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ABSTRACT Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is an im-
portant malaria virulence factor. The protein family can be divided into clinically relevant
subfamilies. ICAM-1-binding group A PfEMP1 proteins also bind endothelial protein C re-
ceptor and have been associated with cerebral malaria in children. IgG to these PfEMP1
proteins is acquired later in life than that to group A PfEMP1 not binding ICAM-1. The
kinetics of acquisition of IgG to group B and C PfEMP1 proteins binding ICAM-1 is un-
clear and was studied here. Gene sequences encoding group B and C PfEMP1 with
DBL� domains known to bind ICAM-1 were used to identify additional binders. Levels of
IgG specific for DBL� domains from group A, B, and C PfEMP1 binding or not binding
ICAM-1 were measured in plasma from Ghanaian children with or without malaria.
Seven new ICAM-1-binding DBL� domains from group B and C PfEMP1 were identified.
Healthy children had higher levels of IgG specific for ICAM-1-binding DBL� domains
from group A than from groups B and C. However, the opposite pattern was found in
children with malaria, particularly among young patients. Acquisition of IgG specific for
DBL� domains binding ICAM-1 differs between PfEMP1 groups.
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Plasmodium falciparum malaria is a major cause of morbidity and mortality among
children in sub-Saharan Africa. Individuals living in areas with high-intensity trans-

mission of P. falciparum acquire clinical immunity to the disease during childhood. The
protection is mediated to a considerable extent by IgG specific for members of the P.
falciparum erythrocyte membrane protein 1 (PfEMP1) family, expressed on the surface
of infected erythrocytes (IEs) (reviewed in reference 1). PfEMP1 proteins are highly
polymorphic and mediate IE adhesion to a variety of different receptors on endothelial
cells (2, 3). The proteins are encoded by approximately 60 var genes, and transcriptional
switching among these genes allows the parasite to change PfEMP1 expression and
escape host antibodies (3, 4). This protects IEs harboring parasites from clearance by the
spleen (5) and promotes survival and growth in the host (reviewed in reference 1).
PfEMP1 proteins can be classified into three major groups (A, B, and C) based on
sequence and chromosomal context of the var genes (6, 7). Parasite expression of
group A PfEMP1 has repeatedly been associated with severe malaria (8, 9). Protective
immunity to severe malaria is acquired before immunity to uncomplicated disease and
asymptomatic infection (10, 11), and this is paralleled by acquisition of group A
PfEMP1-specific IgG early in life (12, 13).

PfEMP1 proteins are characterized by their constituent Duffy-binding-like (DBL) and
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cysteine-rich interdomain region (CIDR) domains (2–4, 14). Particular subtypes of DBL�

and CIDR� domains have been associated with binding to endothelial receptors such
as intercellular adhesion molecule 1 (ICAM-1), endothelial protein C receptor (EPCR),
and CD36 (15–17). More recently, we identified particular group A PfEMP1 proteins that
can bind both ICAM-1 and EPCR (18). The ICAM-1-binding DBL� domains of such group
A PfEMP1 proteins are characterized by a specific sequence motif, and IgG specific to
them is acquired later in life than IgG specific for group A DBL� domains that do not
bind ICAM-1 (18, 19).

The acquisition pattern of ICAM-1-binding group B and C DBL�-specific IgG is
unknown. Therefore, the current study was designed to provide such data and to
compare IgG reactivity to that of different subtypes of DBL� domains in Ghanaian
children with or without P. falciparum malaria. The aim was to provide increased
understanding of how antibody-mediated immunity to PfEMP1 is acquired following
natural exposure to P. falciparum.

RESULTS
Identification of ICAM-1-binding DBL� domains. We have previously identified a

