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Abstract: Chemotherapeutic agents, which contain the Michael acceptor, are potent anticancer
molecules by promoting intracellular reactive oxygen species (ROS) generation. In this study, we
synthesized a panel of PL (piperlongumine) analogs with chlorine attaching at C2 and an electron-
withdrawing/electron-donating group attaching to the aromatic ring. The results displayed that
the strong electrophilicity group at the C2–C3 double bond of PL analogs plays an important role
in the cytotoxicity whereas the electric effect of substituents, which attached to the aromatic ring,
partly contributed to the anticancer activity. Moreover, the protein containing sulfydryl or seleno,
such as TrxR, could be irreversibly inhibited by the C2–C3 double bond of PL analogs, and boost
intracellular ROS generation. Then, the ROS accumulation could disrupt the redox balance, induce
lipid peroxidation, lead to the loss of MMP (Mitochondrial Membrane Potential), and ultimately
result in cell cycle arrest and A549 cell line death. In conclusion, PL analogs could induce in vitro
cancer apoptosis through the inhibition of TrxR and ROS accumulation.

Keywords: piperlongumine an alog; michael acceptor; anticancer activity; reactive oxygen species;
thioredoxin reductase

1. Introduction

Natural products have been markedly studied for drug discovery, including
anti-inflammatory agents [1], anti-bacterial agents [2], and particularly anti-cancer agents [3,4].
Piperlongumine (PL), a natural alkaloid isolated from traditional Chinese medicine Piper
longum L., is well known to possess multiple pharmacological effects, such as anti-microbial [5],
anti-Parkinsonian [6] and anti-epileptic [7] effects. So far, hundreds of publications have shown
that PL could exhibit anticancer activities in various cancer cells [8,9], and effectively inhibit
tumor growth without considerable side effects in tumor xenograft models [10]. Moreover, PL
induces cell cycle arrest and death of A549 cells through triggering reactive oxygen species
(ROS) accumulation in cancer cells [11,12].

ROS, well known as an upstream signal involved in the induction of cancer cell death,
can be triggered by several exogenous and endogenous factors [13,14]. ROS induced by
chemotherapeutic agents may be mainly due to the inhibition of the antioxidant system.
For example, curcumin [15] and PL [16], characterized with the Michael acceptor, could irre-
versibly inhibit thioredoxin reductase (TrxR), and the adduct triggers ROS generation. The
electrophilicity of Michael acceptor units is important for the TrxR inhibition and ROS gen-
eration ability [17]. Yan and co-workers have designed piperlongumine-directed anticancer
agents by an electrophilicity-based prooxidant strategy [16]. The structure–activity rela-
tionship of PL analogs reveals that C2–C3 and C7–C8 double bonds are essential for their
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cytotoxicity against cancer cells [18] (Scheme 1). C2–C3 double bond plays a critical role in
the ROS generation and glutathione lessening whereas C7–C8 double bonds are partially
correlated with the anti-proliferative activity of PL, and the effect of the pharmacophore on
anticancer activity remains unexplored.
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Additionally, fluorine, which usually presents in drugs, exihits a variety of properties
to certain medicines, such as increased metabolic stability, binding interactions, selective
reactivities and so on [19]. Considering the aforementioned, we synthesized a panel of
PL analogs with electron-withdrawing group (-F and CF3) or electron-donating group
(-OCH3) attaching to the aromatic ring (Scheme 1). Then, we studied the electronic effect
of substituents on the cytotoxicity and explored the anticancer mechanism of PL analogs
against A549 cells.

2. Results
2.1. Chemistry

The synthetic routes of PL analogs are illustrated in Scheme 1. The intermediate 4 (3-
chloro-5,6-dihydropyridin-2(1H)-one) was obtained from commercial 2-piperidone through
two steps, including α-halogenation and elimination. Then, the appropriate cinnamoyl
chloride 2, condensing between benzaldehyde and malonic acid, reacted with intermediate
4 through a nucleophilic substitution reaction to afford the target comounds with lower
yields. All compounds were characterized by nuclear magnetic resonance (1H-NMR) and
13C-NMR.

