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Diffusion tractography allows identification and measurement of structural tracts in the
human brain previously associated with motivated behavior in animal models. Recent
findings indicate that the structural properties of a tract connecting the midbrain to
nucleus accumbens (NAcc) are associated with a diagnosis of stimulant use disorder
(SUD), but not relapse. In this preregistered study, we used diffusion tractography in a
sample of patients treated for SUD (n = 60) to determine whether qualities of tracts
projecting from medial prefrontal, anterior insular, and amygdalar cortices to NAcc
might instead foreshadow relapse. As predicted, reduced diffusion metrics of a tract pro-
jecting from the right anterior insula to the NAcc were associated with subsequent
relapse to stimulant use, but not with previous diagnosis. These findings highlight a
structural target for predicting relapse to stimulant use and further suggest that distinct
connections to the NAcc may confer risk for relapse versus diagnosis.
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Around the world during the year 2020, over 250 million people reported using drugs
for nonmedical purposes, with 35.6 million conceding problematic use of drugs (1).
Problematic drug use imposes a significant burden on individuals and societies alike by
exacting substantial and lasting physical, psychological, economic, and social costs (2).
Successful treatments are elusive and relapse remains prevalent (3, 4). Relapse rates vary
as a function of substance type (5) but are particularly problematic in the case of stimu-
lant use disorder (SUD) (6) (including [meth]amphetamine and [crack] cocaine). For
instance, estimates indicate that ∼50% of methamphetamine users relapse within 6 mo
and over 60% relapse within 12 mo after release from treatment (7). Consistent with
these estimates, we previously found that 36% of SUD patients relapsed within 3 mo
after release from treatment (8). Recent trends in drug use increase the urgency of
addressing SUD. While cocaine remains a default choice of drug in the United States,
use of stimulants like amphetamines increased by 40% from 2016 to 2018, coinciding
with a surge in drug treatment admissions with amphetamine-type stimulants being
the primary drug of concern (1). Research into key factors that contribute to relapse to
stimulant use might reveal novel targets for prediction, intervention, and treatment.
Predicting drug relapse represents an important first step toward developing better

interventions for prevention, but very few measures reliably predict relapse to stimulant
use (9). While many physiological, psychological, social, and clinical factors have been
associated with the risk of relapse across a broad range of substances (3, 5), the role of
these factors in relapse to stimulant use is less clear. Since addiction has been associated
with alterations in neural circuits (10, 11), new neuroimaging methods offer the hope
that neural markers related to addiction can be noninvasively measured in humans (12).
Research on animal models has centrally implicated dopaminergic projections from

the midbrain in addiction (13, 14). Specifically, dopamine release and activation of
receptors in the nucleus accumbens (NAcc) plays a critical role in supporting drug self-
administration (15, 16). Structurally, through its white-matter connections, NAcc pro-
jections then propagate signals through ascending prefrontal-striatal loops thought to
convert affective impulses into motivated action (17–19). Functionally, NAcc activity
in response to drug cues may predict relapse to stimulant use in human patients after
leaving treatment (8). If NAcc activity can promote relapse in nonhuman as well as
human models, then structural connections to the NAcc might modulate that activity.
Specifically, both retrograde and anterograde tracer studies of nonhuman primates indi-
cate that the NAcc receives glutamatergic projections from anterior aspects of the insula
(18, 20, 21). The NAcc also receives glutamatergic projections from several amygdalar
nuclei [including the basolateral, basal, basal accessory, central, and periamygdaloid
nuclei (21–23)]. Finally, the striatum receives glutamatergic projections from prefrontal
cortex (PFC) along a ventromedial to dorsolateral gradient. Specifically, ventromedial
aspects of the striatum (including the NAcc) receive projections from orbitofrontal and
ventromedial PFC regions, whereas dorsal regions of the striatum receive projections
from more dorsolateral PFC regions (24, 25). While tracer studies do not describe the
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complete trajectory of these white matter tracts, they do con-
firm that the NAcc receives projections from anterior insula,
amygdala, and medial PFC in nonhuman primates, which pro-
vides a strong anatomical foundation for inferring the existence
of these connections in humans (18). We therefore sought to
characterize the trajectory and structural characteristics of these
prominent white matter tracts projecting to the NAcc in humans
(or a “conNAcctome”) (Fig. 1A) using diffusion-weighted mag-
netic resonance imaging (DMRI).
DMRI tractography offers a noninvasive method for tracking

