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Abstract
Previously, we found that orally administered acetic acid decreased lipogenesis in the liver

and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima

Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resis-

tance. Administered acetic acid led to increased phosphorylation of AMP-activated protein

kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglo-

bin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was sug-

gested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we

examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression

by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in

skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells,

and AMPK was phosphorylated upon treatment with acetic acid. We observed increased

gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids

by L6 cells were increased, while triglyceride accumulation was lower in treated cells com-

pared to untreated cells. Furthermore, treated cells also showed increased gene and protein

expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription

factor involved in the expression of myoglobin and GLUT4 genes. These results indicate

that acetic acid enhances glucose uptake and fatty acid metabolism through the activation

of AMPK, and increases expression of GLUT4 and myoglobin.

Introduction
Obesity and type 2 diabetes are increasing throughout the world. The International Diabetes
Federation Diabetes Atlas reported that there were 382 million people living with diabetes in
the world in 2013. This number is expected to rise to 592 million by 2035 [1].

Obesity leads to excess lipid accumulation in adipose tissue, skeletal muscle, and liver. Lipid
accumulation in muscle causes a decline of insulin sensitivity [2–5].

PLOSONE | DOI:10.1371/journal.pone.0158055 June 27, 2016 1 / 19

a11111

OPEN ACCESS

Citation: Maruta H, Yoshimura Y, Araki A, Kimoto M,
Takahashi Y, Yamashita H (2016) Activation of AMP-
Activated Protein Kinase and Stimulation of Energy
Metabolism by Acetic Acid in L6 Myotube Cells. PLoS
ONE 11(6): e0158055. doi:10.1371/journal.
pone.0158055

Editor: David Wai Chan, The University of Hong
Kong, HONG KONG

Received: March 9, 2016

Accepted: June 9, 2016

Published: June 27, 2016

Copyright: © 2016 Maruta et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper.

Funding: This work was supported by the following
sources of funding: JSPS KAKENHI 15K07437 for
Grant-in-Aid for Scientific Research (C) and JSPS
KAKENHI 26850087 for Grant-in-Aid for Young
Scientists (B).

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0158055&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and
suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which
exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance [6]. Acetic acid is a
metabolite formed via β-oxidation of fatty acid in the liver mitochondria under starved conditions
and is utilized in extrahepatic tissues as a biological fuel [7]. Under fed conditions, orally administered
acetic acid is rapidly absorbed from the digestive organs and released into the blood stream [6]. Acetic
acid absorbed into tissues is converted to acetyl-CoA with a formation of AMP via the activity of ace-
tyl-CoA synthetase, leading to the activation of AMP-activated protein kinase (AMPK) [6]. Acetic
acid contributed to protection against the accumulation of abdominal fat and of lipid in the liver.

AMPK, a heterotrimeric protein kinase, has been found to play a key role in regulation of
whole-body energy balance by phosphorylating key metabolic enzymes in both biosynthetic
and oxidative pathways [8–14]. AMPK is activated by a high AMP/ATP ratio in the cytosol,
which occurs under heat shock, hypoxia, starvation, or physical exercise. AMPK activation
results both from phosphorylation of Thr172 on AMPK’s α-subunits via upstream AMPK
kinase and by way of allosteric activation of phosphorylated AMPK by 5’-AMP [8–15]. Admin-
istered acetic acid increased AMP concentration, resulting in an increase of the AMP: ATP
ratio, and led to the activation of AMPK in skeletal muscle [15]. This phenomenon is very simi-
lar to that induced by endurance exercise training. Furthermore, treatment with acetic acid
increased the gene expression of myoglobin and GLUT4 in skeletal muscle of rats. GLUT4 is a
well-known gene that is induced by activation of AMPK in skeletal muscle [16]. Expression of
the myoglobin gene is modulated by environmental stimuli including chronic hypoxia or
endurance exercise training [17–20]. Mutational analysis of the myoglobin promoter con-
firmed that A/T-rich myocyte enhancer factor 2 (MEF2)-binding motifs were important in its
gene regulation [21]. The human GLUT4 promoter is also regulated by the cooperative func-
tion of MEF2A [22], which is a transcription factor that plays a key role in skeletal muscle dif-
ferentiation [23–25]. In differentiated myotubes, MEF2 is localized to the nucleus, indicating
the importance of this transcription factor in specific skeletal muscle gene expression [26].

To investigate the function of acetic acid on AMPK activation and expression of genes such
as myoglobin and GLUT4 that are involved with energy metabolism of skeletal muscle, we
used L6 myotube cells and examined the effect of acetic acid. When added to the culture
medium, acetic acid was rapidly taken up by L6 cells, and the phosphorylation of AMPK was
stimulated. Transcripts and protein levels of myoglobin and GLUT4 were increased upon treat-
ment with acetic acid. Furthermore, MEF2A levels in the nuclear fraction were increased. The
uptake of glucose and fatty acid by cells were increased, while triglyceride accumulation was
decreased upon treatment with acetic acid. These results indicate that treatment with acetic
acid increases the expression of myoglobin and GLUT4 via the activation of AMPK and
MEF2A, thus enhancing fatty acid metabolism and glucose uptake.

