadcasts 
this belief – by emitting an action potential that serves as a presynaptic input to other neurons. In the formalism 
of Fig. 1, each neuron’s action (i.e., firing or not firing) μt is drawn from a Bernoulli distribution that reflects its 
expectation uτ = st that the network – in which it is participating – is currently firing (red panel in Fig. 1). Usually, 
in simulations of neural networks that perform variational message passing, one would model a neuronal pop-
ulation; such that the population firing rate was a continuous variable. However, here, we are considering each 
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neuron as a free energy minimising entity – and neuronal firing becomes a discrete action on external states (i.e., 
the states of other neurons).

As noted in the introduction, the reciprocal coupling between a system and its environment underwrites the 
emergence of synchronisation in ensembles of self-organising systems19,41–46. This generalised synchrony becomes 
especially transparent under free energy minimisation: this is because the best way to predict the behaviour of 
a system’like me’ is to behave exactly ‘like you’ so that we can both predict ‘each other’. See8 for an illustration of 
this in the context of communication and continuous time generative models. In other words, a system tries to 
explain the world it inhabits, while acting to make the world consistent with its explanations (i.e. active inference).

Notice that, in the current setting, action potential firing simply reports the ‘beliefs’ of a neuron about external 
state of affairs (i.e., whether it is part of an ensemble that is firing or not). This differs from the usual treatment of 
action in active inference, where an action is selected – based on a generative model – to realise some predicted 
consequences of action. However, in the current setup, things are much simpler, because the external milieu 
comprises other neurons that share a common generative model. This means the action of neurons (i.e., whether 
they are firing or not) is a consequence of their inference about whether neurons are firing (or not). This means 
that it is sufficient to broadcast ‘beliefs’ to realise each neuron’s predictions. Heuristically, the free energy min-
imising solution obtains when all neurons believe they are firing (or not) and report their ‘beliefs’ by firing (or 
not); thereby providing evidence for other neurons that they are firing (or not). This solution underwrites the 

Figure 1.  Schematics that illustrate the generative process and model. Blue upper panel: This panel illustrates a 
probabilistic graphical model from which observations are generated. The circles indicate hidden or sensory 
states (random variables); squares, the probability distribution functions generating these states; and arrows, the 
causal relationships linking functions to states. Blue bottom left panel: mathematical description of the 
generative model. The first equality specifies the form of the generative model (neuronal beliefs about the causal 
relationship between hidden causes and observations). This can be expressed in terms of A, D and B matrices, 
defining the probability of observing EPSPs given the network state, the probability of the initial network state 
and the probabilistic state transitions respectively. Each A matrix or connection between network and neuron 
has an associated precision, representing its synaptic strength (that the neuron has gamma prior beliefs about). 
Brown upper panel: the generative model is different from the real process generating EPSPs; as observations 
are caused by multiple neurons, instead of by one neuronal network. Brown lower panel: each pre-synaptic 
neuron is a hidden state −st

i
1 – representing its state of firing – causing one post-synaptic observation ot

i. Green 
upper panel: In this Forney factor graph, squares represent factors or conditional probabilities over random 
variables (hidden states); edges correspond to the (marginal probability densities over) random variables that 
are passed between nodes; and equal signs link edges instantiating the same random variable. This schematic 
nicely summarises the process of model inversion; as it shows the convergence (equal signs) of messages (edges) 
coming from all factors (squares) contributing to the inference of the same random variable. Green lower panel: 
the messages are compared to the actual belief about the network hidden state. The resulting prediction error is 
then used to update this belief. Red lower panel: once prediction error has been minimised, the neuron decides 
whether to generate or not an action potential st based on the updated belief st, which then feeds back to the 
network (red arrow), generating a new observation at t + 1.
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generalised synchronisation and distributed activity illustrated above. When the neurons are sufficiently similar, 
their synchronisation manifold (i.e., the random dynamical attractor for the ensemble) becomes an identical syn-
chronisation manifold. In this setting, all coupled neurons come to oscillate in synchrony. This is remarkably sim-
ilar to experimental observations that a network of neurons exhibits a synchronous oscillation, even when they 
oscillate with different intrinsic frequencies in isolation47. From the viewpoint of Bayesian inference, this identical 
synchronisation is a natural consequence of mutual inference – that minimises the variational free energy of each 
constituent neuron and, implicitly, the variational free energy of the ensemble.