2.2. Assessment of In Vitro Cytotoxicity

PL analogs 1–6 were determined for their cytotoxicity aganinst A549 and SKOV3
cells by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. As
illustrated in Table 1, most of the PL analogs were more excellent or equivalent to PL
against cancer cells, and the cytotoxicity order as the follows: PL-6 > PL-1 > PL ~ PL-5 ~
PL-2. This result indicated that the electron-withdrawing group (chlorine) attached to C2
could strengthen the antiproliferative activity of PL analogs. Moreover, the outstanding
cytotoxicity of PL-2, PL-5 and PL-6 may be attributed to the electron-withdrawing effect
of -F and -CF3, which could heighten the electrophilicity of the C7–C8 double bond.
Additionally, PL-2, PL analogs were stable in phosphate-buffered saline (PBS) buffer at
25 ◦C (Figure 1). PL-1 and PL-6 showed the strongest antiproliferative activity against
A549 cells among these compounds and, therefore, we focused on A549 cells to investigate
the cytotoxic mechanism of PL-1 and PL-6 in subsequent experiments.
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Table 1. Cytotoxicity of PL and its analogs against A549and SK-OV3 cells.

Comps. IC50/(µM) Comps. IC50/(µM)
A549 SK-OV3 A549 SK-OV3
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Figure 1. The stabilities of PL analogs (50 µM) in phosphate-buffered saline (PBS) buffer (100 mM)
at 25 ◦C.

2.3. Piperlongumine (PL) Analogs Triggered Cell Cycle Arrest

In order to explore the effects of PL analogs (PL-1 and PL-6) on cell cycle arrest, flow
cytometry was used to determine the cell cycle distribution. As shown in Figure 2, PL-1
and PL-6 obviously reduced the percentage of cells in G0/G1 phase, and enhanced the
percentage of cells in G2/M phase in a dose-dependent fashion, relative to the control
group. Moreover, PL-1 and PL-6 were excellent or equivalent to PL on the cell cycle arrest
of A549 cells; 30 µM PL-6 led 36.4% percentage of cells in the G2/M phase. In addition, the
classic antioxidant-NAC (N-Acetyl-L-cysteine) could effectively inhibit the cell cycle arrest
activity induced by PL-1 and PL-6. This result hinted that PL-1 and PL-6 may induce A549
cells cycle arrest via ROS generation.

2.4. The Apoptotic Effects of PL Analogs against the A549 Cell

Next, we tested the apoptosis-inducing activity of PL analogs (PL-1 and PL-6) on
A549 cells using a flow cytometry cell apoptosis assay. As illustrated in Figure 3, PL-1 and
PL-6 exhibited more outstanding cell death-inducing capacity against A549 cells compared
to PL, and emerged in an excellent dose-dependent manner. The late apoptosis of A549
cells induced by PL-1 (30 µM) and PL-6 (30 µM) were 38.9% and 37.8%, respectively.
Additionally, the apoptosis-inducing activities of PL-1 (30 µM) and PL-6 (30 µM) were
remarkably reduced by pretreatment with NAC. This result also implied that PL-1 and
PL-6 may induce cell death of A549 cells through ROS production.
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Figure 2. The effect of PL analogs (PL-1 and PL-6) on the cell cycle arrest of A549 cells at the in dicated concentrations in
the presence or absence of NAC. (A) The cell cycle distribution of the cells was analyzed, and the percentage of cells within
G0/G1, S and G2/M phase was indicated in every diagram. (B) The quantitative analysis was demonstrated as histograms.
* p < 0.05, ** p < 0.01, *** p < 0.001 compared with control.
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the presence or absence of NAC. (A) The cell apoptosis of A549 cells was analyzed. (B) The quantitative analysis was
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2.5. PL Analogs Induced Reactive Oxygen Species (ROS) Generation and Redox Imbalance

