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Decoding the relationship between ageing and
amyotrophic lateral sclerosis: a cellular
perspective
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With an ageing population comes an inevitable increase in the prevalence of age-associated neurodegenerative diseases, such as
amyotrophic lateral sclerosis (ALS), a relentlessly progressive and universally fatal disease characterized by the degeneration of
upper and lower motor neurons within the brain and spinal cord. Indeed, the physiological process of ageing causes a variety of
molecular and cellular phenotypes. With dysfunction at the neuromuscular junction implicated as a key pathological mechanism in
ALS, and each lower motor unit cell type vulnerable to its own set of age-related phenotypes, the effects of ageing might in fact
prove a prerequisite to ALS, rendering the cells susceptible to disease-specific mechanisms. Moreover, we discuss evidence for
overlap between age and ALS-associated hallmarks, potentially implicating cell type-specific ageing as a key contributor to this
multifactorial and complex disease. With a dearth of disease-modifying therapy currently available for ALS patients and a sub-
stantial failure in bench to bedside translation of other potential therapies, the unification of research in ageing and ALS requires
high fidelity models to better recapitulate age-related human disease and will ultimately yield more reliable candidate therapeutics
for patients, with the aim of enhancing healthspan and life expectancy.
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(reviewed in Jin, 2010; Lopez-Otin et al., 2013) (Fig. 1).
Indeed, age is the most prevalent risk factor for neurode-

Introduction

The human population is ageing, with an estimated 1.5
billion people expected to be 65+ years by 2050, triple
the 2010 estimate (World Health Organisation, 2011).
But alongside a lengthened life expectancy comes the
drawback of age-related ill health that compromises qual-
ity of life. Ageing is a ubiquitous phenomenon, with mul-
tiple hypotheses attempting to explain why age-related
changes occur on an organism, organ and cellular level

generative disease (reviewed in Khan et al., 2017). Within
this group is amyotrophic lateral sclerosis (ALS), a relent-
lessly progressive and universally fatal disease under-
pinned by degeneration of motor neurons. With a
prognosis of 2-5 years from onset to fatality and a
myriad of complex debilitating symptoms (reviewed in
Balendra and Patani, 2016), it is key to elucidate the
true pathogenic mechanisms underlying ALS and use
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Figure | Human ageing theories and phenotypes. A number of theories aim to explain human ageing (reviewed in Jin, 2010), broadly
categorized into the programmed theories of ageing, where normal ageing follows a set biological clock with time-dependent expression changes,
and damage theories of ageing, where accumulation of damage over time ultimately leads to dysfunction (reviewed in Jin, 2010). Age-related
abnormalities (described above) are apparent in several organs (reviewed in Khan et al., 2017); however, differential resistance/vulnerability to the
effects of ageing in various organs has been noted (reviewed in Khan et al., 2017). The rate of ageing differs between individuals, with some people
ageing better and some worse than expected in a phenomenon termed Delta ageing (Rhinn and Abeliovich, 2017). Indeed, variability of ageing rate
might also occur on a cellular and organ level, somewhat providing evidence for the mechanism behind cell type and organ specific susceptibility to
the effects of ageing, and in turn age-related disease, such as ALS. Templates used/adapted to create this figure are freely available from Servier

Medical Art (https://smart.servier.com/).

these insights to develop truly impactful disease-modify-
ing therapies for patients, a feat yet to be achieved.

Several studies have implicated the neuromuscular junc-
tion (NM]), the site of union between motor neuron and
muscle within the lower motor unit (Fig. 2), in ALS patho-
genesis. Indeed, the die-back hypothesis of ALS suggests
that motor neuron terminals at the NM] are the initial
foci of pathogenesis with retrograde axonal degeneration
ultimately reaching the motor neuron soma, leading to
neuronal degeneration and subsequent symptoms (re-
viewed in Dadon-Nachum et al., 2011). Neuromuscular
transmission defects and synaptic aberrance have been
shown to precede motor neuron degeneration and motor
symptoms in rodent (Rocha et al., 2013; Chand et al.,
2018) and fruit fly (Shahidullah ez al., 2013) models of
ALS. Furthermore, restricting expression of ALS-associated
human superoxide dismutase 1 (SOD1) to skeletal muscle,
induced motor neuron degeneration and functional defects
in transgenic mice overexpressing wild-type human SOD1
or its G93A and G37R mutant forms (Wong and Martin,
2010). This, alongside findings of altered regulation of
skeletal muscle specific microRNAs in ALS (reviewed in
Di Pietro et al., 2018), fortifies the role of skeletal
muscle and the NMJ in ALS pathology, whilst supporting
the die-back hypothesis.