Simulation and Results
In this section, we provide a numerical analysis to illustrate the emergence of synchronous oscillatory activity in 
neuronal networks as a consequence of mutual inference according to free energy minimisation. This illustration 
requires us to specify the generative model for each neuron, which, as noted in the introduction, reflects each 
neuron’s belief that it is embedded in an oscillatory network.

Intrinsic oscillatory neurons.  We first characterised self-organisation in the context of oscillatory neurons. 
One can simulate oscillatory behaviour via a generative model that instantiates the belief that network dynamics 
possess an orbit. This model determines subsequent belief updating and neuronal dynamics (i.e., postsynaptic 
responses and ensuing action or neuronal firing). As noted above, we used a simple generative model that does 
not entertain beliefs about sequences of states. In other words, only probability transitions over one time step are 
considered. Therefore, to generate nontrivial orbits, we used a semi-Markovian model of state transitions, 
whereby inference about the present depends on the history of previous states:  τ( ). Here, each element of Bτ 
denotes a transition probability from the state at τ − 1 to the state at τ, τ≡ = | =τ τ τ τ− −B P s i s j B( ) ( , ( ( )))ij 1 1  . In 
short, we define probabilistic state transitions in a manner that depends on the recent history of observations:

∑
τ τ≡ | =











=

τ τ τ τ

τ τ τ

− −

′∈ ′( )
( )

B P s s B
s

( ( )) ( , ( ( )))

0 0
1 1 If 0

1 1
0 0 Otherwise

(2)

1 1
( )

 


τ τ τ τ≡ − − + … − >t t t t t( ) { , 1, , } wheremax max min max min

Equation 2 expresses the prior expectation that the network is firing (i.e. sτ = 1) if it has been silent during the 
interval τ( ) , and that it is silent (i.e. sτ = 0) otherwise. The history for a neuron depends on the sequence of inter-
nal states over the period  ; because the instantaneous firing rate is a continuous variable, a neuron is considered 
to have fired if its instantaneous firing rate at that moment was above chance and silent otherwise. The present 
moment is indicated by τ, whereas tmax and tmin delimit the temporal window of past expectations. Effectively, the 
interval τ( )  corresponds to an inter-spike interval. The interval from tmin to τ does not enter the transition prob-
abilities and, effectively, allows the network to fire consecutively (i.e., burst)21.

This formulation of the transition matrix is unusual and serves the purpose of accommodating conditional 
dependencies of the present state on an extended period or history. Technically, the state-dependent B matrix is an 
approximation of an extended, high dimensional transition matrix  τ| … ≈ |τ τ τ τ τ τ− − − −P s s s B P s s B( , , , ) ( , ( ( )))1 1 1 1 1 , 
which allows us to express a deep temporal generative model while retaining the (semi) Markovian property.

Simulated synaptic plasticity.  Neuronal dynamics unfold over many time scales, from fast voltage fluctu-
ations in dendrites, to the ontological evolution of network structure. Here, we consider two types of dynamics in 
addition to somatic depolarisation, short-term plasticity and synaptic pruning:

Following previous work using continuous48 and discrete32 models, we consider fast changes in synaptic effi-
cacy in terms of the deployment of attentional resources, which is usually associated with short-term synaptic 
plasticity. In the setting of neuronal inference, this is implemented as a synaptic-specific tuning of precision or 
gain of prediction errors. Hence, short-term plasticity can be associated with a (time-independent) precision 
parameter ζ that scales the likelihood A matrix, which plays the role of a connectivity or directed adjacency 
matrix. Heuristically, each neuron learns which synapses convey more precise observations about the state of the 
network, which in turn lead to more precise predictions. This process has a temporal scale, unfolding over p time 
steps (straight green arrow in Fig. 2). The requisite update equations are shown in the bottom left green panel in 
Fig. 2. In this formulation, each synapse (i.e., element of A) has an associated error term, which is accumulated 
over p time steps. This prediction error is then used to update the synaptic efficacies (see Methods for derivations).