Materials and Methods

Materials
Rat L6 myoblasts (JCRB9081) were purchased from JCRB cell bank (Osaka, Japan). Dulbecco’s
modified eagle medium (DMEM), fetal bovine serum (FBS) and 0.02% EDTA were fromMP
Biomedical (CA, USA); penicillin, streptomycin, and 0.25% trypsin, from Invitrogen (CA,
USA). Antibodies against AMPKα, phosphorylated AMPKα, ACC, phosphorylated ACC, and
GLUT4 were purchased from Cell Signaling (MA, USA), antibodies against myoglobin,
MEF2A, PGC-1α and Sp1 were from Santa Cruz Biotechnology (CA, USA), and α-tubulin
antibody was fromWako Pure Chemical Industries Ltd. (Osaka, Japan). AMPK agonist
5-amino-4-imidazolecarboxamide-1-beta-D-ribofuranoside (AICAR) and AMPK inhibitor
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adenine 9-β-D-arabinofuranoside (araA) were purchased from Sigma-ALDRICH (MO, USA).
AMPK inhibitor Compound C was purchased from Merck (DA, Germany)

L6 cell culture
L6 myoblasts were grown in DMEM containing 10% (v/v) FBS, 100 units/ml penicillin, and
100 μg/ml streptomycin in 5% CO2 at 37°C. For myotube differentiation, the medium was
changed to DMEM containing 2% (v/v) horse serum when myoblasts were 80% confluent. Myo-
tubes were harvested 8–11 days after differentiation, and experimental procedures were initiated.

Amount of acetic acid incorporated in cells
Differentiated L6 myotube cells were treated with 0.5 mM (1 μmol/2ml) acetic acid for 0–30
min, and then the each conditioned medium that treated with acetic acid for each time period
was collected and measured the concentration of acetic acid. The concentration of acetic acid
remaining in the media was measured using the acetic acid UV-method kit (R-Biopharm AG,
Darmstadt, Germany) according to the manufacturer’s instructions. The rates of acetic acid
uptake were calculated by using the amount of acetic acid remaining in the medium, which
averaged 473.1 μM (ca. 0.95 μmol/2ml), 394.0 μM (ca. 0.79 μmol/2ml), 390.0 μM (ca.
0.78 μmol/2ml) in 10sec, 2min, 30min of the treatment of acetic acid, respectively.

Amount of glucose uptake into cells
Differentiated L6 myotube cells were treated with 0.5 mM acetic acid and 100 nM insulin for
24 and 48 hrs in the medium that the glucose concentration was 25 mM (50μmol/2ml). Each
conditioned medium that treated with acetic acid or insulin for 24 and 48 hrs was collected and
measured the concentration of glucose. The concentration of glucose remaining in the media
was measured using a commercial assay kit (Glucose CII-Test Wako; Wako Pure Chemical
Industries Ltd., Osaka, Japan). The amount of glucose uptake was calculated by using the
amount of glucose remaining in the medium, which averaged 39 μmol and 32 μmol in 24 hr
and 48 hr of the treatment of acetic acid, respectively, and 34 μmol and 20 μmol in 24 hr and
48 hr of the treatment of insulin, respectively. The amount of glucose remaining in the control
medium averaged 44 μmol and 40 μmol in 24 hr and 48 hr, respectively.

Amounts of fatty acid uptake and triglyceride accumulation
Differentiated L6 myotube cells were incubated with the medium containing 0.6 μmol palmitic acid
(300 μmol/L) for 24 and 48 hrs in the presence or absence of 0.5 mM acetic acid or 0.5 mM
AICAR. After the incubation, mediums and cells were collected separately and the concentration of
NEFA in the mediums and the concentration of TG in the cells were determined by using commer-
cial assay kits (NEFA C-TestWako and Triglyceride E-Test Wako, respectively; Wako Pure Chem-
ical Industries Ltd., Osaka, Japan). The amount of fatty acid uptake was calculated by using the
concentration of fatty acid remaining in the medium, which averaged 0.263 μmol and 0.075 μmol
in 24 hr and 48 hr of the treatment of acetic acid, respectively, and 0.183 μmol and 0.149 μmol in
24 hr and 48 hr of the treatment of AICAR, respectively. The amount of fatty acid remaining in the
control medium averaged 0.316 μmol and 0.159 μmol in 24 hr and 48 hr, respectively.