and characterizing brain structural connections (26, 27) that
have previously been identified using more invasive methods
[e.g., chemical tracing studies (28) or tissue clearing (29, 30)].
Different DMRI measures model the movement of water in
the brain (or conversely, its occlusion) to support inference of
underlying fiber bundles. For example, commonly used but dis-
tinct diffusion metrics include fractional anisotropy (FA), axial
diffusivity (AD), radial diffusivity (RD), and mean diffusivity
(MD) (27, 31). Reduction of brain lipids using multiple meth-
ods [e.g., lipid removal (32), myelin-deficient mice (33, 34),
and other animal models (35)] can causally and predictably
alter these diffusion metrics (e.g., decreasing FA while increas-
ing RD), implying that they may partially index lipid coherence
and/or myelination (34). Increased FA has commonly been
associated with tract coherence, based on the implication that
tracts with greater coherence might more effectively transmit
neural signals. Decreased RD has further been linked to micro-
structural properties of brain tissue [e.g., fiber spread (36), cell
and axon density (37), and axon myelination (33, 35, 38)].
Recent meta-analyses of DMRI studies of addiction suggest

that patients with stimulant use disorder may have lower overall
neural white matter coherence relative to healthy controls (31,
38). Most of this research, however, has employed whole brain
approaches (such as tract-based spatial statistics [TBSS]), or
focused on prominent large white-matter tracts [e.g., the corpus
callosum and inferior longitudinal fasciculus (39–43)], rather
than smaller tracts which project to subcortical regions (like the
NAcc). Thus, the relevance of the structure of these conNAcc-
tome tracts (Fig. 1A) for stimulant use, maintenance, and
relapse has not yet been characterized.

DMRI studies of healthy individuals, however, have begun
to suggest more precise links between structural properties of
projections from cortical regions to the NAcc and individual
differences in affect and cognition, and some of these may hold
relevance for addiction. First, structural properties of a tract
connecting the medial prefrontal cortex (MPFC) to the NAcc
have been associated with impulsivity in adults [or valuing pre-
sent over larger future rewards (44)], and early onset of binge
drinking in adolescents (45). Second, we have found associa-
tions of measures of right anterior insula (AIns)-NAcc tract
coherence with reduced risk seeking (46) and increased control
of impulsive responses in the face of large incentives (47).
These findings fit with extensive previous work implicating
structural properties and correlated activity particularly in the
right AIns-NAcc tract region (48) with inhibitory control (49).
Third, structural properties of the amygdala (Amy)-NAcc tract
have been associated with novelty seeking (50) and impulsivity
(51). Fourth, we have reported associations of midbrain-NAcc
tract coherence with impulsivity and stimulant use disorder
diagnosis, but not with subsequent relapse (52). Addiction ini-
tiation and relapse, however, may recruit different psychological
processes and associated neural circuits (14, 53, 54).

Here, we examined whether diffusion metrics of unidirec-
tional white-matter projections to the NAcc from the MPFC,
AIns [particularly on the right given previous findings (46,
47)], and Amy might predict relapse to stimulant use. We pre-
dicted that decreased diffusion metrics in these conNAcctome
tracts might predict relapse to stimulant use (up to 6 mo after
completing treatment) (46, 47). Since previous findings indi-
cated that the structural coherence of a distinct tract connecting
the midbrain to the NAcc was related to stimulant use diagno-
sis but not relapse, we used this midbrain-NAcc tract as a con-
trol comparison to test for double-dissociations (52).

Results

Sample characteristics. We examined the association of the
structure of conNAcctome tracts with relapse to stimulant drug
use in a sample of 60 SUD patients, comprising 30 individuals
who had abstained and 30 individuals who had relapsed within

B

C

A

Fig. 1. Tracing conNAcctome tracts. (A) Schematic of predicted conNAcctome tracts (in MNI space; z = –10). (B) VOIs used for tractography. (C) ConNAcc-
tome tract renderings. All VOIs and renderings shown for a representative individual in their native space. VTA/SN, dopaminergic midbrain regions including
ventral tegmental area, substantia nigra, and parabrachial nucleus.
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6 mo after release from treatment (10 additional patients were
lost to follow-up prior to 6 mo and were therefore excluded from
analysis; SI Appendix, Fig. S1 and Table S1). Consistent with pre-
viously reported relapse rates (7, 8), 15 SUD patients (25% of
the patient sample) had relapsed after 2 mo (60 d). Thus, 50%
of all patients who relapsed within the follow-up period had
relapsed within the first 2 mo of release from treatment (SI
Appendix, Fig. S2). Complete demographic information was
obtained for all 60 SUD patients included in the current analyses.
Four individuals (two relapsers and two abstainers) did not pro-
vide information about their years of use, and one (relapsed) indi-
vidual did not complete the delay discounting questionnaire. As a
result, the primary analyses involving structural data were per-
formed on 60 patients, while control analyses involving demo-
graphic, clinical or personality variables were performed on 60,
56, and 55 patients, respectively.