novel family of group A ICAM-1-binding DBL� domains associated with cerebral malaria
(18). Here, we used BLASTP searches and amino acid sequences encoding ICAM-1-
binding group B and group C DBL� domains from P. falciparum IT4 (20) to search for
additional DBL� domains predicted to bind ICAM-1. Seven new sequences were identified
by this approach. The encoded domains were a DBL�3-type domain (GenBank accession
no. KOB58843/HB3VAR34) and a DBL�5-type domain (KOB63129/HB3VAR21) from HB3,
two DBL�5-type domains from Dd2 (AAA75396/Dd2VAR01A and KOB84711/
Dd2VAR21), one DBL�5-type domain from 3D7 (PFL0020w), and one DBL�5-type
domain from each of two field isolates (ERS009963 and ERS010653). Dd2VAR21/
KOB84711 was identical to the previously published IT4VAR13, except for one residue
(E instead of V) in DBL� and one residue (C instead of R) in the ATS region. All seven
new domains bound ICAM-1 as predicted (Fig. 1A) and clustered together with other
ICAM-1-binding DBL� domains from groups B and C (Fig. 1B). The average sequence
similarity of the new group B and C ICAM-1-binding DBL� domains was 50%, which is
comparable to that of previously identified ICAM-1-binding group A domains (58%)
(18). Domains downstream of the ICAM-1-binding DBL� domains belonged to groups
and subgroups similar to those in the previously identified ICAM-1-binding group B and
C PfEMP1 proteins (Fig. 1C). To validate these findings further, we immunized rats with
one of the domains (HB3VAR21-DBL�5_D4) and used the antiserum to select P.
falciparum HB3 to express VAR21 on the surface of IEs (Fig. 1D). HB3VAR21� IEs bound
ICAM-1 at high levels (Fig. 1E), confirming the ability to predict the IE adhesion
phenotype from var gene sequences.

IgG specific for ICAM-1-binding group A DBL� domains dominates in healthy
children. Group A PfEMP1-specific IgG is acquired earlier in life than antibodies
targeting group B and C PfEMP1 antigens, and IgG to group A PfEMP1 therefore tends
to dominate among healthy individuals living in areas with natural transmission of P.
falciparum parasites (12, 21, 22). This was also the case here, when we compared IgG
reactivity to ICAM-1-binding DBL� domains in group A and group B PfEMP1 proteins,
employing plasma from a cohort of healthy Ghanaian children. Because only small
sample volumes were available for this testing, we selected five of the ICAM-1-binding
group B DBL� proteins identified above and five previously identified corresponding
domains from group A (19). The IgG reactivity to each of the ICAM-1-binding DBL�

domains from group A was higher than the reactivity to any of the domains from group
B. This was consistently the case with samples from the same donors but collected at
six different time points over a 1-year period (Fig. 2; also see the data set in the
supplemental material). This finding extends the earlier reports by demonstrating that
the dominance of group A PfEMP1-specific IgG among healthy individuals remains
when the comparison is restricted to ICAM-1-binding DBL� domains only.
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FIG 1 ICAM-1-binding DBL� domains. (A) ICAM-1 binding (ELISA optical density at 450 nm [OD450 nm]; means � SD from three independent
experiments) of 11 DBL� domains, seven of which were predicted to bind ICAM-1 (6 group B and 1 group C). PFD1235w_D4 (group A) and

(Continued on next page)
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However, when we used plasma from children with acute P. falciparum malaria
instead of plasma from healthy children, the pattern was the opposite, as levels of IgG
specific for group B DBL� domains were higher than those for group A domains (Fig.
2). This suggests that acute malaria episodes markedly perturb the steady-state
(“healthy”) hierarchy of IgG reactivity to group A and group B PfEMP1 proteins, leading
to a transient inversion of the group-specific IgG ratio. To examine this possibility
further, we proceeded with a more detailed analysis of DBL�-specific antibody re-
sponses, including kinetics and a larger panel of domains.

The PfEMP1 group hierarchy of DBL�-specific IgG is influenced by malaria
episodes. Plasma levels of IgG to P. falciparum antigens, including PfEMP1, tend to
increase in relation to malaria episodes among individuals with natural exposure to
these parasites but decline again shortly after resolution of the infection (23, 24). The
IgG responses to a large panel of DBL� domains in Ghanaian children monitored over
6 weeks after acute P. falciparum malaria episodes showed a similar pattern. Responses
were highly variable, and marked but mostly transient IgG responses to all the different
types of DBL� domains were observed in some but not all children (Fig. 3; also see the
data set in the supplemental material). Nevertheless, the most prominent overall
increase in DBL�-specific IgG reactivity associated with malaria episodes was to group
B and C antigens (Fig. 3C). This finding was underpinned by analysis of IgG responses
to the individual DBL� domains 2 weeks after admission, where responses generally
peaked compared to the levels on admission and at week six (Fig. 3 and 4; also see the
data set in the supplemental material). At that time, IgG reactivity to all but one of the
ICAM-1-binding DBL� antigens from group B and C PfEMP1 was higher than that to
ICAM-1-binding group A domains (Fig. 4B). The difference between the two groups of
PfEMP1 antigens was due to low IgG reactivity against group A DBL� domains in
children younger than 7 years (Fig. 4C). Furthermore, the IgG reactivity to group B and
C domains did not differ between age groups (P � 0.5) (Fig. 4C), and significantly more