Here, we review how ageing of the cellular constituents
of the lower motor unit relates to ALS. Specifically, we will
discuss motor neurons, skeletal muscle, astrocytes and
Schwann cells. By integrating insights from these individual
components, we discuss the potential role of cell type spe-
cific ageing in ALS. Finally, we look at approaches to en-
hance ALS model fidelity and applicability to patients, as
well as potential therapeutic implications of tackling age-
associated aberrance, namely maximizing healthspan and
lifespan in ALS.

Ageing of the motor neuron

The degeneration of brain and spinal cord motor neurons
forms the major pathological substrate of ALS, leading to
rapid functional decline and death in patients. As well as
the clear contribution of non-neuronal cells to ALS, a
number of cell intrinsic motor neuronal pathological hall-
marks have been defined, including (but not restricted to)
excitotoxicity, abnormal cytoskeleton and axonal transport
and disrupted RNA metabolism (reviewed in Van Damme
et al., 2017). Indeed, normal ageing bears a variety of
structural and functional consequences for motor neurons,
which may directly or indirectly contribute to motor
neuron pathology in ALS.
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Figure 2 The lower motor unit. Individual components of the lower motor unit: lower motor neuron, skeletal muscle, astrocyte, myelinating
Schwann cell, terminal Schwann cell. All constituents of the lower motor unit play key roles in motor function and voluntary movement, are
affected by normal ageing and are implicated in ALS pathogenesis. The site of unification of motor neuron and muscle (the neuromuscular
junction) has a vital role in ALS pathology and also undergoes age-associated alterations. Templates used/adapted to create this figure are freely

available from Servier Medical Art (https://smart.servier.com/).

Age-related changes in motor neuron number remains a
controversial topic, with some studies suggesting motor
neuron number and/or size to be stable with ageing in
mice and rhesus monkeys (Maxwell et al., 2018), whilst
other studies suggest progressive motor neuronal loss [in
rat (Jacob, 1998) and human (Tomlinson and Irving,
1977) lumbosacral spinal cords]. Indeed, neither the aged
rats nor patients from these studies experienced commen-
surate loss of physical activity/ability as a result of motor
neuron attrition (Tomlinson and Irving, 1977; Jacob,
1998), suggesting a significant functional reserve in this
system. Despite not causing outright functional decline, it
remains possible however that a reduction in motor neu-
rons with ageing leaves remaining aged motor neurons
under elevated stress (Jacob, 1998), and thereby more vul-
nerable to age-related pathologies, such as ALS.

Voluntary movements depend on effective electrical com-
munication between neurons, with imperative roles for both
excitatory (glutamatergic and cholinergic) and inhibitory
(GABAergic and glycinergic) synaptic inputs terminating on
alpha motor neurons (Maxwell et al., 2018). Indeed, cholin-
ergic synaptic inputs in the ventral horn and specifically
those terminating on alpha motor neuron cell bodies were
decreased in old rhesus monkeys, a finding mirrored in mice
(Maxwell et al., 2018). Glutamatergic synaptic inputs dir-
ectly terminating on alpha motor neurons in old monkeys
and mice were also reduced (Maxwell et al., 2018). Hence,
normal ageing is accompanied by loss of synaptic inputs to

alpha motor neurons, a key age-related phenotype and
indeed, a shared pathological hallmark with motor diseases
including ALS [as shown in transactive response DNA bind-
ing protein 43kDa (TDP-43) and SOD1 mutant mice]
(Vaughan et al., 2015).

Neurons are post-mitotic, meaning they have left the cell
cycle and are no longer proliferating, thereby they cannot
undergo classical cellular senescence. Emerging literature
has however implicated an analogous process in neurons,
mimicking some of the key age-related effects of senescence
on other cell types. More specifically, human induced pluri-
potent stem cell (iPSC)-derived neurons from patients with
Rett syndrome, characterized by loss-of-function mutations
in MECP2, were shown to activate p53, a regulator of
cellular senescence, subsequently inhibiting complex neur-
onal process formation (Ohashi et al., 2018). In addition,
senescence-associated secretory phenotype (SASP) genes
were also induced and B-galactosidase activity increased
in neurons lacking MECP2 (Ohashi et al., 2018), indicating
that a ‘senescence like’ picture was present in neurons
derived from these patients. It is possible that an analogous
senescence process takes place in normal ageing neurons,
thus leading to cellular stress, aberrant neuronal health and
enhanced vulnerability to further pathological insult.