Tract profiles and diffusion metrics. All tracts (i.e., MPFC-
NAcc, AIns-NAcc, and Amy-NAcc) were successfully resolved
in all participants (seed and target volumes of interest [VOIs]
along with rendered tracts are shown in Fig. 1 B and C). Plot-
ting participants’ tract profiles together revealed similar patterns
of diffusion metrics along the trajectory of each tract, as
described in diffusion metric profiles documented in major
white matter tracts (e.g., the corpus callosum and corticospinal
tract) (55) (SI Appendix, Fig. S3). Based on this similarity
across individuals, we computed and visualized average diffu-
sion metrics for each of the three conNAcctome tracts of inter-
est (SI Appendix, Fig. S3). Consistent with previous findings,

both diffusion metric profiles and their associations with out-
comes were expected to vary along each tract’s trajectory (55).

Analyses focused on RD as the primary diffusion metric of
interest, given its demonstrated links to tissue microstructure
(33, 35, 37, 38), enhanced measurement properties relative to
other diffusion metrics (56), and robust association with indi-
vidual differences in impulsivity (52). RD may therefore offer a
further close proxy for structural differences affecting signal
transfer between brain regions. To facilitate comparison across
different diffusion metrics (e.g., FA), we calculated inverse RD,
such that higher values represent reduced perpendicular diffu-
sivity (SI Appendix, SI Methods). To increase analytic sensitivity,
the association of inverse RD with relapse status was evaluated
along multiple nodes of each tract of interest, and corrections
for multiple comparison were performed using permutation
methods (55, 57) (SI Appendix, SI Methods).

Association of diffusion metrics with relapse. Inverse RD in
the right AIns-NAcc tract was significantly associated with
relapse status at the 6-mo follow-up assessment (P < 0.05, cor-
rected; Fig. 2C; SI Appendix, Table S2). Specifically, higher
inverse RD in a cluster of 33 consecutive nodes along the right
AIns-NAcc tract predicted relapse (odds ratio [OR] = 0.39, z =
–2.73, P = 0.0063), and this observed cluster exceeded the
required extent of 28 nodes determined with permutation test-
ing. Transforming individuals’ tracts into a common MNI space
revealed that the cluster extended from mean MNI coordinates
30, 15, �11 to 23, 13, �11, a distance of ∼6.3 mm. The same
analytical approach (combining node-wise logistic regression

A B C

Fig. 2. Association of tract diffusion metrics with SUD diagnosis and relapse to stimulant use at 6-mo follow-up. (A) Group template of conNAcctome tracts
(in MNI space). (B) Association of inverse RD in MPFC-NAcc (first row), AIns-NAcc (second row) and Amy-NAcc (third row) tracts with SUD diagnosis. (C) Associ-
ation of inverse RD in MPFC-NAcc (first row), AIns-NAcc (second row) and Amy-NAcc (third row) tracts with relapse to stimulant use. Note that the x-axis rep-
resents the 100 equidistant nodes along the tract, the y axis represents the raw inverse RD metric (i.e., not standardized or controlling for confounds).
Shaded areas represent SEM.

PNAS 2022 Vol. 119 No. 26 e2116703119 https://doi.org/10.1073/pnas.2116703119 3 of 9

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116703119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116703119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116703119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116703119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116703119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116703119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116703119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116703119/-/DCSupplemental


analyses with permutation testing) revealed that left AIns-NAcc
and bilateral MPFC-NAcc inverse RD were not significantly
associated with relapse, since the observed number of consecutive
nodes significantly associated with relapse fell below the required
number determined by permutation testing (observed/required
number of nodes for left AIns-NAcc = 0/28; for left and right
MPFC-NAcc = 0/23 and 0/25, respectively). An additional neg-
ative association of left Amy-NAcc tract inverse RD with relapse
(P < 0.05, uncorrected; Fig. 2C, Bottom row) did not exceed the
significance threshold (observed/required number of nodes =
20/36; P > 0.05, corrected). Further, the association of right
Amy-NAcc tract inverse RD with relapse was not significant
(observed/required number of nodes = 0/34). The significant
association of right AIns-NAcc inverse RD with relapse remained
robust even after exhaustively controlling for potential confounds
in models that included demographic (including age and sex),
clinical (including self-reported craving, negative mood, and
years of use) (5), and methodological (head motion) variables
(Fig. 3A and SI Appendix; see SI Appendix, Table S2 for model
estimates and SI Appendix, Fig. S4 for bivariate correlations).

Following previous work (52), the association between right
AIns-NAcc inverse RD and relapse status also remained robust
after controlling for individual differences in impulsivity (58, 59)
(SI Appendix, Table S2). A similar association of right AIns-
NAcc diffusion metrics with relapse status was also apparent after
substituting inverse RD with the more commonly used FA met-
ric (observed/required number of nodes = 25/25; SI Appendix,
Tables S3 and Figs. S5 and S6).