FIG 1 Legend (Continued)
PFD1235w_D5 (*) were used as positive and negative controls, respectively. (B) Phylogeny of ICAM-1-binding (red gene names) and nonbinding (blue
gene names) DBL�, shown as a maximum likelihood tree of 62 DBL� domains (18, 20, 54, 55). The new DBL� domains tested in this study are indicated
by black dots. UKN indicates unknown group identity. ICAM-1 binding DBL� domains from groups A (orange shading), B (green shading), and C (gray
shading) are highlighted. (C) Schematic domain structure of ICAM-1-binding group B and C PfEMP1 proteins, with domain cassettes (DC) indicated by
red boxes. ICAM-1 binders identified in this study (dark green shading) and by Janes et al. (20) (light green shading) are also indicated. The classification
and nomenclature of domain groups and subgroups follow those of Rask et al. (56). ND, not determined. (D) Surface expression of HB3VAR21 P.
falciparum HB3 IEs, visualized by incubation with HB3VAR21-specific antiserum (gray) or without antiserum (black). (E) Ability of HB3VAR21� IEs to bind
to recombinant ICAM-1, EPCR, and CD36. Mean adhesion (three independent experiments) is shown, with SD indicated by error bars.

FIG 2 Difference in IgG responses to group A and B DBL� domains. Blood samples were obtained from 124
Ghanaian children (labeled Mal�) 2 weeks after they were diagnosed with acute P. falciparum malaria and from 91
healthy children at six different time points over a 1-year period (May, September, November, January, March, and
May). (A) Mean IgG scores in all donors against five DBL� domains from group B (white circles; PFL0020w,
KOB84711, AAA75396, ERS009963, and KOB63129) and five from group A (black circles; PFD1235w, JF712902,
KJ866957, Dd2VAR32, and AFJ66668) are shown. (B) Difference (ΔIgG) in mean IgG scores against the same five
group B and five group A recombinant DBL� domains.
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of the children were seropositive for group B DBL�-specific IgG (62 to 85%) than for
corresponding domains from group A (30 to 60%) (P � 0.05) (Table S3). Overall, it
appears that most of the clinical episodes involved parasite populations expressing a
mixture of PfEMP1 variants, including proteins containing different types of DBL�

domains (Table S3), although parasites expressing group A ICAM-1-binding DBL�

domains seemed underrepresented among the younger children. Furthermore, our
data suggest that prominent responses to group B and C DBL� domains can cause a
transient inversion of the ratio of IgG specific for ICAM-1-binding group A as well as
group B and C DBL�.

IgG reactivity to ICAM-1-binding DBL� domains in group A and groups B and
C is similar in children with uncomplicated and those with severe, noncerebral
malaria. Previous studies have shown that IEs obtained from young children with
severe malaria primarily express PfEMP1 encoded by group A var genes, while expres-
sion of PfEMP1 encoded by group B and group C var genes appears associated with
uncomplicated disease in slightly older children (8, 25–27). We therefore proceeded to
compare the DBL�-specific IgG responses in children with severe malaria to those in
children with uncomplicated malaria. IgG reactivity to ICAM-1-binding group B and C
DBL� domains was higher than that to corresponding group A domains when each
group of patients was considered separately (Fig. 5; also see the data set in the
supplemental material). However, no statistically significant differences were noted
when IgG reactivity to ICAM-1-binding DBL� domains from either group A or groups B
and C was compared between children with severe or uncomplicated malaria (Fig. 5).
While this may seem at variance with the well-documented relationship between
expression of group A PfEMP1 and severe malaria, it should be noted that the subset
of group A dual-receptor-binding PfEMP1 containing ICAM-1-binding DBL� domains
has been associated specifically with cerebral malaria and not severe malaria in general
(18), and that only 2 of the 124 children studied fulfilled the criteria for such a diagnosis.