At an even slower timescale, structure learning49, via synaptic pruning, constitutes another form of learning. 
At this timescale, variational free energy is not minimised with respect to synaptic efficacy but the structure of 
connectivity, as parameterised in terms of allowable synaptic connections. Each synapse is represented by a 
parameter of the generative model. Reducing the complexity of a model, while preserving accurate predictions, is 
an important part of free energy minimisation. In brief, this ensures the removal of redundant parameterisations 
and underwrites the capacity of a generative model to generalise to new data. In statistical terms, structure learn-
ing via Bayesian model selection precludes overfitting5. Synaptic pruning can therefore be cast in terms of refining 
model structure50. In the present setting, this entails a modification of beliefs about the relationship between the 
state sτ of the network and the ith observations τoi, parametrised by ζ i of the ith synapse. Structure learning occurs 
over epochs e (red arrow in Fig. 2), and is implemented as post hoc Bayesian model selection50. This model is 
synaptic regression; whereby a reduced model (without a particular parameter or synapse) is compared with the 
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full model (with that parameter), using the difference in model evidence or log Bayes factor (red panel in Fig. 2). 
A synapse is pruned if the accuracy – afforded by the parameter it encodes – does not sufficiently compensate for 
its complexity cost. A schematic of this process is illustrated in Fig. 3.

Demonstration of emergent synchrony.  Under the above setup, our simulations begin with a fully con-
nected network of 16 neurons (excluding self-connections). Despite this small number of neurons, the ensuing 
dynamics bear a remarkable resemblance to experimental observations51 and theoretical treatments of intrinsic 
oscillatory neurons52. As noted above, neuronal dynamics are discrete, where we consider a time bin to represent 
an absolute refractory period of about 2 milliseconds. The parameters used in these simulations were chosen 
somewhat arbitrarily – our focus was on the interplay between key parameters that underwrite the attractor 
manifold that shapes network dynamics.

We first compared networks of coupled and uncoupled neurons; namely, networks in which the coupling 
between neurons is switched on or off. To simulate a network of uncoupled neurons we set the precision of the 
A matrix to zero (Fig. 4). This could correspond to an attenuation of neurotransmitter release by manipulations 
of intracellular [Ca2+]. Neurons can express different intrinsic oscillatory periods, depending on model param-
eters; particularly synaptic precision. Here, we modelled inter-burst intervals ranging from 40 to 60 ms, and a 
bursting period extending up to 10 ms. The value of synaptic precision ζ, here set to 0.5, is particularly relevant in 
relation to the size of the network. This is because synaptic precision determines the influence of external inputs 
on neuronal belief updating, and consequently the relative sensitivity to intrinsic dynamics. These choices lend 
ensemble dynamics a characteristic timescale that reproduced the sort of fluctuations seen empirically: when 
uncoupled, the network rapidly desynchronises, whereas coupling among neurons restores a state of synchrony 
(Fig. 4). Moreover, an increase or decrease in the variability of autonomous firing rates can produce greater syn-
chronisation or desynchronisation, respectively – provided synaptic weights are scaled appropriately.

We subsequently investigated how these neuronal networks respond to an external electrical stimulation 
(Fig. 5). Neurons were again equipped with varying intrinsic frequencies. We then administered two out-of-phase 
pulses to one half of the ensemble. Practically speaking, this was implemented by manipulating the ‘observa-
tions’ of a neuron, to mimic stimulation of the neuronal network at the appropriate time, and thereby induce 
neuronal responses. This sort of stimulation desynchronises network activity; however, neurons promptly return 

Figure 2.  In the upper row, the time scales of neuronal dynamics are depicted by straight lines. These represent 
different aspects of neuronal processing. Specifically, brown arrows refer to inference about hidden states, which 
is associated with depolarisation in the soma and subsequent neuronal firing; green arrows represent the 
temporal scales of updating synaptic efficacy or short-term plasticity; and red arrows indicate time considered 
for post hoc structure learning or Bayesian model reduction. Brown curved arrows indicate the procedure used 
to simulate – as a continuous process – multiple neurons or inference machines comprising the network. The 
green and red panels at the bottom provide the equations that describe synaptic efficacy updates and Bayesian 
model reduction, respectively. Over a period p, an error term is accumulated at each synapse, which is then used 
to recalibrate synaptic strength, by changing the precision of the A matrix. This occurs multiple times over an 
epoch e, at the end of which the expected value ζ of the gain parameter for each synapse is used to calculate the 
Bayes factor P y