In contrast to relapse, inverse RD of the three tracts of inter-
est was not associated with diagnosis (Fig. 2B). Based on a sam-
ple of 40 healthy controls and 60 SUD patients (SI Appendix,
Table S4), node-wise logistic regression analyses revealed no
significant associations (P > 0.05, uncorrected) between inverse
RD and SUD diagnosis at any node for the left or right
MPFC-NAcc tracts, left or right Amy-NAcc tracts, or the right
AIns-NAcc tract. An association at two consecutive nodes of
the left AIns-NAcc tract (P < 0.05, uncorrected) did not exceed
the significance threshold (P > 0.05 corrected).

The contribution of tract structural metrics to the classification
of relapse versus that of demographic, clinical, personality, and

B C

A

Fig. 3. Predicting relapse with right AIns-NAcc tract diffusion metrics. (A) A “Regression Multiverse” analysis verifies the robustness of the association
between inverse RD and relapse. Rows represent individual predictor variables; columns represent exhaustive combinatorial specifications of relapse mod-
els; colors represent the effect size of a variable (row), given the specific grouping of predictor variables in the model (column). All models tested contained
right AIns-NAcc inverse RD but varied with respect to the inclusion of other demographic, clinical, and methodological variables. Statistics for a subset of
models are presented in SI Appendix, Table S2. (B) Receiver operating characteristic (ROC) curves for the classification of relapse status (i.e., yes versus no) at
6 mo after treatment release from neural (right AIns-NAcc inverse RD), demographic (age and sex), clinical (years of use, negative mood, craving), methodo-
logical (head motion), and personality (BIS, delay discounting factor k) predictor variables. Curves represent the sensitivity and specificity of separate neural,
demographic, clinical, and combined (neural, demographic, clinical, methodological, personality) relapse models. The gray diagonal line represents chance
(i.e., 50/50) classification of relapse status at six months following release from treatment. (C) Model-based (i.e., predicted) mean survival time as a function
of right AIns-NAcc tract inverse RD [computation based on observed time to relapse (days)]. Gray line presents the restricted mean survival time, shaded
gray area represents the parameterized SE. Black squares are observed days to relapse for relapsers, white circles are follow-up times for abstainers.
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methodological variables was further compared by calculating
area under the curve (AUC) estimates for receiver operating char-
acteristic (ROC) curves (Fig. 3B) (SI Appendix, Table S2). The
AUC values of different relapse models suggested that relapse
classification using only a neural marker performed better than a
model of relapse containing demographic or clinical variables and
was only marginally superseded by a combined model. Explained
variance (pseudo-R2) estimates further suggested that the model
containing only the right AIns-NAcc structural marker explained
more variance (22%) than either demographic (2%), or clinical
(6%) models, with most variance being explained by a combined
model (26%). Due to the increased number of variables in the
combined model (relative to our sample size), however, this
increase in explained variance was offset by a higher Akaike infor-
mation criterion AIC and lower estimates for leave-one-out cross-
validation estimates of prediction accuracy (SI Appendix, Table
S2). The amount of variance explained by the structural model
was similar to estimates reported in previous studies using brain
data to predict substance use diagnosis and relapse (8, 52). More-
over, the relatively lower variance accounted for by demographic
and clinical variables also aligned with previously reported esti-
mates (60–62).
Survival analysis using a Cox-proportional hazards model fur-

ther confirmed that the association between right AIns-NAcc
inverse RD and relapse was not limited to a binary definition of
relapse but additionally extended to a continuous definition in
terms of days until relapse. After controlling for age, sex, and
head motion, lower right AIns-NAcc inverse RD was associated
with risk of sooner relapse (HR = 0.62; 95% confidence interval
[CI] = 0.44–0.87; P = 0.005). The concordance rate for this
model was 0.644 (SE = 0.045), implying that for 64.4% of pairs
of SUD patients, the individual with the lower right AIns-NAcc
inverse RD relapsed sooner. For transparent visualization of this
association between right AIns-NAcc inverse RD and time to
relapse, we plotted the individually observed time to relapse
along with the predicted restricted mean survival time (Fig. 3C).
Similar patterns were observed for classification and survival
analyses using right AIns-NAcc FA (SI Appendix, Fig. S6).

Double dissociation of SUD diagnosis and relapse. Previous
work based on a subset of participants in the current study (52)
reported a negative association of FA in a tract connecting the
dopaminergic midbrain (including the VTA) with the NAcc
and SUD diagnosis, but not with relapse (52). In contrast, the
current analyses revealed an association of right AIns-NAcc
tract inverse RD with relapse to stimulant use, but not with
SUD diagnosis (Fig. 2). To directly compare the previous and
current results by testing for a double dissociation, we extended
the previous sample to include all of the individuals in the cur-
rent analyses, and then reanalyzed the VTA-NAcc tract data with
the improved analytical pipeline developed for the current study
(see SI Appendix for further details). The reanalysis of VTA-
NAcc tract metrics based on a larger sample and optimized anal-
yses produced similar findings to those reported previously (52).
Specifically, FA in an extended bilateral cluster of VTA-NAcc
tract nodes was associated with SUD diagnosis (P < 0.05, cor-
rected), but not relapse status six months after treatment. Com-
bined with the currently reported association of right AIns-NAcc
inverse RD and relapse, these findings indicate a double dissocia-
tion of neural structural markers associated with SUD diagnosis
versus relapse to stimulant drug use (Fig. 4).
To visualize this structural double dissociation, for each tract