DISCUSSION

P. falciparum causes the most severe form of malaria and is responsible for the vast
majority of malaria-related deaths (28). This is not least due to the presence in this
species of the PfEMP1 family of adhesive proteins, which are expressed on the surface
of IEs in a mutually exclusive manner (only one variant expressed at a time) (4). Different
members of the PfEMP1 family enable the adhesion of IEs to a range of vascular host
receptors, which facilitate IE evasion of splenic clearance (5). It furthermore promotes
tissue inflammation and organ dysfunction, while parasite switching among different

FIG 3 Individual mean IgG score of each child against DBL� domains at admission (wk0) and two weeks (wk2) and six weeks (wk6) later.
(A) Mean plasma IgG score of each individual Ghanaian child (n � 124) against a total of 31 group A, B, and C DBL� domains. (B) Mean
IgG scores in individual children against 14 ICAM-1-binding DBL� domains from group A. (C) Nine ICAM-1-binding DBL� domains from
groups B and C. (D) Eight non-ICAM-1-binding DBL� domains from group A. The wk0 data from 2014 in panels B and D were published
in reference 19. Median levels (dots) and their percentiles (25% and 75%; error bars) are indicated in red. The statistical significance
(Mann-Whitney rank sum test) of pairwise comparisons is shown along the top of each panel.

IgG to ICAM-1-Binding DBL� Domains Infection and Immunity

October 2019 Volume 87 Issue 10 e00224-19 iai.asm.org 5

https://iai.asm.org


FIG 4 Plasma levels of IgG specific for DBL� domains from group A, group B, and group C. Samples were obtained from 124 Ghanaian
children diagnosed with severe (Œ) or nonsevere P. falciparum malaria 2 weeks prior to taking the blood sample. (A) Levels of IgG
antibodies specific for individual ICAM-1-binding DBL� domains (columns) from group A (left) and groups B and C (center) or for
non-ICAM-1-binding domains from group A (right). Shading indicates the IgG level score: black, 4; dark gray, 3; gray, 2; light gray, 1;
white, 0. The domain subtypes are indicated in Table S1. Danish controls (n � 20) did not react with any of the domains (data not
shown). (B) Mean week 2 scores of IgG specific for individual ICAM-1-binding DBL� domains from group A (black) and groups B and
C (white). Error bars indicate 95% confidence intervals. (C) Mean IgG scores against all DBL� domains in individual children, grouped
according to age. Medians are indicated by horizontal red lines.
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PfEMP1 family members (variants) frustrates the development of protective PfEMP1-
specific immunity (reviewed in reference 1).

Severe P. falciparum malaria has repeatedly been linked to IE adhesion to particular
host receptors, mediated by groups and subgroups of structurally related group A
PfEMP1 (reviewed in reference 1). Group A PfEMP1 proteins mediating adhesion to
EPCR appear to be of particular relevance to the pathogenesis of severe malaria in
patients with or without cerebral symptoms (8, 17, 25, 26, 29, 30). Cerebral malaria, one
of the most severe complications of P. falciparum infection (reviewed in reference 31),
is associated with expression of a subgroup of group A PfEMP1 variants with a dual-
receptor adhesion phenotype (18, 29). These proteins carry an ICAM-1-binding DBL�

domain next to an EPCR-binding CIDR�1 domain. Although ICAM-1-binding DBL�

domains also occur in group B and C PfEMP1, these domains are structurally distinct, do
not have a neighboring EPCR-binding but a CD36-binding CIDR�2-6 domain, and do
not appear to play a role in cerebral malaria pathogenesis (18). Of the two domain
types, CIDR� domains are more commonly recognized than DBL domains (12, 32), and
some studies have shown acquisition of group A CIDR�1-specific IgG to precede
immunity to group B and C CIDR�2-6 domains (33), while others found no such link (12,
34). Two recent studies found similar antibody reactivity against group A CIDR�1 in
uncomplicated and severe malaria during acute disease (34, 35), while at convalescence
older children with severe (likely noncerebral) malaria had higher antibody levels
against such EPCR binding CIDR�1 than those with uncomplicated malaria (34). The
PfEMP1 reactivity between convalescent groups did not differ in the study by Kessler et
al. (35), although higher seroprevalence to the conserved group A-associated ICAM-1-
binding DBL� domain (18) was observed relative to that of CIDR�1.