Based on the Figure 3 results, we measured whether PL-1 and PL-6 could trigger
ROS generation in A549 cells. A DCFH-DA (2′,7′-dichlorofluorescein diacetate) probe
was used to test the changes of ROS levels in A549 cells. The results indicated that PL-1
and PL-6 remarkably increased the ROS levels compared to the control group, and dis-
played a dose-dependent relationship (Figure 4A). Moreover, the ROS generation abilities
of PL-1 and PL-6 were much stronger than the leading PL; 30 µM PL-6 resulted in a
2.7-fold increase of ROS levels compared to the control group. In addition, NAC could
sharply decrease the ROS induced by PL-1 (30 µM) and PL-6 (30 µM) (Figure 4A). The
ROS accumulation could cause intracellular oxidative stress. Therefore, the ratios of
GSH/GSSG (Glutathione/L-Glutathione Oxidized) were measured according to the glu-
tathione reductase-DTNB recycling assay. As shown in Figure 4B, PL analogs obviously
decreased the ratios of GSH/GSSG in a dose-dependent fashion. 30 µM PL-6 caused a
5-fold decrease of the ratio of GSH/GSSG relative to the control group. In particular, the
redox imbalance induced by PL-1 (30 µM) and PL-6 (30 µM) were prevented significantly
by NAC. These results suggest that PL analogs can trigger ROS accumulation and induce
redox imbalance of A549 cells.
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2.6. PL Analogs Induced Lipid Peroxidation and the Loss of MMP (Mitochondrial
Membrane Potential)

Since the ROS accumulation could induce the lipid peroxidation of cell membrane, we
measured the MDA (Malondialdehyde) levels of A549 cell after treatment with PL analogs.
We found that both PL-1 and PL-6 led the increase of MDA levels (Figure 5A). The MDA
levels induced by PL-1 (30 µM) and PL-6 (30 µM) were higher than that of PL. This result
was in accordance with their apoptosis-inducing activities and ROS generation abilities
against the A549 cells. In addition, the lipid peroxidation induced by PL-1 (30 µM) and
PL-6 (30 µM) were fundamentally inhibited by pretreatment with NAC (Figure 5A). In
addition, both PL-1 and PL-6 resulted in the loss of MMP in a dose-dependent manner.
PL-6 (30 µM) led to about a 10-fold decrease of MMP (mitochondrial membrane potential)
compared with the control group, and was more active than that of PL (30 µM). The loss
of MMP can be significantly blocked NAC (Figure 5B). These results indicated that PL
analogs could trigger ROS production, then induce redox imbalance, lipid peroxidation,
the loss of MMP, cell cycle arrest and A549 cell line cell death.
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2.7. The Nucleophilic Addition Reaction of PL Analogs and Cysteamine

Figure 4 indicates that PL analogs triggered ROS generation, which can emerge
through the reaction between thioredoxin reductase (TrxR) and chemotherapeutic agents
containing the Michael acceptor. Therefore, we determined the electrophilicity of the
Michael acceptor of PL analogs under pseudo-first-order conditions. As shown in Table 2,
PL-1 and PL-6 exhibited much stronger electrophilicity than PL with k2 value of 5.70 and
8.96 M−1s−1, in line with their cytotoxicity and ROS generation ability.
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Table 2. Second-order rate constants (k2) for the reaction of PL and its active analogs with cysteamine
at 25 ◦C.

Comps. k2 (M−1 s−1) Comps. k2 (M−1 s−1)

PL-1 5.70 ± 0.24 PL-6 8.96 ± 0.04
PL 2.26 ± 0.04

Reactions were carried out in Tris-HCl (100 mM, pH 7.4) and EDTA (2 mM, Ethylene
Diamine Tetraacetic Acid)-ethanol (v/v, 2/1) under pseudo-first-order conditions. Data are
expressed as the mean ± SD for three determinations.

In addition, we monitored the reaction of PL-6 and cysteamine in d6-DMSO (Dimethyl-
d6 sulfoxide) using an NMR spectrometer. As shown in Figure 6A, the doublet of doublets
at δ 7.731 (H-1 and H-1’), calibrating to 2.00 hydrogen, was the protons of the aromatic
nucleus. After incubating a mixture of PL-6 and cysteamine for 1 h, the triplet integral at
δ 7.332, the olefinic proton of lactam (H-3), decreased to 0.46 compared to the 1H-NMR
of PL-6 (Table 3). This phenomenon displayed that the Michael acceptor of lactam of PL
analogs was the major reaction site of cysteamine. This result also hinted that the ROS
generation induced by PL analogs was mainly due to the Michael acceptor of lactam.
Moreover, after incubating PL-6 and cysteamine for 3 days, the 1:1 adduct (m/z: 374.3040)
was formed as exhibited in high-resolution mass spectrometry (HRMS) (Figure 6B).
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Figure 6. Reaction of PL-6 with cysteamine: (A) nuclear magnetic resonance (1H NMR) spectra of PL in d6-DMSO before
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with 3 eq. of cysteamine.