Nucleotide assay
Differentiated L6 myotube cells were treated with 0.5 mM acetic acid for 0–30 min and added
to ice-cold 0.5 M perchloric acid, neutralized, and centrifuged. Concentrations of AMP, ADP,
and ATP in the extracts of myotube cells were determined by reverse-phase HPLC analysis
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(SPD-10A, respectively; Shimazu, Kyoto, Japan) with an ODS column (HPLC PACKED COL-
UMN C18 CAPCELLPAK, respectively; Shimadzu Corporation, Kyoto, Japan). The mobile
phase consisted of 100 mM phosphate buffer, pH 6.3 and 0.89% methanol. Quantification was
performed at λ=259 nm. All chromatographic assays were carried out at room temperature
with a flow of 1.0 ml/min. Adenosine nucleotides (ATP, ADP, and AMP) were identified and
quantified based on the corresponding standard compounds.

Nuclear extraction
Myotubes were grown in 10-cm dishes, treated with acetic acid or AICAR as described above,
and then washed immediately with ice-cold PBS. Hypotonic buffer (10 mMHEPES pH 7.9, 1.5
mMMgCl2, 0.1 mM EDTA, 0.1% NP-40, 1 mMDTT, 1 mM PMSF, and protease inhibitors
(Nacalai Tesque, Kyoto, Japan)) were added and the cells were collected. After homogenization,
the extract was centrifuged for 5 min at 3,000 rpm at 4°C, and the supernatant (cytoplasmic frac-
tion) was collected. The nuclear pellet was resuspended in hypertonic buffer (20 mMHEPES pH
7.9, 1.5 mMMgCl2, 400 mMNaCl, 0.1 mM EDTA, 0.1% NP-40, 10% glycerol, 1 mMDTT, 1
mM PMSF, and protease inhibitors) by pipetting. The suspension was incubated and shaken for
1 hr on ice. Then the supernatant (nuclear fraction) was collected by centrifugation at 15,000
rpm for 5 min. Protein concentration of the nuclear extract was determined by Bradford assay.

AMPK activity
To measure AMPK activity, AMPK was immunoprecipitated from cell extracts with specific
antibodies against the α2-subunits bound to protein G agarose beads. The kinase activity of the
immunoprecipitates was measured using SAMS peptide [HMRSAMSGLHLVKRR] and the
Kinase-Glo Luminescent Kinase Assay kit (Promega, Madison, USA) according to the manu-
facturer’s instructions.

Western blotting
L6myotube cells were washed with ice-cold PBS and lysed with RIPA buffer (1x TBS pH 7.4, 0.5%
deoxycholic acid, 0.1% SDS, 1%NP-40, 1 mM PMSF, 1 mMNa3VO4, 10 mMNaF, and protease
inhibitors). Following centrifugation, supernatants were used for western blotting. Protein content of
supernatants was determined by Bradford assay and an aliquot (15–30 μg of protein) of each extract
from L6 cells was used for western blot to determine the contents of total AMPKα, phosphorylated
Thr-172 AMPKα, total ACC, phosphorylated ACC, myoglobin, GLUT4, MEF2A, PGC-1α and α-
tubulin. Samples were applied to 10–15% SDS-PAGE, and then proteins on the gel were transferred
onto a polyvinylidene difluoride membrane (Merck, DA, Germany). The membranes were first
incubated with primary antibodies overnight at 4°C, washed three times with TBST, and they were
incubated with HRP-conjugated secondary antibodies for 60 min. For highly sensitive system, after
themembranes were incubated with primary antibodies, they were incubated with biotin-conjugated
secondary antibodies for 15–30min, and they were incubated with HRP-conjugated streptavidin for
15min. After washing three times with TBST, the chemiluminescent reaction was performed for 5
min with ImmunoStar LD (Wako Pure Chemical Industries Ltd., Osaka, Japan), according to the
protocol supplied by the manufacturer. Chemiluminescent signals were visualized and quantified
with ImageQuant LAS-4000 andMulti Gauge V3.2 analyzing software (Fujifilm, Tokyo, Japan).

Quantitative RT-PCR analysis
Differentiated myotubes were incubated with 0.5 mM acetic acid and/or other reagents for the
indicated time, and then the cells were washed three times with RNase free PBS and harvested
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for RNA extraction. Total RNA was isolated from L6 cells by using Sepasol RNA I super G
(Nacalai Tesque, Kyoto, Japan), and RNase inhibitor (TOYOBO, Osaka, Japan) was added
according to the manufacturer’s instructions. Total RNA concentration was measured and
cDNA was prepared with PrimeScript RT Reagent Kit with gDNA Eraser (Takara Bio, Shiga,
Japan) according to the manufacturer’s instructions. Real-time quantitative PCR analyses were
performed using the StepOnePlus detection system (Applied Biosystems, CA, USA) with
KAPA SYBR FAST qPCR Kits (Kapa Biosystems, Wilmington, MA) for quantification of
specific mRNA content. Data were normalized to β-actin mRNA and expressed relative to
untreated control cells. The oligonucleotide primers were as follows: rat β-actin (actb) forward:
5’-GGAGATTACTGCCCTGGCTCCTA-3’, reverse: 5’-GACTCATGTACTCCTGCTTGCT
G-3’, rat GLUT4 (Slc2a4), forward: 5’-GGGCGATTTCTCCCACATAC-3’, reverse: 5’-CTCAT
GGGCCTAGCCAATG-3’, rat MEF2A (mef2a), forward: 5’-ATGAGAGGAACCGACAGG
TG-3’, reverse: 5’-TATCCGAGTTCGTCCTGCTT-3’, rat myoglobin (Mb), forward: 5’- CTA
ACAGCCGGCCTACACTC-3’, reverse: 5’-CGTGCTTCTTCAGGTCCTCT-3’, PGC-1α
(ppargc1a) forward: 5’-GACCCCAGAGTCACCAAATGA-3’, reverse: 5’-GGCCTGCAGTTC
CAGAGAGT-3’.