In a longitudinal study assessing antibody acquisition against 32 non-ICAM-1-
binding DBL domains (three �, eight �, five �, nine �, six �, and one �), asymptomatic
Tanzanian children were shown to acquire antibodies to group A prior to group B and
C domains (13). In addition, it has recently been shown that the breadth of antibodies
that inhibit adhesion of IEs to ICAM-1 increases with age in Malian children (36),
although the study did not investigate whether these IEs expressed group A, B, or C
PfEMP1 antigens. We find that among group A PfEMP1 proteins, acquisition of IgG to
DBL� domains that do not bind ICAM-1 appears to precede acquisition of IgG to those
that do (19).

As the acquisition pattern of IgG specific for ICAM-1-binding DBL� domains from
groups B and C is not currently known, we first used a BLASTP search to extract new
potential ICAM-1-binding DBL� domains from these PfEMP1 groups. Seven such do-
mains were identified and shown to bind ICAM-1 and to be structurally related to
known ICAM-1-binding DBL� domains from group B and C PfEMP1 (Fig. 1).

In healthy children, we found that IgG reactivity to ICAM-1-binding DBL� domains

FIG 5 Mean IgG scores of 124 individual Ghanaian children against DBL� domains from group A (black)
and groups B and C (white) according to severity. Medians are indicated by horizontal red lines.
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from group A was higher than reactivity to corresponding domains from group B and
C PfEMP1 (Fig. 2). Overall, these findings are in agreement with the previously reported
dominance of responses to group A PfEMP1 over other PfEMP1 groups (12, 13, 37).
However, when the assays were repeated with plasma obtained from children with
acute malaria, we found higher overall IgG reactivity to ICAM-1-binding DBL� domains
from groups B and C rather than group A (Fig. 2). Furthermore, the most prominent
change after acute malaria was a transient increase in IgG reactivity to ICAM-1-binding
DBL� domains from groups B and C (Fig. 3), and 2 weeks after the acute attack,
reactivity to each of the group B and C ICAM-1-binding DBL� domains was higher than
that to the corresponding group A domains (Fig. 4). The most parsimonious explana-
tion for the disease-related inversion of the ratio of IgG reactivity to ICAM-1-binding
DBL� domains from group A versus groups B and C is that the disease episodes in our
study children were caused mainly by parasites expressing group B and C PfEMP1 or
group A PfEMP1 without ICAM-1-binding DBL� domains. This interpretation is consis-
tent with the fact that only two of the study children were diagnosed with cerebral
malaria (associated with parasites expressing group A DBL� domains [18]). This in turn
may explain why we did not observe differences in IgG reactivities between children of
similar age with severe and uncomplicated malaria (Fig. 5). In agreement with this, a
recent study found that children with uncomplicated and cerebral malaria had similar
breadth and magnitude of responses to different P. falciparum antigens, including
DBL� domains (35). Finally, our data suggest that IgG specific for ICAM-1-binding DBL�

domains from group A and associated specifically with cerebral malaria (18) is acquired
later in life than IgG specific for ICAM-1-binding DBL� domains from group B and C
PfEMP1 (Fig. 4C). We previously made a similar observation when IgG reactivity to
ICAM-1-binding DBL� domains in group A was compared to reactivity to DBL� domains
from the same group that do not bind ICAM-1 (19). Thus, the age where IgG specific for
group A ICAM-1-binding DBL� domains is acquired coincides with the age where
cerebral malaria incidence peaks (38, 39). This is in striking contrast to the case for
group A DBL� domains that do not bind ICAM-1 (19) and for group B and C DBL�

domains that do (this study). However, whether a causal relationship exists remains to
be investigated in a study area where the incidence of cerebral malaria is higher.

Opsonizing antibodies against PfEMP1 have been suggested to play a role in
immunity to P. falciparum malaria (40), while other mechanisms, such as recruitment of
complement (41), interaction with immune cells (42), and inhibition of vascular adhe-
sion, might also play a role. Sequestration of P. falciparum IEs to the microvascular
endothelium contributes to the pathogenesis of severe malaria in children, and broadly,
cross-reactive antibodies inhibiting the interaction between ICAM-1 and DBL� domains
are detectable in immune plasma (18, 19, 29). We were unable to test these potential
effector functions due to the limited plasma volumes available, but these are aspects
that should be investigated in future studies.

In conclusion, our study demonstrates significant differences in the acquisition of
IgG to ICAM-1-binding DBL� domains from group A as well as group B and C PfEMP1.
These differences are likely to be of significance in the development of PfEMP1-based
vaccines to prevent severe P. falciparum malaria in general and cerebral malaria in
particular (43).