P y
( )
( )

 for the full P(y) and reduced P y( ) model, with and without a particular synapse respectively. 
Here y indicates a set of the external states. The reduced model is accepted if the log Bayes factor is greater than 
2.5. This is equivalent to saying that a neuron prunes a synapse if free energy would have been minimised to a 
greater extent had the neuron used a model without that particular parameter, with a margin of error less than 
5% (i.e. if sensory data had afforded the reduced model roughly 20 times the evidence of the full model).

https://doi.org/10.1038/s41598-019-42821-7


7Scientific Reports |          (2019) 9:6412  | https://doi.org/10.1038/s41598-019-42821-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

to a pre-stimulation state, as their activity converges to the synchronisation manifold (left panel). Relaxation to 
this attracting set is reflected in the changes in free energy – where the oscillatory dynamics correspond to a free 
energy minimum. The accompanying minimisation of variational free energy can be expressed over different 
time scales; based on the dynamic or plastic processes in play (see Fig. 5: right panel). Specifically, the synaptic 
weight was set to 0.5 at the beginning of each simulation. As the network recovers from a perturbation – and neu-
rons come to predict each other – reciprocal connections steadily increase, up to 0.7 (at the end of simulation). 
This plasticity speaks to the potential importance of synaptic homoeostasis (not implemented here) to preclude 
runaway excitation. Here, the precision ζ afforded each synapse is in the order of thousandth, which ensures a 
smooth calibration of synaptic strength. In summary, this in-silico illustration shows that the dynamics of our 
neuronal network, characterised by an emergence of synchronisation, is resilient and capable of responding sen-
sitively – and recovering from – following external perturbations. This is reminiscent of the characteristic desyn-
chronisation seen in response to stimuli (a.k.a. electrophysiological activation)17,18. Furthermore, it is consistent 
with reappearance of alpha waves (i.e., slow synchronisation) upon eye closure observed in EEG studies53. In 
terms of free energy minimisation, one would interpret these instances of chaotic itinerancy as a relaxation to an 
attracting set, after external perturbations (e.g., thalamic input) are removed22,54–56.

Figure 3.  Schematic of a neuron connected to 5 presynaptic neurons. Each connection corresponds to an A 
matrix along with a precision term ζ. Over Epochs (grey arrows), neuronal connectivity structure changes based 
on the Bayes factor evaluated for each synapse: if the value of ζ drops to a value where the accuracy afforded by 
retaining a synapse does not compensate for its complexity cost, then the synapse is pruned.

Figure 4.  Networks of coupled and uncoupled neurons are compared. Upper panels: raster plots, with time 
and neuron on the x and y axis respectively. These panels show the firing of action potentials (in white) in the 
two conditions. Neurons have different intrinsic oscillatory periods; nonetheless, when they are coupled (left 
raster plot) they maintain a synchronised rhythmic activity throughout the simulation. On the contrary, when 
connections are disrupted, say by lowering [Ca2+], neurons rapidly desynchronise, and activity is noisier. The 
stochastic nature of neuronal dynamics comes from the absence of reliable observations, which makes beliefs 
about hidden states imprecise, and consequently the probability of firing (instantaneous firing rate) closer to 
chance levels. At the bottom, panels on both sides show variations in transmembrane potential at the soma over 
time. Each neuron is plotted with a line of different colour. In the coupled condition, lines are superimposed 
– because oscillations are synchronised over neurons, whereas on the right voltage fluctuations are clearly 
distinguishable.
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So far, we have used a fully connected network that might be appropriate for small areas of the cortical sheet 
with dense intrinsic connections. However, macroscopic neuronal networks are characterised by a sparse con-
nectivity in terms of the hierarchy and functional segregation23,57–59. To illustrate the emergence of sparse connec-
tivity, via synaptic regression, we now call upon the free energy minimising processes associated with structure 
learning to simulate the emergence of functional specialisation.

