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A commentary on 

Systemic, Local, and Imaging Biomarkers of Brain Injury: More Needed, and Better Use of Those 
Already Established?
by Carpenter KLH, Czosnyka M, Jalloh I, Newcombe VFJ, Helmy A, Shannon RJ, et al. Front Neurol 
(2015) 6: 26. doi: 10.3389/fneur.2015.00026 

Cerebral metabolism plays an important role in maintaining cell functions. The brain requires 
glucose as the main substrate for aerobic glycolysis to sustain the high cerebral metabolic demands. 
Glucose transport through the blood–brain barrier is mediated by GLUT1 glucose transporter 
protein. Higher cerebral metabolic needs may increase GLUT1 expression on microvessels, thus 
enhancing glucose uptake (1). Therefore, glucose is the only substrate that is transported across the 
BBB at a sufficient rate. Cerebral ischemia is classically defined as a cellular condition in which there 
is insufficient glucose and oxygen for energy production (2, 3).

Some authors have described cerebral metabolic crisis (MC) that is related to alterations in the use 
of glucose for energy synthesis, traumatic brain injury (TBI), and subarachnoid hemorrhage (SAH) 
(4–7). What process does the term “cerebral MC” actually describe? To understand this issue, it is 
important to identify the two major pathways that produce neuronal energy: (1) an aerobic path in 
which 1 glucose molecule results in 38 ATP molecules and H2O and (2) an anaerobic path in which 
1 glucose molecule results in 2 ATP molecules and 2 molecules of lactate. Both of these pathways 
use glycolysis to convert glucose to pyruvate, which is the main substrate needed to provide energy 
(8). Thus, energy biomarkers, such as glucose, lactate, and pyruvate, provide relevant informa-
tion describing cerebral metabolism. During cerebral tissue hypoxia, energy is mainly produced 
anaerobically. The restoration of cerebral blood flow and oxygenation within a proper time frame 
leads to the normalization of aerobic cell respiration if the mitochondrial function is still preserved. 
However, during mitochondrial dysfunction in which neuronal cells are unable to use the available 
tissue oxygen, the anaerobic (redox) pathway is also used; mitochondrial dysfunction can occur due 
to or during decreased blood flow and may also occur in the normal blood flow/hyperemia state 
(2, 6, 9). Both ischemia and mitochondrial dysfunction states produce lactate with high pyruvate 
consumption, resulting in an increased lactate/pyruvate ratio (L/P) type 1 (10). However, cerebral 
MC can occur in the absence of high lactate levels and are classified as L/P type 2 characterized by 
decreased pyruvate synthesis. MCs can occur during a variety of pathological cellular states, such 
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as TBI, SAH, stroke, and meningitis, and may be associated with 
high or normal levels of oxygen in the cerebral tissue.

Carpenter et al. (3) determined that an increased L/P ratio is a 
consequence of the redox state. However, there are other cerebral 
MCs. It is important to reinforce the following concepts regarding 
MCs: (1) mitochondrial dysfunction is a MC associated with an 
increased L/P type 1 and redox state, (2) other MCs may be linked 
to a shift from glucose metabolism to other functions in neuronal 
cells and are associated with an increased L/P type 2, (3) glucose 
is not the only substrate used to produce energy in neuronal cells, 
and (4) different cerebral MCs may occur simultaneously.

Some cerebral MCs are characterized by decreased glucose 
metabolism. Thus, other substances may be used to produce cer-
ebral cellular energy. Lactate can be oxidized in the brain and may 
be an energy source. Furthermore, peripheral lactate reaches the 
liver, where it stimulates glucose production via gluconeogenesis 
and provides glucose to the brain to restore glucose metabolism 
(11). Moreover, cerebral uptake of lactate increases during intense 
exercise without high levels of CSF lactate. Thus, lactate is oxi-
dized to be used as fuel, sparing glucose, and is eliminated by the 
brain, similar to the liver (12). Additionally, in reversible ischemia, 
LPR normalizes within 60–90 min of CBF restoration; this finding 
reinforces that accumulated lactate can be aerobically used (8). 
Another study suggested that ketones are oxidizable substances 
that may be used as substrates to produce energy and can lead to 
improved energy status (4, 13, 14). Furthermore, a ketogenic diet 
reduces the lactate levels and improves the ATP levels after TBI 
in juvenile rats (13). Therapy with branched chain amino acids 
after percussion TBI improved synapse efficiency and cognitive 
performance in adult mice possibly by normalizing brain levels 
of this amino acid, which has a role in glutamate metabolism 
(13). Conversely, glucose metabolism may increase during a TBI.  

In the presence of oxidative stress, glucose metabolism is diverted 
to the pentose phosphate pathway (PPP). This pathway produces 
a reduction equivalent in the form of NADPH, which plays 
a cellular protective role by removing free radicals through its 
action over glutathione. Ketones may play the same PPP role 
of increasing antioxidants and scavenging free radicals, which 
mediate mitochondrial function (15). Glutathione peroxidase is 
a key antioxidant enzyme that is elevated at 3 h and peaks 7 days 
post-traumatic brain injury. The PPP also produces ribose, which 
is important for DNA repair and replication and for mRNA and 
protein synthesis. The PPP is responsible for approximately 2–5% 
of glucose utilization during normal metabolism but can reach 
levels exceeding 8–12% after TBI (2, 16).

During these cited conditions, pyruvate synthesis is reduced, 
and the L/P type 2 increases (10). These findings suggest that 
cerebral MCs are not restricted to the condition of high lactate 
synthesis that occurs during ischemia and mitochondrial dys-
function. Importantly, free radicals, which are associated with 
ischemia, can cause mitochondrial failure and consequently 
reduce oxidative metabolism; furthermore, glucose may be used 
to remove free radicals. Thus, mitochondrial dysfunction and 
other MCs may coexist.

We emphasize that MCs consist of a broad spectrum of glucose 
and other energy synthesis disturbances. The diagnoses of differ-
ent MCs may increase treatment options for “cell symptoms” and 
could improve patient prognosis.
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