Table 3. Quantification of the analytes after the addition of cysteamine.

Signals Assigned Chemical Shift (ppm) Coupled Splitting Coupling Constants (J/Hz) Time (h) Integral

H-9
H-9′

7.731 dd 8.5 0 2.00
7.658–7.759 m / 1 2.00

H-3
7.332 t 4.5 0 1.00
7.332 t 4.5 1 0.46

2.8. The Inhibition Activity of PL-6 on TrxR

In the the results in Figures 3 and 4 and Table 3, we demonstrate that PL analogs
reacted with cysteamine, and induced A549 cell line cells death through triggering ROS
generation, which can be obtained by the inhibition of TrxR. In order to confirm the ROS
production induced by PL-6 was related to TrxR, we analyzed the expression of TrxR in
A549 cells using a Western blot assay. As shown in Figure 7, the TrxR expression was
decreased in a dose-dependent fashion. Moreover, the down-regulation of TrxR induced
by PL-6 can be reduced by NAC. This result was in line with the ROS generation and death
of A549 cells induced by PL-6.
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3. Discussion

Cancer, one of the major causes of morbidity and mortality in the world, is becoming
a primary concern of human health. Chemotherapeutic agents, commonly applied in
cancer diagnosis and treatment [20], could inhibit proliferation or induce cancer cell death
through various molecular pathways, such as nuclear factor-κB (NF-κB) [21], vascular
endothelial growth factors [22], PI3/Akt [23] and so on. In particular, the ROS, which also
induce cancer cell apoptosis, can be triggered by chemotherapeutic agents containing the
Michael acceptor units [16]. TrxR can be irreversibly inhibited by the Michael acceptor
of chemotherapeutic agents and the modified enzyme converted into a prooxidant that
triggered ROS generation [15]. PL, as one of the simplest alkaloids found in Piper longum L.,
contains two Michael acceptor units and has been used for the purpose of cancer prevention
and treatment [17].

In this work, we obtained a panel of PL analogs via a nucleophilic substitution reac-
tion between intermediate 2 and 4, and found that the strong electrophilicity of the C2–C3
double bond was to the benefit of enhancing the cytotoxicity of PL analogs against cancer
cells (Table 1). Moreover, the cinnamic acid unit, with strong electron-withdrawing or
weak electron-donating groups, partly contribute to the anticancer activity of PL analogs.
The results illustrated that the Michael acceptor of lactam plays a major role in the an-
tiproliferative activity. The Michael acceptor unit can be attacked by nucleophiles, such
as TrxR, GSH and so on, and results in the ROS generation [15]. TrxR of A549 cells can be
inhibited by PL-6 which also confirmed this phenomenon (Figure 7). We further identified
that cysteamine mainly reacted with the Michael acceptor of lactam by the 1H-NMR and
HRMS (Figure 6, Table 3).

The irreversible inhibition of TrxR by chemotherapeutic agents resulted in the ROS
accumulation, which is linked to numerous biological processes and disease conditions [13].
Cancer cells exhibited a greater ROS level than normal cells [24]. Therefore, a common
therapeutic strategy that increases ROS generation may force cancer cells to surpass the
redox balance, leading to the activation of different cell death pathway [24]. For example,
ROS acculumation can induce cancer cells death. As illustrated in Figure 4A, PL analogs
displayed better activity by triggering ROS generation than that of PL. In addition, ROS ac-
culumation altered the redox status, which were significantly inhibited by NAC (Figure 4B).
Redox imbalance in turn influenced the production of ROS. Moreover, ROS can directly
oxidize cell membrane and lead to the increase of MDA levels (Figure 5A). Generous ROS
also executed cancer cell apoptosis in a mitochondrial-dependent fashion [25]. In line with
this, PL analogs dramatically decreased the MMP (Figure 5B) and resulted in A549 cells
apoptosis (Figure 3). All of the results in Figures 4 and 5 were partly or entirely reversed by
NAC. These results also hinted that the anticancer activities of PL analogs were attributed
to the ROS generation.