Finally, we administered two asynchronous stimulations, targeting different pools of neurons over a prolonged 
period of time (approximately from 100 to 1000 ms.) – to test the capacity of the network to assimilate structured 
information into its synaptic connectivity and dynamics. This process is similar to unsupervised learning (e.g., 
blind source separation) observed both in experimental and theoretical treatments of in vitro neuronal cultures60. 
Typical results of this simulation are shown in Fig. 6. The key parameter here is the threshold for the Bayes factor 
(set at 2.5), which specifies whether a synapse is removed (i.e., pruned). This factor corresponds to confidence of 
approximately 90% that the log evidence (i.e., free energy) would improve in the absence of a potentially redun-
dant synapse. The persistent stimulation causes two neuronal populations to fire in synchrony, with different 
phase. As a result, neurons slowly adapt the gain of their connections to the new dynamics (an example from 
one neuron is shown in the upper right panel in Fig. 6), until the very structure of the synaptic arborisation is 
modified, to simulate – from the point of view of each neuron – a change in the statistical structure of its external 
milieu.

In summary, these simulations offer a proof of concept that canonical aspects of neuronal dynamics and plasticity 
are emergent properties under variational free energy minimisation. This emergence is quite sensible to initial con-
ditions such as number of neurons and other model parameters. This has to be expected, given the simplicity of the 
neuronal model adopted here, which allows us to address the fundamental link between free energy minimisation and 
emergent properties in neural networks, under minimal assumptions. Crucially, this minimisation is with respect to 
fast dynamics, fluctuations in synaptic efficacy and the very structure of network architectures; leading to generalised 
synchronisation, desynchronisation following stimulation and the emergence of functional specialisation.

Figure 5.  The raster plot on the top left shows network’s dynamics before, during, and after electrical 
stimulation of half of the neurons (indicated by the horizontal red arrows) at about time steps 50 and 75 of the 
simulation (vertical red arrows). External inputs cause part of the network to fire out of phase, but neurons 
quickly resynchronise within 150 ms. The membrane voltage at the soma is shown beneath the rasters. The right 
panel shows free energy for each neuron (coloured lines) and the average free energy (bold black line) over a 
sliding window of about 30 time steps. The red shade highlights increase in free energy due to the stimulation 
(vertical red arrows). The yellow shade focus on the rapid return to pre-stimulation levels, due to fast network 
resynchronisation. The green shade underscores the relatively slower temporal scale over which free energy is 
minimised due to short-term plasticity, which reflects the strengthening of connections between synchronised 
neurons. Notice that the free energy never approaches zero. This is because connections are never too precise; 
only the activation in concert of many synapses can have a noticeable effect on the post-synaptic neuron. This 
always entails a certain amount of uncertainty about the (hidden) network state.
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Figure 6.  On the top left, the raster plot highlights the segregation of network dynamics caused by the external 
excitatory inputs (vertical arrows) targeting two neuronal populations (indicated by either red or violet arrows). 
Red and violet horizontal arrows specify the target neurons of the two stimulations. Before stimulation (50 
time steps), the network is in a state of synchronised self-organisation. During the stimulation, synchronised 
activity is present only within the two subpopulations of neurons. After stimulation has ended (500 time steps), 
activity remains dissociated between the two neuron ensembles, as a consequence of changes in synaptic 
strength. These changes are emphasised in the top right panel, showing adaptation of synaptic precision (y-axis) 
as each synapse (x-axis) over epochs (starting from the upper left) of one typical neuron. When changes in 
synaptic gain are sufficient, the synaptic structure is modified. Synaptic pruning is evident in the bottom left 
panel, showing the connectivity (i.e., the adjacency matrix) among all neurons, for each epoch, starting from 
the upper left. Stimulation of the network starts from the third epoch and lasts until the twentieth. The bottom 
right panel shows the free energy of each neuron (coloured lines) and the average free energy (bold blank line), 
over a sliding window of about 70 time steps. The green area indicates the relatively long time periods needed to 
induce short-term plasticity to bring about sufficient decreases in synaptic efficacy to cause pruning. The blue 
area highlights the free energy decrease due to the structure learning and synaptic regression.
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Discussion
We simulated neurons as systems that engage in active inference, cast in terms of variational free energy min-
imisation. Here, neurons are not seen as systems merely reacting to external inputs, but as active agents who 
influence their surroundings, based on prior beliefs about the evolution of the latter. This affords a new interpre-
tation of neuronal dynamics. For instance, the computational implications of the neuronal response modulation 
caused by the history of recent activity – due, for example, to slow current dynamics40 or threshold adaptation61 
– can now be read in terms of how prior beliefs dictate the effect of past observations (via recurrent connections 
implicit in the transition matrices). An interesting implication is that differences in self-modulation, observed 
along cortical layers62, might be understood in terms of differences in the prior beliefs of each neuron or lamina 
specific population.