Immunofluorescence
L6 cells were fixed with 4% formaldehyde solution, incubated with 0.1% Triton X-100/PBS for
3 min, and blocked with 3% BSA/PBS for 10 min. Samples were incubated at room temperature
for 1 hr with primary anti-MEF2A antibody (Santa Cruz Biotechnology) and anti-skeletal
myosin antibody (SIGMA-ALDRICH, MO, USA). Then samples were washed three times with
PBS and incubated with secondary antibody conjugated to Alexa Fluor at room temperature
for 1 hr. Samples were counterstained with Hoechst 33258 (Polysciences, Inc., PA, USA) for 5
min and imaged using a confocal microscope (OLYMPUS FLUOVIEW FV1000, respectively;
OLYMPUS, Tokyo, Japan).

Statistical analysis
For analysis of AMPK activity, specific activities of AMPK were compared using unpaired Stu-
dent’s t-test. For the remaining analysis, one-way ANOVA followed by the Tukey-Kramer post
hoc test for multiple comparisons was performed. P values< 0.05 were considered to represent
statistical significance (�p<0.05, ��p<0.01 compared to control). Groups without the same let-
ter represent significantly different (p<0.05).

Results

Absorption of acetic acid by differentiated L6 myotube cells
To assess the ability of L6 myotubes to absorb acetic acid, 0.5 mM acetic acid was added to cul-
tured cells and the amount of acetic acid taken up by the cells was measured. Acetic acid was
immediately taken up within 2 min of incubation (Fig 1).

Acetic acid raises AMP concentration in differentiated L6 myotube cells
Following the absorption of acetic acid by cells, acetic acid is converted to acetyl-CoA concomi-
tantly with the formation of AMP, a well-known activator of AMPK, via the catalytic activity
of acetyl-CoA synthetase in the cytosol. AMP concentration in cells incubated with 0.5 mM
acetic acid was consistently higher than that in non-treated steady state control cells (0 min),
and significantly increased in 2 min compared to the steady state concentration (Table 1). The
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AMP:ATP ratio during incubation with acetic acid was significantly increased in 2 min of the
addition of acetic acid.

Acetic acid induces phosphorylation of AMPK and ACC in differentiated
L6 cells
To determine whether the treatment with acetic acid can induce phosphorylation of AMPK at
Thr172 in L6 cells, the change of phosphorylated AMPK levels was analyzed. Phosphorylation
of AMPK was significantly increased in acetic acid-treated cells compared to in non-treated
control cells. Ten minutes after the addition of the indicated amount of acetic acid to the cul-
ture medium, phosphorylated AMPK increased in a dose-dependent manner (Fig 2A).

Fig 1. Uptake of acetic acid by L6 myotube cells. After treatment with acetic acid (0.5 mM), acetic acid
content in the medium was determined at each indicated time point and the amount of uptake by the cells was
calculated. Each value is shown as the mean ± SE (n = 3–6).

doi:10.1371/journal.pone.0158055.g001

Table 1. Stimulation of the AMP/ATP ratio in L6 myotube cells by treatment with acetic acid.

(μmol / g of protein)

Time ATP ADP AMP Total AMP/ATP

0 min 20.95 ± 3.65 5.53 ± 0.71 0.86 ± 0.07 27.35 ± 4.45 0.041 ± 0.007

0.5 min 18.52 ± 2.83 6.48 ± 0.16 2.06 ± 0.51 27.06 ± 2.61 0.111 ± 0.051

2 min 19.73 ± 1.91 6.81 ± 0.49 4.43 ± 0.47* 30.96 ± 1.17 0.224 ± 0.061*

30 min 18.95 ± 1.01 8.66 ± 0.31* 3.38 ± 1.43 30.99 ± 0.57 0.179 ± 0.018

Adenine nucleotides (μmol/g of protein) in L6 cells treated with 0.5 mM acetic acid for the indicated times. Each value is shown as the mean ± SE

(n = 3–4). Results were analyzed with one-way ANOVA followed by the Tukey-Kramer post hoc test for multiple comparisons. Statistical differences are

shown as *p<0.05 compared to the 0 min time point.