MATERIALS AND METHODS
Study site and participants. The study was conducted from 2014 to 2015 at Hohoe Municipal

Hospital in the Volta Region of Ghana. Plasma samples were collected from children aged 1 to 12 years
(n � 124) who reported with P. falciparum malaria (Table 1) (18, 19, 44). The inclusion criteria were a
positive rapid diagnostic test for malaria, a positive blood smear of asexual P. falciparum parasites
(�2,500/�l), and fever or a history of fever (�37.5°C) in the preceding 24 h. Patients were categorized as
having severe malaria if they had unarousable coma (Blantyre coma score of 	2) without other known
causes, severe malarial anemia (hemoglobin of �5 g/dl), hyperparasitemia (
250,000/�l), or respiratory
distress (i.e., rapid, deep, and labored breathing) (45). Among the severe malaria patients, 15 children
were diagnosed with respiratory distress, eight with severe anemia, and two with cerebral malaria.
Children with uncomplicated malaria were cases without any of the severe disease symptoms; all
children in this group were treated as outpatients. Blood samples were collected on the day of hospital
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admission and 2 and 6 weeks later. Patients receiving blood transfusion prior to follow-up were excluded
from the study. Plasma collected from healthy children (n � 91) (Table 2) was also included in the study
(46). A minority of those children had occasional, asymptomatic parasitemia.

The study was approved by the Ethical Review Committee of the Ghana Health Services (file GHS-ERC
08/05/2014).

Identification of group B and group C DBL� domains. P. falciparum IT4 amino acid sequences
encoding published ICAM-1-binding group B and group C DBL� domains, var01 (GenBank accession no.
AAO67411), var13 (ABM88750), var14 (AAD03351), var16 (AAS89259), var27 (ABM88759), var31
(AAF18980), and var41 (ABM88768) (20), were used to extract by BLASTP search new potential ICAM-1-
binding DBL� domains from GenBank or from assemblies of Illumina whole-genome sequencing data as
described previously (47).

Production of recombinant proteins. His-tagged DBL� domains (see Table S1 in the supplemental
material) were expressed in Escherichia coli Shuffle C3030 cells (New England Biolabs) from synthetic
genes (https://eurofins.dk) or from DNA constructs generated by PCR from genomic DNA using specific
primers (Table S2). The domains were purified by immobilized metal affinity chromatography (18, 19, 48).
Recombinant ICAM-1-Fc (D1-D5 with a human Fc tag) was expressed in HEK293 cells and purified on a
HiTrap protein G HP column (GE Healthcare) as described previously (48).

ELISA. Binding of ICAM-1-Fc to immobilized DBL� domains and levels of antigen-specific IgG in
human plasma (diluted 1:100) were assessed by enzyme-linked immunosorbent assay (ELISA) using
MaxiSorp plates (Sigma-Aldrich).

The plates were coated with 22 group A and nine group B and C recombinant DBL� proteins
(2 �g/ml; overnight at 4°C). Sixteen domains were already known to bind ICAM-1 (18, 20), eight were
already known not to bind ICAM-1 (19), and the remaining seven DBL� proteins (groups B and C) were
predicted to bind ICAM-1 based on the sequence analysis done in this study.

Binding of ICAM-1-Fc and human IgG antibodies to the immobilized DBL� domains was detected
using horseradish peroxidase-conjugated rabbit anti-human IgG (1:3,000; Dako) (18). Plates were devel-
oped using TMB PLUS2 (Kem-En-Tec) according to the manufacturer’s instructions. Optical density (OD)
values were read at 450 nm using a VersaMax microplate reader (Molecular Devices). Plasma antibody
reactivity was expressed in arbitrary ELISA units (EU) calculated by the equation (ODsample � OD

background
)/

(ODpositive control � ODbackground) � 100 (49) and translated into IgG level scores 0 (0 to 25 EU), 1 (26 to
50 EU), 2 (51 to 75 EU), 3 (76 to 100 EU), and 4 (�100 EU). A pool of P. falciparum-exposed Tanzanian
individuals and 26 nonexposed Danish individuals were used as positive and negative controls, respec-
tively. The mean (plus two standard deviation [SD]) value among the negative-control plasma samples
was used as a cutoff value to define seropositivity.