Similarly, short-term plasticity can be interpreted, in a computational sense, as an internally generated, fast 
deployment of attentional resources; whereby attentional allocation depends on the extent to which EPSPs carry 
precise information about the network state. In the same way, these expectations influence how the model’s com-
plexity reduction (i.e., synaptic pruning) operates. These conclusions are consistent with preceding treatments 
that have addressed similar issues, but at the whole-brain level. For example, the way in which short-term plas-
ticity is conceived here instantiates an attentional mechanism analogous to precision weighting (attentional gain) 
at a psychological level63. Similarly, synaptic pruning on single neurons follows the same principles that guide 
complexity reduction and structural learning during sleep64 and online data assimilation37. Lastly, it is interesting 
to note that, in the same way the brain infers how to act upon the world34,65, a neuron exerts an influence on the 
network that leads to the realisation of its expectation. The resulting scale-free nature of neuronal dynamics stems 
from the fact that everything can be formulated as an aspect of variational free energy minimisation.

Casting neurons as free energy minimising systems moves the focus from externally to internally generated 
neuronal dynamics (i.e., intracellular belief updating). On this view, a central role is played by prior beliefs that 
neurons hold about their environment. As neurons actively gather evidences for their generative model, a neu-
ronal network inevitably evolves in a way that reflects the interplay between different prior expectations; namely, 
that to be a neuron means to participate in a network that has an attracting set or orbit. Additional emergent 
properties will clearly depend on the nature of the generative models that are coupled. This speaks to the notion 
of investigating neuronal dynamics under different or more complex internal models. For example, neurons 
could have expectations about the average spiking activity (c.f., rate coding), instead of expectations about timing 
and history (c.f., time coding)66,67. Another interesting extension of the present work could be to link structure 
learning and synaptic regression to neurotrophic factors68, which constrain and shape neuronal communication 
in the real brain. Here we have assumed that a neuron treats inputs as serially uncorrelated and independent. 
Although this is sufficient to illustrate how synchronisation emerges from ensemble inference, a neurobiologi-
cally more interesting extension (noted by one of our reviewers) would be to include interactions and temporal 
dependencies among presynaptic inputs in the generative model: for example, by extending the simulation to 
multi-compartmental models, whereby dendritic components would expect to see particular input sequences, 
generating nonlinear, slow depolarising [Ca2+] dynamics; as in31.

Finally, the hierarchical organisation of the brain speaks to a more delicate connectivity structure than sim-
ulated above23,57. However, it is interesting to note that the reorganisation of the connectivity following Bayesian 
model reduction or pruning already entails the emergence of a primitive form of topology, which ultimately 
reflects the causal structure of the world (in this case the two sources of input)60. In neurobiology, this sort of 
segregation provides large-scale organising principles for the brain. For example, the segregation of ‘what’ and 
‘where’ pathways in visual hierarchies25,69.

In summary, the free energy principle implies a coupling between the internal and external states of a system 
that is symmetric: a system will adapt to its environment, while changing it through action. It follows that indi-
vidual priors collectively shape macroscopic dynamics, reflecting a state of synchronisation among neurons. This 
synchronisation is therefore a hallmark of self-organising systems, where the state of each constituent depends, 
perhaps indirectly, upon every other component. Despite the oversimplifications in our simulations, our in silico 
neuronal ensemble displays fundamental behaviours seen in real neuronal networks, which can be summarised 
as the ability to maintain a state of self-organised synchronisation in face of external perturbation.