doi:10.1371/journal.pone.0158055.t001
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Fig 2. Acetic acid induces phosphorylation of AMPK and ACC in L6 myotube cells. L6 myotube cells were treated with 0, 0.05, 0.15, 0.3, and 0.5
mM acetic acid for 10 min (A). Cells were incubated with 0.5 mM acetic acid for the indicated time (B), 0.5 mM AICAR for 12 hr, and 10 μM compound C for
30 min (C), 2 mM araA for 20 min (D), and 0.5 mM lactic acid or 0.5 mM citric acid for 10 min (E), and analyzed for the phosphorylation of AMPK. Cells
were treated with 0.5 mM acetic acid for 10 min and 0.5 mM AICAR for 12 hr, and 10 μM compound C for 30 min (F) and 2 mM araA for 20min (G), and
analyzed for phosphorylation of ACC and ACCβ. After L6 myotube cells were treated with 0.5 mM acetic acid for 2 min, cell lysates were prepared. Then,
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A time-course study revealed that incubation with 0.5 mM acetic acid increased the phos-
phorylation of AMPK after the addition of acetic acid (Fig 2B). Treatment with AICAR, an
AMPK activator, also increased the phosphorylation of AMPK by about 2.2-fold at 12 hr after
the addition. Pre-treatment of cells with compound C and araA, potent AMPK inhibitors, sup-
pressed the acetic acid induced phosphorylation of AMPK (Fig 2C and 2D). Phosphorylation
of AMPK was also analyzed after treatment with other acid compounds such as 0.5 mM lactic
acid and 0.5 mM citric acid. Both compounds did not enhance the phosphorylation of AMPK
(Fig 2E).

One downstream target of AMPK is phosphorylation of acetyl-CoA carboxylase (ACCβ) at
Ser79. Phosphorylated ACC was significantly increased at 10 min after treatment with 0.5 mM
acetic acid (Fig 2F), and the addition of compound C and araA together with acetic acid led to
suppression of this phosphorylation (Fig 2F and 2G). This increase in phosphorylation was
also seen in the treatment with AICAR, and inhibited by addition of compound C.

Moreover, we also conducted an evaluation of AMPK activity in L6 myotube cells using the
SAMS peptide as a substrate of AMPK. AMPK activity was significantly increased in cells
treated with acetic acid compared to non-treated control cells (Fig 2H).

Acetic acid treatment increases mRNA and protein expression of
myoglobin and GLUT4 in L6 myotube cells
Transcripts of myoglobin and GLUT4 were increased in cells treated with acetic acid. Time-
course studies revealed that mRNA levels of myoglobin gene,Mb and GLUT4 gene, Slc2a4
were significantly higher than those of non-treated steady state control cells (Fig 3A and 3B).
Furthermore, pre-treatment with compound C or araA and acetic acid completely suppressed
the increase in expression ofMb and Slc2a4 genes (Fig 3C–3F). Expression of these proteins
were also significantly increased and this stimulation was completely suppressed in the pres-
ence of compound C and araA (Fig 3G–3J).

Acetic acid increases glucose and fatty acid uptake, and suppresses
triglyceride accumulation in L6 myotube cells
To investigate whether the activation of AMPK by acetic acid stimulates uptake of glucose, glu-
cose clearance was examined in cells treated with acetic acid. After insulin treatment, glucose
uptake was approximately 3 times higher than that of non-treated controls. Similarly, acetic acid
as well as AICAR treatment significantly increased glucose uptake (Fig 4A). Treatment with ace-
tic acid tended to increase the utilization of fatty acid, but reduced their accumulation as triglyc-
eride in the cells compared to non-treated control or AICAR treatment (Fig 4B and 4C).

Acetic acid treatment increases mRNA and protein expression of
MEF2A in L6 myotube cells
Myocyte enhancer factor 2A (MEF2A) plays an important role in the regulation of gene expres-
sion of myoglobin and GLUT4 in skeletal muscle [26]. MEF2 proteins are transcription factors
involved in the differentiation of skeletal muscle, and possess diverse cellular functions in skele-
tal muscles or neurons. We focused on MEF2A and hypothesized that the increase inmb and

AMPK was immunoprecipitated from cell extracts and AMPK activity was measured using the synthetic SAMS peptide as a substrate (50 μM and 150 μM)
(H). Each bar represents the mean ±SE (n = 3–4). Results were analyzed with one-way ANOVA followed by the Tukey-Kramer post hoc test for multiple
comparisons (A-G), or analyzed by an unpaired Student’s t-test (H). Statistical differences are shown as *p<0.05, **p<0.01 compared to non-treated (A).
Groups without the same letter are significantly different (p<0.05) (B-G).

doi:10.1371/journal.pone.0158055.g002
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Slc2a4 gene expression by acetic acid treatment might be associated with the function of
MEF2A, as well as with the activation of AMPK.

Transcript levels ofmef2a were significantly higher in cells treated with acetic acid than
those of non-treated control (Fig 5A). Pre-treatment with compound C or araA completely
suppressed the induction ofmef2amRNA by acetic acid (Fig 5B and 5C). Protein expression of
MEF2A was also increased upon acetic acid treatment (Fig 5D and 5E), which was abolished
by compound C and araA.