we plotted the summary indices extracted from the cluster of
nodes that demonstrated a significant association with the

predicted outcome (i.e., nodes 1–95 for VTA-NAcc association
with diagnosis and nodes 11–43 for right AIns-NAcc associa-
tion with relapse) against both SUD diagnosis (Fig. 4B) and
relapse (Fig. 4C). To maintain consistency with previous find-
ings, we depicted the double dissociation using FA for the
VTA-NAcc tract (52), but inverse RD for the AIns-NAcc tract.
Importantly, inverse RD and FA for the right AIns-NAcc were
highly correlated (rS = 0.82, SI Appendix, Fig. S4), possibly
explaining their similar associations with relapse (SI Appendix,
Fig. S5). The double dissociation held, however, when includ-
ing FA for both tracts (SI Appendix, Fig. S7). Together, these
findings highlight the possibility that structural characteristics
of different neural circuits converging on the same region (i.e.,
NAcc) may confer risk for different stages of addiction.

Discussion

By targeting tracts converging on the NAcc with a combination
of diffusion-weighted neuroimaging and probabilistic tractogra-
phy, we found that structural properties of white-matter tracts
connecting the anterior insula (AIns) to the NAcc selectively
predict relapse to stimulant use. Specifically, inverse RD of the
right AIns-NAcc tract predicted relapse status up to 6 mo after
treatment. This neural structural predictor outperformed alter-
native demographic, clinical, personality, and methodological
predictors of relapse, and was further associated with time to
relapse. Indeed, adoption of a “regression multiverse” analytic
approach (63) supported the robustness of the estimated associ-
ation of inverse RD with relapse against numerous potential
confounds. Further, comparison with previous findings impli-
cated a double dissociation of the association of the structure of
different conNAcctome tracts with stimulant use disorder diag-
nosis versus relapse. Specifically, whereas reduced FA in the
VTA-NAcc tract was associated with diagnosis but not relapse,
reduced inverse RD (as well as FA) in the right AIns-NAcc
tract was instead associated with relapse but not diagnosis (52).
Contrary to predictions, however, structural qualities of other
tracts connecting to the NAcc (i.e., MPFC-NAcc and Amy-
NAcc tracts) were not significantly associated with SUD diag-
nosis or relapse.

These findings make several contributions to our current
understanding of addiction and relapse. A first contribution
involves localizing the prediction of relapse to specific cortical
structural projections to the NAcc, which strengthens the case
for brain-based models of addiction (13), and highlights the
added value conferred by leveraging neuroimaging methods. A
second contribution involves the specific association of relapse
with structural qualities of the right AIns-NAcc tract but not
MPFC-NAcc or Amy-NAcc tracts, possibly implicating func-
tions related to cue-induced negative arousal rather than value
integration or behavioral control (10, 14). Anterior insula activ-
ity has previously been implicated in relapse based on correla-
tions with arousal and craving (14), which may be associated
with a modulatory influence of AIns structural projections on
NAcc activity (47). Specifically, we have proposed that AIns-
NAcc tract coherence may blunt NAcc activity during moti-
vated behavior, as in the case of “incentivized inhibition” (47).
In the context of relapse, lower coherence (33, 35) of the AIns-
NAcc tract might reduce inhibition of drug seeking after cue
exposure, which could ultimately thwart intentions to remain
abstinent. While human lesion studies have implicated the
insula in smoking cessation (64), the localization of these effects
to the anterior insula versus middle or posterior insula or adja-
cent striatum is presently unclear (65). The lateral specificity of
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this association to the right AIns-NAcc tract is consistent with
previous research on risk taking (46, 47) and inhibitory control
(47, 49). Importantly, although both the right AIns and adja-
cent right inferior frontal cortex are consistently activated by
demands for inhibitory control, these regions may serve disso-
ciable functional roles (49). Specifically, activity in the right
AIns seems to respond preferentially to the early detection of
salient events, whereas activity in the right inferior frontal cor-
tex seems to respond preferentially to demands for inhibiting
ongoing motor activity. Further, white-matter abnormalities
near the right AIns have been reported in both stimulant-
dependent individuals and their unaffected siblings relative to
healthy controls (54). Reduced coherence in this region has
additionally been associated with poorer behavioral implemen-
tation of inhibitory control. These convergent findings not
only suggest a rightward locus of inhibitory control near the
anterior insula, but further suggest a neural marker of heritable
risk for stimulant drug use (rather than a consequence of
chronic use) (54).
A third contribution involves discovery of a double dissocia-