Lipofuscin aggregates, rich in lipids, metals and mis-
folded proteins, accumulate in neurons during normal
ageing, as well as in other post-mitotic, non-proliferative
cell types that lack the capacity to effectively dilute out
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the aggregates during proliferation (reviewed in Moreno-
Garcia et al., 2018). Indeed, lysosomes and subsequently
cell cytoplasm become overloaded with these aggregates,
with associated oxidative stress, altered proteostasis, neuro-
nal cytoskeletal and trafficking perturbations, and glial
reactive transformation, potentially modifying risk of neu-
rodegenerative disease (reviewed in Moreno-Garcia et al.,
2018). Given that lipofuscin aggregate accumulation has
been consistently noted in various aged animal (Maxwell
et al., 2018) and indeed human motor neurons during
normal ageing (Tomlinson and Irving, 1977; Rygiel et al.,
2014), this phenomenon may thereby be relevant in ALS.

The dysfunction of motor neuron mitochondria with
normal ageing (Rygiel et al., 2014) is intriguing, seeing
that this mechanism has been noted as a key contributor
to ALS pathology (reviewed in Van Damme et al., 2017).
Lumbar spinal cord sections from 12 elderly patients re-
vealed a subset of motor neurons with mitochondrial re-
spiratory chain complex 1 deficiency, a phenotype not
present in human foetal (9-11 weeks post-conception)
spinal cords (Rygiel et al., 2014). Mitochondrial DNA
copy number and cell body size were also reduced in com-
plex 1 deficient motor neurons (Rygiel et al., 2014). With
potential effects on neuronal function, viability and sur-
vival, it is possible that respiratory chain deficiency with
normal ageing may instigate motor neuron dysfunction
and degeneration (Rygiel et al., 2014) and this is consist-
ent with such defects having an important role in age-
related neurodegeneration and ALS, although this clearly
requires further direct investigation to understand
comprehensively.

Electrophysiological studies on aged wild-type mice
showed alterations in motor neuron membrane and excit-
ability properties (Moldovan et al., 2016). Indeed, ageing
led to changes in voltage gated sodium channel expression,
more specifically, ectopic expression of Na,1.8 on aged
motor axons, affecting axonal membrane functionality
(Moldovan et al., 2016). These electrophysiological alter-
ations were attenuated with pharmacological blocking of
Na,1.8, and in sensory neuron-specific Na,1.8 null mice
(Moldovan et al., 2016). Altogether, although itself not
neurotoxic, ectopic expression of Na,1.8 during ageing
can leave motor neurons with higher energy requirements
vulnerable to progression of neurodegeneration and neur-
onal pathology (Moldovan et al., 2016). Age-related mem-
brane excitability alterations and changes potentially
consistent with membrane depolarization were also noted
in a non-invasive electrophysiological study of patient
median motor axons (Bae et al., 2008). Age-associated elec-
trical abnormalities may thereby leave aged motor neurons
susceptible to further neuronal insult and neurodegenera-
tive pathology.

A number of studies have identified key genes and path-
ways in normal motor neuron ageing, which can help
better understand the potential intersect between ageing
and disease. Indeed, transcriptomic analysis in Drosophila
revealed matrix metalloproteinase 1 (IMMP1) to not only
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undergo an age-related increase in expression in motor neu-
rons, but also cause motor functional defects that become
more severe with further ageing when overexpressed in a
(Azpurua et al., 2018).
Impairment of presynaptic neurotransmitter release at the
NM]J was the proposed mechanism (Azpurua et al., 2018).
The upregulation of matrix metalloproteinases in ageing
may be of special significance in age-related neurodegenera-
tion and namely ALS, with TDP-43 overexpression in neu-
rons accelerating the rate of dMMP1 accumulation
(Azpurua et al., 2018) and suggesting a potential patho-
genic mechanism linking ageing and ALS.

Mice with perturbed excision repair cross-complementa-
tion group 1 gene (Ercc1®™ mice), deficient in a number of
DNA repair system components including nucleotide exci-
sion repair and double strand break repair, gained an ab-
errant motor phenotype that progressively declined with
ageing (de Waard et al., 2010). Alongside activation of
CNS microglia and astrocytes, age-associated motor neu-
rodegeneration and NM]J pathology, genotoxic stress,
DNA damage and Golgi apparatus abnormalities were
noted in Ercc1®~ mice (de Waard et al., 2010). Hence,
defective DNA repair mechanisms lead to motor neuron
degeneration and functional decline in an age-dependent
manner (de Waard et al., 2010). TDP-43 and fused in
sarcoma (FUS) pathology did not develop in these motor
neurons, suggesting DNA damage from ERCC1 deficiency
is not sufficient to recapitulate ALS-related pathology (de
Waard et al., 2010). Nonetheless, DNA damage accumu-
lation with normal ageing can prove a vital risk factor
contributing to neurodegenerative disease and ALS (de
Waard et al., 2010).