Acetic acid treatment increases mRNA and protein expression of PGC-
1α in L6 myotube cells
Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a transcriptional
coactivator that mediates many biological processes related to energy metabolism. PGC-1α
and MEF2 form a positive feedback loop [27]. Activation of AMPK has been implicated to be
involved in the upregulation of ppargc1a expression [28].

Transcript levels of ppargc1a were significantly higher in cells treated with acetic acid than
in non-treated control (Fig 6A). Pre-treatment with compound C or araA, and acetic acid
completely suppressed the induction of ppargc1amRNA (Fig 6B and 6C). Protein expression
of PGC-1α was also increased upon treatment with acetic acid (Fig 6D and 6E).

Acetic acid induces nuclear localization of MEF2A
The nuclear MEF2A protein level was measured by western blotting to see the nuclear localiza-
tion of MEF2A. Nuclear MEF2A was significantly increased at 5 min (2.1-fold), 10 min
(3.3-fold) and 30 min (2.3-fold) after treatment with acetic acid compared to non-treated con-
trol (Fig 7A). In contrast, there was no change in the cytosolic MEF2A levels (Fig 7B). How-
ever, nuclear localization of MEF2A was significantly reduced in the presence of compound C
(Fig 7A). Furthermore, we analyzed L6 myotube cells by confocal immunofluorescence. Fig 7C
is the typical image showing that MEF2A was localized in nucleus in L6 cells treated with acetic
acid, while it was localized in the cytosol in the presence of compound C and in non-treated
cells (Fig 7C). And the nuclear localization rate of MEF2A was significantly increased by the
treatment of acetic acid (Fig 7D).

Discussion
Skeletal muscle is one of the most important insulin-responsive organs in the body [29, 30],
and an accumulation of locally derived fat metabolites in skeletal muscle is an important factor
contributing to insulin resistance [29]. It has been demonstrated that AMPK plays a key role in
regulating fat oxidation and glucose metabolism via upregulation of mitochondrial proteins,
GLUT4, and several metabolic enzymes in mice, rats, or human skeletal muscles [8–14]. Pres-
ent data indicate that acetic acid functions as an activator of AMPK and might be able to sup-
press lipogenesis via enhancing lipid metabolism. When acetic acid is taken up into tissues, it is
converted to acetyl-CoA with concomitant formation of AMP by the catalytic activity of

Fig 3. Effects of acetic acid on the expression of myoglobin and GLUT4 in L6 myotube cells. Total RNA was extracted from untreated L6 myotube
cells or those treated with 0.5 mM acetic acid for the indicated time period (A;Mb, B; Slc2a4) or for 5 min after the addition of acetic acid (C;Mb, D;
Slc2a4) or 0.5 mM AICAR for 12 hr, and 10 μM compound C for 30 min or 2mM araA for 20min. Real-time PCR analysis was carried out for
determination ofMb (A, C, E) and Slc2a4 (B, D, F) mRNA levels in L6 myotube cells. Myoglobin or GLUT4 proteins were analyzed by western blotting on
the treatment of 0.5 mM acetic acid for 10 min, 0.5 mM AICAR for 12 hours, and 10 μM compound C for 30 min (G, H) or 2 mM araA for 20 min (I, J).
Each bar represents the mean ±SE (n = 3–6). Results were analyzed with one-way ANOVA followed by the Tukey-Kramer post hoc test for multiple
comparisons. Groups without the same letter are significantly different (p<0.05).

doi:10.1371/journal.pone.0158055.g003
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acetyl-CoA synthetase [31–36]. Acetic acid is easily absorbed by L6 myotube cells, and
increases the AMP/ATP ratio in the cells. An increase in AMP/ATP ratio stimulates the phos-
phorylation of AMPK. Phosphorylated AMPK increased in a dose-dependent manner with the
concentration of acetic acid (Fig 2A), which was in the range of physiological blood

Fig 4. Effects of acetic acid treatment on glucose, fatty acid uptake and triglyceride accumulation in L6 myotube cells. (A)Glucose uptake
by L6 cells. Differentiated L6 myotube cells were treated with 0.5 mM acetic acid and 100 nM insulin for 24 and 48 hrs in the medium (50μmol/
2ml). Each conditioned medium was collected and measured the concentration of glucose. Amount of glucose uptake was calculated by using the
amount of glucose remaining in the medium. (B) Fatty acid uptake by L6 cells. (C) TG accumulation in L6 cells. Differentiated L6 myotube cells
were incubated with the medium containing 0.6 μmol palmitic acid (300 μmol/L) for 24 and 48 hrs in the presence or absence of 0.5 mM acetic
acid or 0.5 mM AICAR. After the incubation, mediums and cells were collected separately and the concentration of NEFA in the mediums and the
concentration of TG in the cells were determined. Each bar represents the mean ±SE (n = 3–4). Results were analyzed with one-way ANOVA
followed by the Tukey-Kramer post hoc test for multiple comparisons. Groups without the same letter are significantly different (p<0.05).