Methods
Variational message passing.  Variational free energy, Eq. (1), is the difference between an energy; namely, 
the surprise about hidden states and parameters under a posterior belief and the entropy of these beliefs. This free 
energy functional constitutes an upper bound on surprise (or negative log model evidence) by Jensen’s inequality:

ζ ζ= − | + ≥ − | .  F P o s m Q s P o mE [ln ( , , )] E [ln ( , )] ln ( ) (3)Q Q

Here = …s s s s( , , , )t1 2  and = …o o o o( , , , )t1 2  denote sequences of hidden states and observations respec-
tively; and ζ is a precision or inverse temperature parameter associated with a likelihood or A matrix, such that
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lihood mapping ζ ζ| = ∏ |τ τ τ τ=P o s P o s( , ) ( , )i
k i i

1 , where k is the number of synapses. The variational free energy 
associated with beliefs about states at time τ can then be expressed as:
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The total variational free energy is given by the sum of the (time-dependent) free energy over τ = … t1, ,  plus 
a complexity regarding posterior beliefs about (time-invariant) parameters:

D

T

∑ ∑
∑

∑ ∑ ∑

τ ζ ζ

τ

ζ ζ ζ

= + ||

= − 


| + |

+ | − + − 

.

τ ζ

τ τ τ τ

τ τ τ τ

= =

= − −

= = ={ }

F F Q P

P s D P s s B

P o s Q s P Q

E [ ( )] [ ( ) ( )]

E ln ( ) ln ( , ( ( )))

ln ( , ) ln ( ) { ln ( ) ln ( )}
(6)

t
Q i

k i i

Q
t

t
i
k i i

i
k i i

1 ( ) 1 KL

1 2 1 1

1 1 1

The derivative (or the first variation) of free energy with respect to beliefs about hidden states at a particular 
time is:
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Solving for zero gives the optimal posterior belief. Using model parameters and expectations, and omitting 
constants, this becomes:
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Here the posterior beliefs are denoted by the expectation, ≡ ∈τ τQ s s( ) [0, 1] and ζ ζ≡ ∈Q( ) [0, 1]i i . Finally, 
we express the variational solution in terms of a gradient descent, where the free energy gradient is equal to an 
error term, which is the difference between the current belief and the solution given the Markov blanket:
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Precision update (short-term synaptic plasticity).  Assuming that the priors and posteriors over preci-
sion parameters are gamma distributions63:
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free energy in terms of parameters of the model (omitting constants with respect to ζi),
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 denotes a normalised (i.e., probability) matrix. Here, we are interested in the precision of the 

likelihood matrix, but the update equations for the precision of the transition matrix are the same. Taking the 
derivative of free energy with respect to the expected precision gives:
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The update equation for sensory precision is then:
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We express the variational solution in terms of gradient descent, whereby
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These are the equations used in Fig. 2 to illustrate the synaptic gain update equations.

Bayesian Model Reduction (synaptic pruning).  We compare the approximate log evidence or free 
energy of a reduced model P o( ) and the full model P(o), where the two are identical except for the fact that the 
former is equipped with an infinitely precise prior centred on zero for a subset of parameters. Here, θ corresponds 
to a set of precisions θ ζ ζ ζ= = …( , , )k1 . The calculation of the Bayes factor or difference in free energy is as 
follows:
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We assume priors over parameters describing a gamma distribution63, with α and β being the shape and rate 
parameter respectively. If we set α = 1 for both reduced and full models, then ζ =

β
E[ ] 1  is the expected value of 

the synaptic precision parameter. The derivation of the Bayes factor is then:

θ β
θ β
θ

β β

β β

β β

β β β β β

β

β
β

β

= Γ

= Γ
= Γ

Γ =
Γ

= − +

=
− −

∆ = − + − − +

βθ

β β θ

β β θ

−

−

−

 





 





P
P
Q

e

Z e

E e

F ln ln ln ln

( ) (1, )
( ) (1, )
( ) (1, )

(1, )
(1)

ln ln ln lnE [ ]

[ ]

( ) (18)

Q

Q

( )

( )

The last equality specifies the difference in variational free energy or log Bayes Factor between the reduced and 
full model. Neurons use this difference, calculated post hoc (at the end of the epoch e), to decide whether to prune 
or retain a specific parameter or synapse.

Data Availability
All relevant data are within the paper. MATLAB source codes are appended as Supplementary Source Codes.
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