Despite not causing motor functional decline, transgenic
expression of mutant heat shock protein beta 1 (HSPB1),
associated with motor neuropathies, showed age-dependent
subclinical motor axonal pathology, characterized by elec-
trophysiological changes and neuropathological hallmarks
(Srivastava et al., 2012). Conditional knockout of dynactin
P150%" in murine neurons not only led to age-dependent
motor functional decline but also caused preferential degen-
eration of spinal motor neurons in aged animals (Yu et al.,
2018). Many deleterious phenotypes only present when the
animals in these studies age, which raises the hypothesis
that normal ageing might be a prerequisite for motor neur-
onal degeneration in ALS. It is possible that the ageing of
motor neurons, in addition to causing direct cellular pheno-
types, might render the system vulnerable to subsequent
ALS disease-specific mechanisms, although further studies
are required to definitively resolve this.

With evidence suggesting that normal ageing affects
motor neuron number, structure and functional capacity,
it is unsurprising that age-related effects may play a vital
role in neurodegenerative diseases involving motor neurons,
such as ALS. An integration of ageing and ALS research
can allow for better mechanistic insight and therapeutic
advancement, ultimately leading to patient benefit.

subset of motor neurons



Ageing and ALS: a cellular perspective

Ageing of skeletal muscle

The nervous system and skeletal muscle are intimately
linked, with motor neuron-derived electrical stimulation ul-
timately allowing muscle contraction and, in turn, move-
ment. As the postsynaptic constituent of the NM]J, muscle
itself has been implicated as an early component in ALS
pathogenesis, with muscle weakness an initial and debilitat-
ing clinical symptom (reviewed in Hobson and McDermott,
2016). Indeed, skeletal muscle-specific expression of mutant
(G93A/G37R) and wild-type human SOD1 in transgenic
mice disrupted NM]Js and led to motor neuron degener-
ation and a corresponding functional phenotype (Wong
and Martin, 2010). Mitochondrial dysfunction, namely al-
terations in morphology and distribution, and the induction
of protein kinase C6 have been implicated as key mechan-
isms destabilizing NMJs in transgenic mice with muscle
restricted SOD1%%*A (Dobrowolny et al., 2018). As well
as its implications in ALS, skeletal muscle undergoes a var-
iety of structural and functional changes in normal ageing,
which may also link to its roles in disease. Sarcopenia, the
highly prevalent, age-associated decline in skeletal muscle
mass, force and function, not only significantly impacts pa-
tient quality of life, but also bears key connotations for the
healthcare system owing to its links with frailty (Clegg
et al., 2013), falls, disability and mortality (reviewed in
Marzetti et al., 2017). The clinical phenotype of sarcopenia
is underpinned by the effects of ageing on skeletal muscle
and its environment (reviewed in Marzetti et al., 2017),
which we discuss below.

Skeletal muscle adult stem cells (satellite cells) reside be-
tween muscle fibre sarcolemma and basement membrane in
a quiescent state, but, on injury, have the capacity to asym-
metrically divide to both self-replicate and form progeny
which ultimately differentiate to new muscle fibres
(Morgan and Partridge, 2003). With ageing, satellite cells
lose their capacity to regenerate damaged muscle (Sousa-
Victor et al., 2014b), with cell intrinsic alterations
implicated.

Indeed, induction of P1 in geriatric mice, a regula-
tor of cellular senescence, drove satellite cells to a pre-sen-
escent phenotype, which was further advanced to
irreversible full senescence when the cells were placed
under proliferative pressure (Sousa-Victor et al., 2014b).
Functionally, the cells showed defects in activation, ability
to proliferate and capacity to self-renew, altogether pre-
venting successful muscle fibre regeneration (Sousa-Victor
et al., 2014b). Adult (5-6 months) and old (20-24 months)
murine satellite cells actively repress P16™ % to maintain a
state of reversible quiescence, which underpins their regen-
erative function. Geriatric (28-32 months) animals had
P16™5*2 repression lifted, and underwent the abovemen-
tioned state change (reversible quiescence — irreversible
pre-senescence — geroconversion to full senescence).
Knocking out Bmil, a component of the main repressor
of the INK4a locus, induced a senescent-like phenotype in
young satellite cells with resultant functional defects

6INK43.
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(Sousa-Victor et al., 2014a). Interestingly, from a thera-
peutic perspective, inhibition of P16™X* in geriatric and
progeric mouse models was sufficient to reverse the senes-
cent phenotype and restore regeneration (Sousa-Victor et
al., 2014a). Thereby, with aged satellite cells unable to fa-
cilitate skeletal muscle recovery following insult, it may be
left more vulnerable to further disease-specific pathology in
ALS.