Collectively, this work elucidates that the Michael acceptor of lactam plays a major
role in PL analogs′ cytotoxicity. Whereas, the cinnamic acid unit, with strong electron-
withdrawing or weak electron-donating groups partly contributed to that. The cysteamine
mainly reacted with the C2–C3 double bond of PL analogs. PL analogs could irreversibly
inhibit TrxR and result in ROS accumulation, which further disrupt redox imbalance,
induce lipid peroxidation, lead to the loss of MMP, and ultimately result in A549 cell line
cell death (Scheme 2).



Molecules 2021, 26, 3243 8 of 12
Molecules 2021, 26, x FOR PEER REVIEW 8 of 12 
 

 

 
Scheme 2. Proposed mechanism underlying the cytotoxicity of PL-6. 

4. Materials and Methods 
4.1. Materials 

Roswell Park Memorial Institute (RPMI)-1640 was from Hyclone. 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), rhodamine 123, 
2′,7′-dichlorofluorescein diacetate, GSH and GSSG Assay kit, and thiobarbituric acid 
were purchased from Beyotime. The annexin V-FITC/PI apoptosis detection kit was from 
BD Biosciences. Substituted benzaldehyde, 2-piperidone and piperlongumine were from 
EnergyChemical. All other chemicals were of the highest quality available. 

4.2. Synthesis of the PL Analogs 
The Preparation of Cinnamoyl Chloride (Intermediate 2) 

The cinnamoyl chloride 2 was prepared according to previously reported methods 
[17]. Briefly, substituted aldehyde (20 mmol) was condensed with malonic acid (24 
mmol) in the presence of piperidine (1.2 mL) to afford a crude solid. After, it was 
recrystallised from ethanol to afford corresponding cinnamic acids 1. Then, intermediate 
1 (2 mmol) reacted with oxalyl chloride (6 mmol) in dry CH2Cl2 (4 mL) to produce 
cinnamoyl chloride 2. 
The Preparation of 3-Chloro-5,6-dihydropyridin-2(1H)-one (Intermediate 4) 

The intermediate 4 was acquired from 2-piperidone according to the previously 
reported procedure [17]. Briefly, the mixture containing 2-piperidone (5 mmol), 
phosphorus pentachloride (15 mmol) and chloroform (15 mL) was refluxed for 12 h. After 
cooling, adjusting pH to 9, extracting with chloroform/methanol (10/1) and purifying by 
flash cloumn chromatography, the intermediate 3 was obtained with a white solid. The 
intermediate 3 (2.5 mmol) and lithium carbonate (7.5 mmol) was dissolved in DMF (Di-
methyl Formamide, 5 mL) and heated to 120 °C for 12 h. After removing the solvent, the 
residue was extracted with chloroform and purified with cloumn chromatography to 
afford the intermediate 4. 

The mixture, containing intermediate 4 (2 mmol), cinnamoyl chloride 2 (2 mmol), 
triethylamine (6 mmol) and dry CH2Cl2 (5 mL), was stirred at room temperature for 24 h. 
After extracting with ethyl acetate and purification by cloumn chromatography, the 
target product was obtained. 

(E)-3-chloro-1-(3-(3-methoxyl-cinnamoyl))-5,6-dihydropyridin-2(1H)-one (PL-1): 
Yield 16.2% (the yield is the reaction between intermediate 4 and cinnamoyl chloride 2), 
yellow solid, 1H-NMR (500 MHz, (CDCl3), δ 7.74 (d, J = 16.0 Hz, 1H), 7.49 (d, J = 15.5 Hz, 
1H), 7.28 (t, J = 8.0 Hz, 1H), 7.19 (d, J = 7.5 Hz, 1H), 7.09-7.11 (m, 2H), 6.93 (d, J = 8.0 Hz, 
1H), 4.09 (t, J = 6.5 Hz, 2H), 3.85 (s, 3H), 2.56-2.60 (m, 2H); 13C-NMR (125 MHz, (CDCl3), δ 
167.4, 160.2, 158.8, 143.5, 139.9, 135.1, 127.8, 127.2, 120.3, 120.1, 115.3, 112.1, 54.2, 40.6, 24.2. 
HRMS m/z (ES+): [M + Na]+ 314.0558 (theor 314.0560). 