doi:10.1371/journal.pone.0158055.g004
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concentration of acetic acid. Pre-treatment of cells with compound C inhibited phosphoryla-
tion of AMPK by acetic acid (Fig 2C). Moreover, other acids such as lactic acid or citric acid
were unable to increase the phosphorylation of AMPK (Fig 2E). Activated AMPK leads to an
inactivation of ACC via phosphorylation, a decrease in malonyl-CoA content, a subsequent
increase in fatty acid oxidation, and a block in fatty acid synthesis. Phosphorylation of ACC
significantly increased at 10 min of acetic acid treatment (Fig 2F) and it was inhibited by pre-

Fig 5. Effect of acetic acid on the expression of MEF2A in L6 myotube cells. Total RNA was extracted from untreated L6 myotube cells or cells
treated with 0.5 mM acetic acid for the indicated time period (A). L6 cells were treated with 0.5 mM acetic acid for 5 min, 0.5 mM AICAR for 12 hours, and
pre-treated with 10 μM compound C for 30 min (B), and pre-treated with 2 mM araA for 20 min (C). Real-time PCR analysis was carried out for the
determination ofmef2AmRNA level in L6 myotube cells. MEF2A protein was analyzed by western blotting in 10 min treatment of 0.5 mM acetic acid, 0.5
mM AICAR for 12 hours, and 10 μM compound C for 30 min (D) or 2 mM araA for 20 min (E). Each bar represents the mean ±SE (n = 3–6). Results were
analyzed with one-way ANOVA followed by the Tukey-Kramer post hoc test for multiple comparisons. Groups without the same letter are significantly
different (p<0.05).

doi:10.1371/journal.pone.0158055.g005
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treatment with compound C and araA (Fig 2F and 2G). In our previous study, chronic intake
of acetic acid induced gene expression of myoglobin and GLUT4 in skeletal muscle of rats, and
the rats showed a higher rate of oxygen consumption and a smaller size of lipid droplets in
white adipose tissue [15]. In this study, transcripts and protein levels of myoglobin and GLUT4
were increased in acetic acid-treated L6 myotube cells. Pre-treatment of acetic acid treated cells

Fig 6. Effect of acetic acid on the expression of PGC-1α in L6 myotube cells. Total RNA was extracted from untreated L6 myotube cells or cells
treated with 0.5 mM acetic acid for the indicated time period (A). L6 cells were treated with 0.5 mM acetic acid for 5 min, 0.5 mM AICAR for 12 hours, and
pre-treated with 10 μM compound C for 30 min (B) or 2 mM araA for 20 min (C), and total RNA were isolated. Real-time PCR analysis was carried out for
the determination of ppargc1amRNA level in L6 myotube cells. PGC-1α protein level was analyzed by western blotting in 5 min treatment with 0.5 mM
acetic acid, 0.5 mM AICAR for 12 hours, and 10 μM compound C for 30 min (D) or 2 mM araA for 20 min (E). Each bar represents the mean ±SE
(n = 3–6). Results were analyzed with one-way ANOVA followed by the Tukey-Kramer post hoc test for multiple comparisons. Groups without the same
letter are significantly different (p<0.05).

doi:10.1371/journal.pone.0158055.g006
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Fig 7. Effect of acetic acid treatment on nuclear MEF2A expression in L6 myotube cells. L6 myotube cells were treated with 0.5 mM acetic acid, and
nuclear fraction (A) and cytosolic fraction (B) were separated. MEF2A level was examined by western blotting as described in materials and methods. L6
myotube cells were cultured on glass cover slips coated with poly-L-lysine and treated with 0.5 mM acetic acid in the presence or absence of 10 μM
compound C (C). Then cells were fixed and nuclear DNA was stained by Hoechst 33258 (blue). Cells were immunostained for MEF2A (red) and myosin
(green). Scale bar = 20 μm. The nucleus immunostained with anti-MEF2A antibody were counted (8 mm2 area, n = 3) and the rate of nuclear localization of
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with compound C and araA completely suppressed the increase of myoglobin and GLUT4
gene and protein expression (Fig 3C, 3E and 3D–3J), suggesting that acetic acid induces myo-
globin and GLUT4 transcription through the AMPK-mediated signaling pathway in L6 myo-
tube cells. Myoglobin is expressed in cardiac and skeletal myocytes, and it plays a role in the
diffusion of oxygen and to maintain mitochondrial respiration [37]. The myoglobin gene is
expressed depending on myofiber subtypes, and the expression is regulated by environmental
stimuli such as chronic hypoxia and endurance exercise training [17–20]. GLUT4 is one of the
glucose transport proteins and is responsible for insulin-mediated glucose uptake in muscle
and adipose tissue. It was shown that glucose homeostasis depends on the level of GLUT4
expression [38–40].