Protein arginine methyltransferase 7 (PRMT7) knockout
mice showed reduced skeletal muscle mass and increased
fat at 8 months of age, with delayed differentiation and
premature senescence as putative underlying mechanisms.
Increased p21 (senescence marker) and reduced DNMT3b
were noted, with restoration of the latter rescuing the sen-
escent phenotype in vitro. Although regenerative capacity
was similar between young wild-type and Prmt7”~ mice 21
days following tibialis anterior cardiotoxin injury, the
knockouts showed significant structural regenerative aber-
rance with age (8 months) when compared to Prmt7~~ un-
injured and wild-type injured/uninjured mice. Indeed,
satellite cell number, self-renewal ability and regenerative
function were defective (Blanc et al., 2016). Mice heterozy-
gous for Ku80 (XrccS), a facilitator of genomic and telo-
mere stability, showed a muscle phenotype resembling
accelerated physiological ageing. Following recurrent
injury, heterozygous mice (and Ku80 null mice) showed
fewer self-renewing stem cells, with a corresponding in-
crease in committed and expanding cells. Injuring the tibi-
alis anterior muscle of adult Ku80 wild-type, heterozygous
and null mice twice (15-day interval) resulted in decreased
regeneration in the 18-month compared to the 2-month
wild-type, as well as reduced capacity to regenerate in
Ku80 heterozygous and null mice (as measured 7 days
after second injury) (Didier et al., 2012). The heterozygous
stem cells were also shown to have significantly shorter
telomeres than wild-type mice as well as features of skeletal
muscle premature ageing (Didier ef al., 2012). Satellite cells
also lose functional heterogeneity with age, whilst main-
taining the clonal complexity of their youthful counter-
parts, as visualized using in wivo multicolour lineage
tracing (Tierney et al., 2018). Aged satellite cells obtained
via muscle biopsy of sedentary elderly patients showed def-
icits in antioxidant activity, cell membrane fluidity and
intracellular basal calcium content compared to those
from newborn or sedentary young patients (Fulle et al.,
2005). Indeed, other intrinsic age-related satellite cell alter-
ations might include DNA damage and mitochondrial
abnormalities (reviewed in Brack and Munoz-Canoves,
2016), resembling molecular mechanisms in ALS (reviewed
in Van Damme et al., 2017).

Altogether, satellite cells develop a number of cell intrin-
sic changes with ageing, ultimately leading to their dysfunc-
tion and a homeostatically aberrant skeletal muscle system
that is vulnerable to disease-specific insult. Moreover, ALS
satellite cells have been shown to lose their differentiation
potential (and consequently their regenerative capacity)
compared to controls (Scaramozza et al., 2014), indicating
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shared phenotypic features between aged and ALS satellite
cells.

As well as the abovementioned intrinsic satellite cell
alterations, the niche in which these cells reside also under-
goes age-associated changes. Nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-kB), for example,
is activated during ageing (Zhang et al., 2017). Specifically
increasing NF-«B signalling in satellite cells led to impaired
repair following cryoinjury, a phenotype that was rescued
by administration of an NF-«B inhibitor (Oh et al., 2016).
Isolation of satellite cells prior to injury indicated no intrin-
sic differences in proliferation or initiation of myogenesis.
The presence of their differentiated muscle progeny with
increased NF-xB signalling seemed to negatively impact
the stem cells and indeed blocking NF-kB specifically in
aged muscle fibres improved satellite cell function (Oh et
al., 2016). Hence, age-associated non-cell autonomous im-
pacts on satellite cells may also contribute to muscle aber-
rance in normal ageing and disease.

Muscle-specific inactivation of NF-kB failed to ameliorate
loss of muscle mass and neuromuscular function in aged
muscle-specific inhibition of NF-kB through expression of
IxBa super repressor (MISR) mice (Zhang et al., 2017).
Moreover, NF-kB inhibition altered the expression of
genes associated with muscle growth and NM]J function
and caused accelerated early differentiation in wvitro
(Zhang et al., 2017). This highlights the key role of tightly
regulating NF-kB in order to prevent muscle aberrance with
ageing. Indeed, NF-kB alterations in various cell types are
also implicated in the pathogenesis of ALS (Frakes et al.,
2014).