tion of the association of distinct conNAcctome tract structural
qualities (i.e., VTA-NAcc vs. right AIns-NAcc tract) with stim-
ulant use disorder diagnosis versus relapse. This distinction
might imply that different neural structural and functional
connections are related to the onset versus maintenance of

disordered stimulant use. By revealing the right AIns-NAcc
tract as a structural target for predicting relapse, these results
imply that, unlike stimulant use disorder diagnosis (52), corti-
cal rather than subcortical projections to the NAcc may play a
more prominent role in preventing relapse to stimulant drug
use. Functionally, these structural findings align with proposals
that impulsivity and compulsivity may drive different sequen-
tial stages of the addiction cycle (53). While impulsivity may
contribute to an individual’s path into excessive drug consump-
tion and eventual dependence, compulsivity may instead con-
tribute to drug use maintenance and trigger relapse after leaving
treatment. Our previous findings (52) confirm the first compo-
nent by demonstrating an association of decreased inferior
VTA-NAcc tract coherence with individual differences in
impulsivity, as well as SUD diagnosis. In turn, the previously
documented association of right AIns-NAcc tract coherence
with incentivized inhibition performance (46, 47) might reveal
aspects of a second component of compulsivity. Theorists have
proposed that the shift from impulsivity fueling early stages of
addiction to compulsivity fueling later stages of addiction
(including relapse) co-occurs with a shift from positive rein-
forcement mechanisms to negative reinforcement and automa-
ticity mechanisms driving drug seeking behavior (14, 66, 67).
If reduced right AIns-NAcc structural organization diminishes
input associated with negative arousal, liberating NAcc activity

A B C D

Fig. 4. Double dissociation of SUD diagnosis and relapse with VTA-NAcc (Top) and AIns-NAcc (Bottom) tract diffusion metrics. (A) Group tracts in MNI space
with superimposed node-wise associations between tract diffusion metrics and SUD diagnosis. Each tube depicts the core trajectory of one individual’s tract,
transformed into MNI space. Colors indicate the node-wise P value for the association between tract diffusion metrics and SUD diagnosis. (B) SUD diagnosis
as a function of tract metric. (C) Relapse to stimulant drug use as a function of tract metric. For (B) and (C), each colored point represents an individual, bars
represent group means, black lines represent SEMs. Colored data points represent individuals’ summary tract diffusion metrics for relapse-relevant node
clusters of bilateral VTA-NAcc (nodes 1–95, FA) and right AIns-NAcc tracts (nodes 11–43, inverse RD). (D) Group tracts in MNI space with superimposed node-
wise associations between tract diffusion metrics and relapse. Each tube represents the core trajectory of one individual’s fiber tract, transformed into MNI
space. Colors indicate the node-wise P value for the association between tract diffusion metrics and relapse to stimulant drug use. **P = 0.0026; ****P =
0.000053.
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associated with positive arousal and approach, over time such a
dynamic might facilitate compulsive behavior. Since the design
of the current research did not include a reliable and valid mea-
sure of individual differences in compulsivity, future research
will need to directly test whether measures of compulsivity
might help account for the association between right AIns-
NAcc tract diffusion metrics and relapse to stimulant drug use.
This research features several strengths. First, the work com-

bined probabilistic tractography with predicted volumes of
interest, which supported the identification, visualization, and
measurement of small white-matter tracts that might elude whole
brain analyses. Second, the hypotheses and main analyses were
inspired by comparative research that confirms known structural
connections and were preregistered, limiting researcher degrees of
freedom. Third, the longitudinal research design incorporated
temporal precedence, facilitating discovery of a double dissociation
of structural markers for stimulant use disorder diagnosis versus
relapse in the same individuals. Fourth, tests of neural predictors
were optimized for multiple hypothesis testing by computing
permutation-based cluster extents to infer statistical significance
(55, 57). Fifth, although noninvasive neuroimaging measures nec-
essarily limit inferences about underlying structural physiology,
the primary diffusion metric utilized (i.e., inverse RD) can index
properties of cell membranes and myelination, and has shown the
most robust associations with individual differences in previous
research (33, 35, 38, 52). Importantly, supplementary analyses
indicate that these diffusion metrics also feature favorable measure-
ment qualities for assessing individual differences (i.e., high
test–retest reliability) (SI Appendix, Fig. S8) and are not attribut-
able to local variation in signal to noise ratio or tissue volume (47,
68). Given these methodological strengths, the present findings
imply specific associations between local variation in brain tract
structure and individual differences related to addiction.
This research also has some limitations. First, the research