Scheme 2. Proposed mechanism underlying the cytotoxicity of PL-6.

4. Materials and Methods
4.1. Materials

Roswell Park Memorial Institute (RPMI)-1640 was from Hyclone. 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT), rhodamine 123, 2′,7′-dichlorofluorescein diacetate,
GSH and GSSG Assay kit, and thiobarbituric acid were purchased from Beyotime. The annexin
V-FITC/PI apoptosis detection kit was from BD Biosciences. Substituted benzaldehyde, 2-
piperidone and piperlongumine were from EnergyChemical. All other chemicals were of the
highest quality available.

4.2. Synthesis of the PL Analogs
4.2.1. The Preparation of Cinnamoyl Chloride (Intermediate 2)

The cinnamoyl chloride 2 was prepared according to previously reported methods [17].
Briefly, substituted aldehyde (20 mmol) was condensed with malonic acid (24 mmol) in
the presence of piperidine (1.2 mL) to afford a crude solid. After, it was recrystallised from
ethanol to afford corresponding cinnamic acids 1. Then, intermediate 1 (2 mmol) reacted
with oxalyl chloride (6 mmol) in dry CH2Cl2 (4 mL) to produce cinnamoyl chloride 2.

4.2.2. The Preparation of 3-Chloro-5,6-dihydropyridin-2(1H)-one (Intermediate 4)

The intermediate 4 was acquired from 2-piperidone according to the previously re-
ported procedure [17]. Briefly, the mixture containing 2-piperidone (5 mmol), phosphorus
pentachloride (15 mmol) and chloroform (15 mL) was refluxed for 12 h. After cooling,
adjusting pH to 9, extracting with chloroform/methanol (10/1) and purifying by flash
cloumn chromatography, the intermediate 3 was obtained with a white solid. The inter-
mediate 3 (2.5 mmol) and lithium carbonate (7.5 mmol) was dissolved in DMF (Dimethyl
Formamide, 5 mL) and heated to 120 ◦C for 12 h. After removing the solvent, the residue
was extracted with chloroform and purified with cloumn chromatography to afford the
intermediate 4.

The mixture, containing intermediate 4 (2 mmol), cinnamoyl chloride 2 (2 mmol),
triethylamine (6 mmol) and dry CH2Cl2 (5 mL), was stirred at room temperature for 24 h.
After extracting with ethyl acetate and purification by cloumn chromatography, the target
product was obtained.

(E)-3-chloro-1-(3-(3-methoxyl-cinnamoyl))-5,6-dihydropyridin-2(1H)-one (PL-1): Yield 16.2%
(the yield is the reaction between intermediate 4 and cinnamoyl chloride 2), yellow solid,
1H-NMR (500 MHz, (CDCl3), δ 7.74 (d, J = 16.0 Hz, 1H), 7.49 (d, J = 15.5 Hz, 1H), 7.28 (t,
J = 8.0 Hz, 1H), 7.19 (d, J = 7.5 Hz, 1H), 7.09–7.11 (m, 2H), 6.93 (d, J = 8.0 Hz, 1H), 4.09 (t,
J = 6.5 Hz, 2H), 3.85 (s, 3H), 2.56–2.60 (m, 2H); 13C-NMR (125 MHz, (CDCl3), δ 167.4, 160.2,
158.8, 143.5, 139.9, 135.1, 127.8, 127.2, 120.3, 120.1, 115.3, 112.1, 54.2, 40.6, 24.2. HRMS m/z
(ES+): [M + Na]+ 314.0558 (theor 314.0560).
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(E)-3-chloro-1-(3-(3-trifluoromethylphenyl)acryloyl-5,6-dihydropyridin-2(1H)-one(PL-2):
Yield 12.6% (the yield is the reaction between intermediate 4 and cinnamoyl chloride
2), yellow solid, 1H-NMR (500 MHz, (CDCl3), δ 7.81 (s, 1H), 7.74 (d, J = 15.5 Hz, 1H), 7.74 (t,
J = 8.5 Hz, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.52 (d, J = 15.5 Hz, 1H), 7.49 (t, J = 7.5 Hz, 1H), 7.10
(t, J = 4.5 Hz, 1H), 4.09 (t, J = 6.5 Hz, 2H), 2.57–2.61 (m, 2H); 13C-NMR (125 MHz, (CDCl3),
δ 168.2, 161.5, 142.5, 141.3, 135.7, 131.6, 131.4, 129.4, 128.2, 126.7, 124.9, 123.1, 122.8, 41.8,
25.3. HRMS m/z (ES+): [M + Na]+ 352.0328 (theor 352.0325).