A number of extrinsic signalling pathways (Wnt, TGFp,
Notch, FGF) have been noted to interact closely with
ageing satellite cells, with key implications for the regenera-
tive capacity of these cells (Chakkalakal and Brack, 2012).
Indeed, Notch activity drops whereas TGFp and pSmad3
increase in old muscle, inducing a loss of regenerative cap-
acity (as confirmed by three different Smad3-targeted small
hairpin RNAs restoring markers to youthful levels in satel-
lite cells and enhancing myogenesis in old muscle) (Carlson
et al., 2008). Evidence for the impact of the muscle niche
also comes from studies of heterochronic parabiosis, which
unite the circulatory systems of aged and young animals,
with elderly tissues exposed to youth serum systemic fac-
tors. By separating young and aged contributions in vivo
via GFP reporter labelling, notably, the native aged satellite
cells were reactivated and enhanced myogenesis occurred
post-injury (Conboy et al., 2005). Delta upregulation, indi-
cative of Notch activity, was restored with exposure to
young serum (Conboy et al., 2005). Growth differentiation
factor 11 (GDF11) has been implicated as a key circulating
rejuvenating factor, restoring structural and even functional
deficits in aged mice (Sinha et al., 2014). Muscle transplant-
ation between old and young rats revealed that old to
young transplants had greater mass, maximum force and
resembled young-young autografts histologically (Carlson
and Faulkner, 1989), adding yet more support to the key
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role of the muscle niche in ageing. A less permissive and
poorly sustainable aged muscle environment might prove
vulnerable to disease-specific mechanisms, such as those
in ALS.

Muscle mitochondrial function decreases with ageing,
with wild-type mice showing decreased oxygen consump-
tion rates and increased production of reactive oxygen spe-
cies (ROS) as they age (Valentine et al., 2018). Autophagy,
the lysosome-mediated process by which various cytosolic
components are degraded, was diminished in muscle ob-
tained from elderly sedentary patients, and muscle-specific
knockout of autophagy-associated ATG7 in mice enhanced
muscle atrophy, inflammation, abnormal structure and
reduced life expectancy in this model (Carnio et al.,
2014). Inhibition of autophagy also increased mitochondria
frequency, size and structural aberrance, leading to oxida-
tive stress and ROS, which in turn disturbs interaction be-
tween actin and myosin and force generation (Carnio et al.,
2014). OId (29 months) male rats showed a maladaptive
endoplasmic reticulum (ER) stress response on hindlimb
reloading following 14 days of unloading (which had
caused disuse-induced atrophy and deficits in force gener-
ation) (Baehr et al., 2016). Hence, ER and oxidative stress,
mitochondrial dysfunction and autophagy also play key
roles in muscle ageing, and indeed, all of these pathways
are also implicated in ALS pathogenesis (reviewed in
Loeffler et al., 2016; Van Damme et al., 2017).

With the abovementioned mechanisms of normal muscle
ageing sharing associations with the pathophysiology of
sarcopenia, it is important to consider the role of age-
related skeletal muscle perturbations in other diseases
such as ALS. With muscle intimately structurally and func-
tionally linked with lower motor neurons, it is possible that
defective aged skeletal muscle fails to fulfil its role in the
complex relationship, thereby contributing to disease.
Indeed, it is at the level of the NMJ where skeletal
muscle ageing may play its largest role in ALS. Skeletal
muscle expressed FGFBP1, found to be a key protective
factor to preserve NM] integrity, was reduced in both
normal ageing and ALS (SOD1%”** mice) (Taetzsch et
al., 2017), suggesting a common pathological mechanism
between the two. Hence, neuromuscular structural and
functional consequences result from the effects of ageing
at the level of the skeletal muscle, with potential mechan-
istic overlaps with ALS.

Ageing of astrocytes

With non-neuronal cells matching neuronal numbers in the
human brain (Azevedo et al., 2009), astrocytes, the most
abundant of the CNS glial cells, perform an array of func-
tions fundamental in development and adulthood including
synaptogenesis and synaptic elimination, neurotransmitter
recycling, blood-brain barrier maintenance and supporting
neuronal survival (reviewed in Vasile et al., 2017). With a
non-cell autonomous contribution to neurodegenerative
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disease pathogenesis now widely accepted over the trad-
itional ‘neuron centric’ model, astrocytes have emerged as
vital disease players in ALS, with both toxic gain-of-func-
tion (Nagai et al., 2007) and loss of neuronal support
implicated (Das and Svendsen, 2015; Tyzack et al,
2017). Interestingly, there were a number of similarities
between 150 day end-stage SOD1 overexpressing astrocytes
and 300 day wild-type aged astrocytes with analysis of
growth rates, molecular profiles, markers of senescence
and motor neuron survival revealing parallels between
ALS and aged wild-type samples (Das and Svendsen,
2015). This indicated that the SOD1 mutant ALS astrocytes
were displaying the effects of normal ageing at an acceler-
ated rate (Das and Svendsen, 2015). Indeed, astrocytes
undergo significant age-associated alterations, which affect
their ability to interact with surrounding cells and conse-
quently their vital functions in the CNS. If astrocytes in
ALS are a pathologically hastened form of their normally
aged counterparts, a true understanding of astrocyte ageing
will provide insight into not only the mechanisms behind
age-related neurological decline, but also ALS. This is dis-
cussed below.