plan did not explicitly include measures of functional activity.
Auxiliary analyses of an associated functional study did, how-
ever, imply that correlated activity between the right AIns and
NAcc during viewing of drug cues (but not otherwise) was
associated with subsequent abstinence (SI Appendix, Fig. S9
(8)). Second, although abstinent versus relapsed SUD patients
were comparable with respect to demographic and clinical vari-
ables (and controlling for these did not alter observed associa-
tions between inverse RD and relapse), unmeasured clinical
variables might still influence comparisons. The existing litera-
ture on factors associated with relapse to drug use (5) has not,
however, identified obvious alternative confounding variables.
Further, regression multiverse analyses suggested that the asso-
ciation of inverse RD with relapse remained robust against con-
trol for combinations of multiple potential confounds (Fig.
3A). Third and finally, as in all clinical research, the observed
associations may not generalize beyond the sample and disorder
under study. For instance, neural correlates of substance use
onset and relapse may vary across different drug classes [e.g.,
opioids, alcohol, nicotine (43)], motivating further exploration
in both animal models (69) and human patients (5, 14, 39,
53). Reassuringly, however, cross-validation analyses suggested
that the currently observed associations of tract diffusion met-
rics with relapse appeared at least to generalize across individu-
als in the sample (SI Appendix, Tables S2 and S3).
The discovery of a structural marker for relapse raises several

possibilities for future exploration. Physiologically, new tools
(e.g., optogenetics, viral tracing, and tissue clearing) could
bridge to animal models of relapse and further elucidate how
changes in myelination influence targeted tracts (such as the

AIns-NAcc tract), and modulate stimulant drug use onset and
relapse (69, 70). Conceptually, identification and quantification
of conNAcctome tract qualities in humans may inspire more
precise characterization of circuits implicated in clinical disorders
of impulse control, potentially informing the interpretation and
prediction of functional deficits and intervention targets. Clini-
cally, in contrast to extensive distributed networks (71) or pro-
jections lacking demonstrated functional relevance to addiction
(38, 43), precise qualities of AIns-NAcc tract structure may pre-
dict vulnerability to relapse. Such knowledge may eventually not
only guide decisions about who can benefit most from interven-
tions, but also identify new targets for intervention with therapy,
pharmacology, or even targeted stimulation (72).

Materials and Methods

The study was approved by the institutional review boards of the Stanford Uni-
versity School of Medicine and Research and Development Office of the Veterans
Affairs Palo Alto Health Care System. Prior to participating in the study, all indi-
viduals gave written informed consent. The study’s design and hypotheses were
preregistered (https://aspredicted.org/9rf2e.pdf).

Participants. An overview of the study sample and composition is presented in
the form of a consort plot (SI Appendix, Fig. S1).
Patients. We recruited 78 detoxified patients with SUD from two residential
SUD treatment programs: at the Veterans Affairs Palo Alto Health Care System,
Palo Alto, California (see also ref. 8), and at the Epiphany Center, San Francisco,
California (a holistic residential recovery program for women). Clinicians and/or a
member of the research team completed a full history and clinical interview with
every patient, comprising diagnostic questions about past and current psychiatric
symptoms and/or SUD based on DSM-5 criteria. Interested individuals were
screened and excluded from participation if they took medications capable of
influencing vasoreactivity (e.g., cardiac medications, ibuprofen) or central dopa-
minergic activity (e.g., stimulants, antipsychotics), had a history of traumatic
head injury, had a history of serious mental illness (e.g., mania, psychosis), or
had compromised safety for magnetic resonance scanning (e.g., ferromagnetic
material in the head or body). We then recruited eligible patients with a current
diagnosis of SUD (e.g., methamphetamine, crack and powder cocaine). Absti-
nence throughout treatment and before each scan was verified via urine toxicol-
ogy tests. The eligibility screening tool confirmed that the primary reason for
seeking treatment involved problematic stimulant use. Eight patients were
excluded prior to analysis due to excessive head motion, resulting in a sample
of 70 SUD patients for analysis.

With respect to treatment outcome at six months, we obtained a comparable
sample of individuals who had abstained from stimulant use (n = 30, 24 [80%]
males, 39.5 ± 12.5 y old) and who had relapsed to stimulant use (n = 30, 26
[86.7%] males, 42.3 ± 10.9 y old; SI Appendix, Table S1). Ten SUD patients
(7 [70%] males, 44.1 ± 12.2 y old) were lost to follow-up. Regardless of out-
come and availability at follow-up, SUD patients who abstained versus relapsed
were comparable with respect to methodological (e.g., head motion), demo-
graphic (e.g., age, sex, education), and clinical (e.g., anxiety, depression, and pri-
mary stimulants used) variables (SI Appendix, Table S1).
Healthy controls. Forty-four healthy control participants were recruited from the
Stanford University Paid Psychology Experimental pool and the San Francisco Bay
Area community. Exclusion criteria were the same as for SUD patients, with the
added exclusion of any current or prior history of alcohol or substance use disorder.
We did not ascertain detailed information about healthy control participants’ recre-
ational substance use, but instead used diagnostic criteria to exclude for lifetime
alcohol and substance use disorders (73). Data from four participants were
excluded prior to analysis due to excessive head motion during scanning, leaving
40 healthy controls (57% male, 32.7 ± 11.8 y old) for analyses. SUD patients and
healthy controls varied on several demographic and clinical variables (SI Appendix,
Table S4), but had comparable head motion during scanning (see also ref. 52).