(E)-3-chloro-1-(3-(3-fluorine-cinnamoyl))-5,6-dihydropyridin-2(1H)-one (PL-3): Yield 4.5%
(the yield is the reaction between intermediate 4 and cinnamoyl chloride 2), yellow solid,
1H-NMR (500 MHz, (CDCl3), δ 7.68 (d, J = 15.5 Hz, 1H), 7.34–7.36 (m, 2H), 7.26–7.28 (m,
2H), 7.15 (d, J = 15.5 Hz, 1H), 7.08–7.11 (m, 1H), 3.86 (t, J = 6.0 Hz, 2H), 2.84–2.86 (m, 2H);
13C-NMR (125 MHz, (CDCl3), δ 169.4, 166.3, 164.0, 143.2, 136.9, 130.4, 124.4, 121.6, 117.4,
117.2, 114.8, 114.6, 45.4, 20.3. HRMS m/z (ES+): [M + Na]+ 302.0360 (theor 302.0358).

(E)-3-chloro-1-(3-(4-nitro-cinnamoyl))-5,6-dihydropyridin-2(1H)-one (PL-4): Yield 7.1%
(The yield is the reaction between intermediate 4 and cinnamoyl chloride 2), yellow solid,
1H-NMR (500 MHz, (CDCl3), δ 8.23 (d, J = 8.5 Hz, 2H), 7.72–7.75 (m, 3H), 7.56 (d, J = 16.0 Hz,
1H), 7.12 (t, J = 4.5 Hz, 1H), 4.10 (t, J = 6.0 Hz, 2H), 2.59–2.62 (m, 2H); 13C-NMR (125 MHz,
(CDCl3), δ 167.8, 161.5, 148.5, 141.5, 141.1, 140.9, 128.9, 128.1, 125.5, 124.1, 41.8, 25.3. HRMS
m/z (ES+): [M + Na]+ 329.0304 (theor 329.0305).

(E)-3-chloro-1-(3-(4-trifluoromethyl-cinnamoyl))-5,6-dihydropyridin-2(1H)-one (PL-5):
Yield 3.7% (the yield is the reaction between intermediate 4 and cinnamoyl chloride 2),
yellow solid, 1H-NMR (500 MHz, (CDCl3), δ 7.73 (d, J = 15.5 Hz, 1H), 7.66 (t, J = 8.5 Hz, 2H),
7.62 (t, J = 8.5 Hz, 2H), 7.53 (d, J = 15.5 Hz, 1H), 7.11 (t, J = 4.5 Hz, 1H), 4.10 (t, J = 6.5 Hz,
2H), 2.58–2.61 (m, 2H); 13C-NMR (125 MHz, (CDCl3), δ 167.0, 160.3, 141.2, 140.2, 137.1,
127.3, 127.0, 124.6, 122.6, 121.7, 40.6, 28.6, 24.2. HRMS m/z (ES+): [M + Na]+ 352.0325 (theor
3352.0328).

(E)-3-chloro-1-(3-(4-fluorine-cinnamoyl))-5,6-dihydropyridin-2(1H)-one (PL-6): Yield 7.1%
(the yield is the reaction between intermediate 4 and cinnamoyl chloride 2), yellow solid,
1H-NMR (500 MHz, (CDCl3), δ 7.71 (d, J = 15.5 Hz, 1H), 7.57–7.59 (m, 2H), 7.42 (d, J = 15.5
Hz, 1H), 7.09 (t, J = 4.5 Hz, 1H), 7.05 (t, J = 8.5.5 Hz, 1H), 4.08 (t, J = 6.5 Hz, 2H), 2.56–2.59
(m, 2H); 13C-NMR (125 MHz, (CDCl3), δ 168.4, 165.0, 161.5, 143.3, 141.1, 131.2, 130.3, 128.3,
121.0, 116.0, 41.7, 25.3. HRMS m/z (ES+): [M + Na]+ 302.0358 (theor 302.0360).