Astrocytes reacting to injury segregate into two groups
dependent on mechanisms of injury, as revealed by tran-
scriptomic analysis (Zamanian et al., 2012). Astrocytes
subjected to inflammatory stimuli such as lipopolysacchar-
ide (LPS) adopt an Al phenotype, and those exposed to
ischaemia develop an A2 phenotype, with the former upre-
gulating genes involved in synaptic elimination (e.g. com-
plement cascade), and the latter upregulating neurotrophic,
reparative and survival promoting genes (e.g. thrombos-
pondins) (reviewed in Liddelow and Barres, 2017).

Astrocytes in ALS and a number of other neurodegenera-
tive diseases possess an Al reactive phenotype (Clarke et
al., 2018). Aged (2 years) mouse astrocytes from an array
of brain regions upregulated more A1l reactive genes
(including the complement factor C3) than A2 reactive
genes, indicating that normal ageing is associated with
the more deleterious Al astrocytic phenotype (Clarke et
al., 2018). Indeed, promotion of complement regulated syn-
aptic elimination by normally aged A1l astrocytes may
make the brain more vulnerable to neurodegenerative dis-
eases (Clarke et al., 2018).

Alterations in astrocytes with age render them more sus-
ceptible to insult. Pure oxidative stress via hydrogen perox-
ide exposure and mixed stressors (including oxidative
stress) in glucose with or without oxygen deprivation af-
fected primary mouse astrocytes matured iz vitro more
than their young counterparts, indicating disruption in the
balance between synthesis and scavenging of reactive
oxygen species in older astrocytes (Papadopoulos et al.,
1998). Indeed, three key antioxidant species, namely gluta-
thione, catalase and SOD were maintained or even elevated
in older astroglia, suggesting alternative mechanisms behind
the greater injury in these cells (Papadopoulos et al., 1998).
Iron, which catalyses free radical synthesis, was increased
in aged astrocytes (Papadopoulos et al., 1998). The
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enhanced vulnerability of aged astrocytes to oxidative
stress may play a key role in disease, with oxidative
stress playing an important role in ALS pathogenesis (re-
viewed in Barber and Shaw, 2010).

In turn, primary astrocyte cultures subjected to oxidative
stress (hydrogen peroxide) develop a senescent phenotype,
also achieved by other stressors (proteasome inhibition via
lactacystin-2 and extensive cellular replication) (Bitto et al.,
2010). Stressed cells acquired characteristic morphological
features of senescence, cell cycle arrest and expressed sen-
escence-associated markers including B-galactosidase, p16,
p21 and p53 (Bitto et al., 2010). Replicative senescence was
also seen, with associated reductions in telomere length and
G1 cell cycle arrest (Bitto et al., 2010). Given the above-
mentioned susceptibility of astrocytes to oxidative and
other stress (Papadopoulos et al., 1998; Bitto et al.,
2010) in normal ageing, the development of their senescent
phenotype may carry a range of functional defects which
ultimately lead to their failure to support themselves and
neurons in ageing and disease. Transcriptomic analysis of
multiple regions within aged murine brains and subsequent
pathway analysis revealed that cholesterol synthesis was
downregulated in aged astrocytes (Boisvert et al., 2018).
With cholesterol a key constituent of presynaptic vesicle
synthesis, neuronal synaptic function could become per-
turbed as a result of astrocytic ageing (Boisvert et al.,
2018). Genes from immune pathways including antigen
presentation and the complement cascade, were upregu-
lated, indicating a propensity towards cellular stress and
synaptic elimination in aged astrocytes (Boisvert et al.,
2018). Transcriptomic analysis also uncovered stark re-
gional heterogeneity in astrocyte expression profiles both
within the murine cortex (Boisvert et al., 2018) and be-
tween different human post-mortem brain regions (Soreq
et al., 2017). In human brains, the most pronounced age-
related shifts in astrocyte region-specific genes were identi-
fied in the hippocampus and substantia nigra, major sites of
pathology in the two most common age-associated neuro-
degenerative diseases (Alzheimer’s disease and Parkinson’s
disease, respectively) (Soreq et al., 2017). The ageing of
astrocytes rather than neurons, which show significantly
fewer region-specific gene expression changes with age,
may therefore underpin regional vulnerability and sites of
pathological involvement in neurodegenerative diseases
(Soreq et al., 2017). This finding potentially bears signifi-
cance for ALS, where there is regional and subtype specific
vulnerability (reviewed in Nijssen et al., 2017).