Transcription of myoglobin and GLUT4 genes is regulated by myocyte enhancer factor 2
(MEF2), which is a transcription factor involved in skeletal muscle differentiation [23–25, 41–
44]. The MEF2 family is comprised of four members, MEF2A, B, C and D [26, 45], and belongs
to the MCM1-agamous-deficiens-serum response factor (MADS) supergene family of DNA
binding proteins [45–47]. MEF2B is a unique member of the MEF2 gene family [48] and its
expression is restricted to myogenic lineages during early embryo development [49]. MEF2D is
expressed in proliferating myoblasts prior to the onset of differentiation [26, 50]. MEF2C is
expressed late in the differentiation program, and MEF2A protein appears in cells entering the
differentiation pathway and the expression is regulated at multiple levels during development
and differentiation [26]. The predominant MEF2 DNA-binding complex in muscle cells is
composed of MEF2A homodimers [26]. There is a MEF2 binding site in GLUT4 promoters
that contains the binding site of a MEF2A-MEF2D heterodimer [51]. Reduced MEF2A expres-
sion accounts for the reduction in DNA binding activity and directly correlates with the
decrease in GLUT4 gene expression [51]. MEF2A is a substrate for p38 mitogen-activated pro-
tein (MAP) kinase (MAPK), and threonines 312 and 319 within the transcription activation
domain of MEF2A are phosphorylated by p38 [52]. Phosphorylated MEF2A enhances MEF2--
dependent gene expression. MAPK-independent pathways such as the AMPK-associated path-
way have also been implicated in the regulation of MEF2 [53]. Treatment of human skeletal
muscle cells with AICAR, a pharmacological activator of AMPK, stimulated MEF2 DNA bind-
ing activity [53]. AICAR-mediated MEF2 DNA binding was independent of p38 MAPK activa-
tion, and it was completely inhibited by an AMPK inhibitor, compound C [53]. AICAR-
injected rats showed increased nuclear MEF2 DNA binding activity, and chronic AICAR treat-
ment dramatically increased the expression of glucose transport protein GLUT4 in muscle
[54]. In this study, we observed that MEF2A nuclear localization was increased upon treatment
with acetic acid and it was inhibited by pre-treatment with compound C (Fig 7). Furthermore,
transcripts of MEF2A and PGC-1α genes were significantly increased in cells treated with ace-
tic acid (Fig 5A–5C and 6A–6C). PGC-1α plays a key role in the regulation of mitochondrial
biogenesis and oxidative metabolism and its activity has been reported to be regulated by
AMPK [55]. MEF2A and PGC-1α contain a MEF2A binding site in their promoter sequences
[27, 56] and their gene expression was coordinated with one another [27]. Those findings
implicate that acetic acid induced expression of both MEF2A and PGC-1α as well as of myo-
globin and GLUT4 genes might be caused by an increase in nuclear localization of MEF2A via
the activation of AMPK.

De Angelis et al. showed that transforming growth factor β (TGF-β) inhibited myogenesis
and prevented the activation of the transcriptional complex related to MEF2A through

MEF2A was calculated (D). Each bar represents the mean ±SE (n = 3–4). Results were analyzed with one-way ANOVA followed by the Tukey-Kramer
post hoc test for multiple comparisons. Groups without the same letter are significantly different (p<0.05).

doi:10.1371/journal.pone.0158055.g007
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localization of MEF2A in the cytoplasm [57]. Furthermore, activated AMPK inhibited TGF-β,
Smad3 gene expression, and TGF-β-induced myofibroblast differentiation [58–60]. In this
study, MEF2A, which contains a nuclear localization sequence at its C-terminus [26, 61], was
localized in the nucleus shortly after treatment with acetic acid and exported to the cytoplasm
30 min after treatment. Investigation of the transport mechanism of MEF2A upon treatment
with acetic acid is currently underway.

mRNA and protein expression levels of MEF2A were significantly increased upon treatment
with acetic acid in L6 myotube cells (Fig 5). In addition, pre-treatment of acetic acid-treated
cells with compound C completely suppressed the increase in MEF2A mRNA and protein
expression levels (Fig 5B and 5D). A ChIP assay revealed that the MEF2A promoter contains a
MEF2A binding site and that MEF2A would associate with the site to control the MEF2A tran-
scription [56]. These results implicate that increased expression of MEF2A by acetic acid might
be caused by increased nuclear localized MEF2A via the activation of AMPK.

Activation of AMPK is linked to lipid catabolism and improvement of insulin sensitivity
[14]. Numerous AMPK activators have been described including adiponectine or berberine.
Adiponectine, which is an adipocytokine preventing metabolic syndrome or atherosclerosis,
activates AMPK in skeletal muscle and improves insulin sensitivity [28, 62]. Berberine, a food
component, has an effect on AMPK activation, adipose tissues, and macrophages [63, 64]. In
this study, acetic acid activated AMPK, induced gene and protein expression of myoglobin and
GLUT4, stimulated glucose incorporation, and suppressed lipid accumulation in L6 cells.
Thus, acetic acid has the potential to prevent metabolic disorders through the activation of
AMPK.
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