Study protocol. Participants first provided informed consent and were then
scanned using magnetic resonance imaging (MRI) to acquire anatomical and
diffusion-weighted images. The neuroimaging scans were acquired while

PNAS 2022 Vol. 119 No. 26 e2116703119 https://doi.org/10.1073/pnas.2116703119 7 of 9

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116703119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116703119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116703119/-/DCSupplemental
https://aspredicted.org/9rf2e.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116703119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116703119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116703119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116703119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116703119/-/DCSupplemental


participants were enrolled in the residential treatment program, with a period
approximately 2 wk into treatment targeted for scanning. We also collected func-
tional scans, but since these are not critical for the current analyses, they are not
described further [except in the SI Appendix, SI Methods and Fig. S9; see (8)].
After scanning, participants completed a battery of self-report questionnaires,
including the Ten Item Personality Inventory (74), the Barratt Impulsivity Scale-
11 (58), a 21-item Kirby Monetary Choice Questionnaire (59), the Behavioral
Inhibition Scale/Behavioral Activation Scale (75), and Beck Depression Inventory
(76). For SUD patients, stimulant use was assessed via phone interview approxi-
mately 1, 3, and 6 mo after discharge from treatment using the Time-Line
Follow-Back method (77), which has been shown to have moderate-to-high con-
sistency with urine toxicology screens (78). As part of the follow-up interviews,
patients completed the Brief Addiction Monitor (79), which facilitated assess-
ment of clinical and affective variables which may contribute to relapse, includ-
ing craving and negative mood (5). The dependent variable of relapse was
defined as reporting any stimulant use in the time since treatment discharge or
the previous assessment. Participants in the healthy control group did not com-
plete any follow-up assessments.

All participants (both patients and controls) received a base payment of $100
in the form of an Amazon.com gift card and could earn an additional $0–$30
based on their performance in other tasks that occurred during the scanning ses-
sion. Patients were additionally compensated $50 (also in the form of an Ama-
zon.com gift card) for each completed follow-up interview.

Neuroimaging data acquisition and analysis. Structural and diffusion-
weighted imaging sequences were acquired and processed as described in pre-
vious tractography studies (46, 47, 52) (SI Appendix, SI Methods).

Verifying robustness and ruling out confounds. Given the (right) lateral
specificity of the key structural predictor, we performed supplementary robustness
checks, including examination of hemispheric differences in voxel-wise signal-to-
noise ratio (SNR) in the diffusion-weighted signal, as well as the white matter vol-
ume of reconstructed left and right AIns-NAcc tracts. These analyses indicated that
neither SNR nor tract volume could account for the observed ability of right but

not left AIns-NAcc tract diffusion metrics to predict relapse to stimulant use (SI
Appendix, SI Methods). To further verify the robustness of the findings, we com-
puted test-retest reliability for the reported conNAcctome tract diffusion metrics in
an independent sample (n = 9). Regardless of tract metric, these analyses
revealed high test–retest reliability for the right AIns-NAcc tract (all intraclass corre-
lation coefficients >0.9) (SI Appendix, SI Methods and Fig. S8).

Because previous research reported alterations in gray matter volume and
functional connectivity associated with substance use disorder (80, 81), we fur-
ther tested whether these measures were related to relapse in the current cohort.
Gray matter volume was not related to relapse in any of the conNAcctome VOIs
(SI Appendix, SI Methods). For abstainers (but not relapsers or healthy controls),
correlated activity between right AIns and NAcc increased during exposure to
drug cues (consistent with the notion that AIns-NAcc communication promotes
abstinence), but not otherwise (SI Appendix, SI Methods and Fig. S9) (8). This
association, however, could not statistically account for the association of right
AIns-NAcc tract diffusion metrics with relapse.

Data Availability. Anonymized behavioral and tractography indices data have
been deposited in Open Science Framework (https://osf.io/z35yn/). Previously
published data were used for this work. A subset of our findings reports a double
dissociation between the structure of different brain tracts and relapse to stimu-
lant drug use versus previous diagnosis of SUD (Fig. 4). For these analyses, we
replicate and extend the findings reported previously by MacNiven et al. (52), by
applying analytical methods to a larger data set. Furthermore, we present statisti-
cal analyses and provide visualizations for the double dissociation. The original
findings are referenced throughout the manuscript.
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