4.3. Cytotoxicity Assay

The cytotoxicity of PL analogs against cancer cells was evaluated by the MTT as-
say [26]. In brief, A549 (3 × 103/well) and SK-OV3 (5 × 103/well) cells were treated with
PL analogs for 48 h before measuring.

4.4. Stability Test

The stability of PL analogs in PBS buffer (100 mM) at 25 ◦C was surveied as previ-
ously reported [27]. Briefly, we observed the changes of maximun absorbance of the test
compounds for 120 min at 10-min intervals.

4.5. Cell Cycle Analysis

After incubation with the test compounds for 15 h, A549 cells were collected, dyed
with PI, and analyzed by flow cytometry as previously reported [26].

4.6. Cancer Cells Apoptosis Assay

After treatment with the test compounds for 18 h, A549 cells were gathered, stained
with FITC Annexin-V and PI, and analyzed with a flow cytometry as previously re-
ported [28].
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4.7. ROS Detection

A549 (3 × 105) cells were incubated with the tested compounds for 6 h, then, the cells
were collected, stained with DCFH-DA for 30 min, and subsequently analyzed by flow
cytometry as described previously [28].

4.8. The Evaluation of Intracellular Redox Balance Levels

After treatment with the test compounds for 6 h, the cells were harvested, lysed, and
assayed for determining the ratio of GSH/GSSG as previously reported [26].

4.9. Determination of Lipid Peroxidation

A549 cells (3 × 105 cells/well) were treated with the test compounds for 15 h before
collecting. After lysing in RIPA buffer (RIPA Lysis Buffer), the supernatant was used to
determine the lipid peroxidation as previously described [27].

4.10. Measurement of Mitochondrial Membrane Potential

Incubation with the test compounds for 15 h, the cells were harvested, stained with
Rhodamine 123, and analyzed by flow cytometry as previously reported [27].

4.11. Electrophilicity Assessment by a Kinetic Thiol Assay

The electrophilicity of PL analogs were evaluated by the pseudo-first-order assay and
the results were expressed second-order rate constants (k2) as previously reported [29].
Briefly, the test compounds (50 µM) were mixed with 100-fold cysteamine at 25 ◦C, and
monitored the decay of their wavelength maxima by using an ultraviolet–visible (UV-Vis)
spectrophotometer. The second-order rate constants (k2) were obtained by plotting the
pseudo-first-order constants vs. [cysteamine].

4.12. Determination of the Reaction Site by Nuclear Magnetic Resonance (1H-NMR) and
High-Resolution Mass Spectrometry (HRMS)

1H-NMR spectra of PL-6 (30 mM in d6-DMSO) after adding cysteamine (90 mM in
d6-DMSO) at set intervals (0, 1 h) were recorded using a Bruker AV 500 spectrometer.
After incubation 3 days, the reaction products were monitored by HRMS (Acquity UPLC
I-Class/Xevo G2-XS QTOF) [17].

4.13. Western Blot Analysis

Briefly, after treatment with the test compounds for 18 h, A549 cells were collected
and lysed with ice-cold RIPA lysis buffer containing proteinase inhibitors. The expression
of TrxR proteins after treatment with the test compounds was analyzed by Western blot as
previously described [30].

4.14. Statistical Analysis

The data are expressed as the mean ±S.D. of at least three independent experiments.
Data were analyzed using one-way analysis of variance (ANOVA) followed by the

Dunnett test (comparing all drug treatment groups vs. control). The values were considered
significant at p < 0.05. *: p < 0.05; **: p < 0.01; ***: p < 0.001 compared with control.

Supplementary Materials: The data of the 1H NMR, 13C-NMR and HRMS of PL analogs are available
in the supporting information.
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