Generation of antiserum. Rats were immunized with recombinant HB3VAR21-DBL�_D4 as de-
scribed previously (48). All experimental animal procedures were approved by The Danish Animal
Procedures Committee (Dyreforsøgstilsynet) as described in permit no. 2013-15-2934-00920 and accord-
ing to the guidelines described in Danish acts LBK 1306 (23/11/2007) and BEK 1273 (12/12/2005).

Plasmodium falciparum parasite culture. P. falciparum HB3 was maintained in vitro and selected
with rat anti-HB3VAR21-DBL�_D4 as described previously (48, 50). IE surface expression of PfEMP1 was
regularly monitored by flow cytometry, and only cultures with more than 60% HB3VAR21� IEs were used.
The identity and clonality of the parasites used were routinely verified by genotyping as described
previously (51). Mycoplasma infection was excluded regularly using the MycoAlert mycoplasma detec-
tion kit (Lonza) according to the manufacturer’s instructions.

Flow cytometry. P. falciparum IEs were DNA labeled with ethidium bromide and surface labeled with
rat anti-HB3VAR21-DBL�_D4 (1:20) and fluorescein isothiocyanate (FITC)-conjugated secondary rabbit
anti-rat IgG (1:150; Vector Labs) as described previously (50). Fluorescence data from ethidium bromide-
positive cells were collected on an FC500 MPL flow cytometer (Beckman Coulter) and analyzed using
WinList, version 9.0 (Verity Software House).

Parasite adhesion spot assay. Falcon 1007 petri dishes were coated overnight (4°C) with recom-
binant CD36 (0.05 �g/spot), ICAM-1-Fc (0.5 �g/spot), or EPCR (0.1 �g/spot) in triplicates (48). Dishes were
blocked (1 h) in phosphate-buffered saline (PBS) with 3% bovine serum albumin (BSA). Mature IEs were
adjusted to 3% parasitemia and 1% hematocrit in RPMI 1640 supplemented with 2% normal human
serum, added to the dishes, and incubated (37°C, 30 min) as described previously (52). After removal of
nonadherent IEs by sequential washing using prewarmed RPMI wash buffer, the remaining cells were
fixed in 1.5% glutaraldehyde (15 min) and stained with Giemsa. After rinsing with water, the dishes were

TABLE 2 Characteristics of healthy Ghanaian study participants

Characteristic

Value for yeara:

1 2

May (n � 78) Sept (n � 86) Nov (n � 80) Jan (n � 78) March (n � 73) May (n � 63)

Age (yr) 4 (3; 4.5) 4 (3; 4.5) 4 (3; 4.5) 4 (3; 4.5) 4 (2.5; 4.5) 4 (2.75; 4.5)
Hemoglobin (g/dl) 10.7 (9.6; 11.3) 10.1 (8.9; 10.9) 10.5 (9.5; 11.3) 10.8 (9.9; 11.7) 10.3 (9.3; 11.5) 11.0 (10.3; 11.9)
Parasitemia

(no. of parasites/�l)
1,240 (560; 3,610) 2,400 (1,060; 7,930) 1,500 (510; 3,850) 2,080 (670; 4,970) 920 (360; 2,560) 1,000 (600; 2,320)

Temperature (°C) 37.1 (36.8; 37.2) 37.1 (36.8; 37.2) 37.0 (36.8; 37.1) 37.0 (36.7; 37.2) 37.1 (36.9; 37.3) 37.1 (36.9; 37.2)
aValues are medians (25th; 75th percentile).
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air dried overnight before the number of adherent IEs per square millimeter was quantified using ImageJ
software (http://rsb.info.nih.gov/ij/). A minimum of three independent experiments in triplicate were
done. All assays were blinded.

PfEMP1 sequence similarity and phylogenetic trees. The Praline multiple-sequence alignment
tool (http://www.ibi.vu.nl/programs/pralinewww/) was used to calculate the average amino acid simi-
larity of DBL� domains. Multiple alignments of DBL� domains were made using Muscle (https://www
.ebi.ac.uk/Tools/msa/muscle/) and analyzed using Mega 5.0 software (53) to create cladograms.

Statistics. We used Kruskal-Wallis one-way analysis of variance on ranks and Mann-Whitney test to
assess intergroup differences. Data analysis was done using SigmaPlot 13.0 (Systat Software Inc., United
Kingdom).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/IAI

.00224-19.
SUPPLEMENTAL FILE 1, PDF file, 0.04 MB.
SUPPLEMENTAL FILE 2, XLSX file, 0.3 MB.
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