Astrocytes possess the key quality of forming intimate
interactions with other glial cells in brain physiology.
Their interaction with microglia, the immune cells of the
CNS, affects microglial branching and distribution (Lana
et al., 2019). In ageing, this direct interaction is impaired,
with microglial morphology, distribution and ability to effi-
ciently phagocytose disrupted (Lana et al., 2019). The latter
could lead to accumulation of toxic proinflammatory cell
debris in the CNS (Lana et al., 2019). Key astrocytic inter-
actions with cells in their local environment thereby
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become perturbed upon ageing, leading to disruption of
other cell types in their vicinity via non-cell autonomous
mechanisms.

With their sheer number and multiple functional roles, it
is unsurprising that astrocytes are heavily relied upon by
the human nervous system. Their disruption with normal
ageing can therefore have vital knock-on effects on other
surrounding cells, such as neurons and microglia, overall
leading to a CNS more vulnerable to age-related pathology
and neurodegenerative disease.

Ageing of Schwann cells

Schwann cells adopt various phenotypes dependent on ex-
trinsic cues. Originating from neural crest, immature
Schwann cells can either differentiate into non-myelinating
or myelinating Schwann cells, the latter via a promyelin
Schwann cell intermediate (reviewed in Jessen et al.,
2015; Santosa et al., 2018). Indeed, at the NM], the peri-
synaptic or terminal Schwann cell (TSC) falls within the
non-myelinating category and has been implicated in
neuromuscular diseases including ALS (reviewed in
Santosa et al., 2018). TSCs have been shown to undergo
morphological changes in ALS patients, including develop-
ing vast cytoplasmic processes (Bruneteau et al., 2015).
Moreover, TSCs, which normally juxtapose the NM]
(Fig. 2), are sometimes found to invade the NM]J itself,
occupying the space between the presynaptic motor axon
terminal and the postsynaptic membrane (termed the syn-
aptic cleft), in turn reducing the surface area for neuromus-
cular transmission (Bruneteau et al., 2015). Morphological
alterations have also been reported in a SOD1%?*# mutant
model of ALS, with these changes preceding motor terminal
degeneration and denervation (Carrasco et al., 2016b).
More specifically, it was found that TSCs were lost from
NM]Js with pre-terminal Schwann cell processes taking
their place (Carrasco et al., 2016b). Additionally, an ab-
sence of immunostaining for P75 (post-denervation marker)
and S100 (a Schwann cell marker) following experimental
denervation suggests that both TSCs and pre-terminal
Schwann cells are lost in SOD1%%3* mutant mice, hence
unable to facilitate reinnervation following denervation
(such as in ALS) (Carrasco et al., 2016a). Given the vital
role of TSCs in maintaining NM]J health and function, and
their significance in disease, understanding the impact of
ageing on this cell type is essential to truly appreciating
their role in ALS pathogenesis. We discuss ageing pheno-
types in Schwann cells before subsequently focusing on
TSCs.

Neurons of the peripheral nervous system have a remark-
able capacity to regenerate, especially when compared to
their central counterparts. Integral to this process are
Schwann cells, which whether myelinating or non-myelinat-
ing, adopt a repair phenotype post nerve injury, regulated
by the transcription factor c-Jun (reviewed in Jessen et al.,
2015). Regeneration tracks laid by these cells form scaf-
folds that facilitate axonal reinnervation of their intended
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targets (reviewed in Jessen et al., 2015). Ageing in Schwann
cells is associated with a decline in regenerative capacity
(Painter et al., 2014). Indeed, when compared to young
mice at 2 months of age, elderly 24-month-old mice had
delayed initiation and slower sensory and motor functional
recovery, with 12-month-old mice possessing an intermedi-
ate capacity (Painter et al., 2014). Furthermore, aged ani-
mals receiving young nerve grafts equalled young
functional recovery and young animals receiving aged
nerve grafts developed a delay in functional restoration
(Painter et al., 2014). Genetic analysis revealed that aged
animals had downregulated repair function genes, with age-
associated decline in growth factor and mitosis genes, and
had failed to suppress a myelinating phenotype after injury
when compared to their young counterparts (Painter et al.,
2014). In aged animals 1 day post nerve injury, c-Jun, the
abovementioned regulator of the Schwann cell repair
phenotype, only managed one-fifth of the levels achieved
in young animals, in line with aged Schwann cell aberrance
in dedifferentiation and subsequent failure in functional re-
generation (Painter et al., 2014). With ageing impairing
Schwann cell facilitated regeneration, neurons may fail to
combat damage experienced in both normal ageing and
ALS, leading to an enhanced deleterious phenotype.

Dedifferentiated Schwann cells play a role in luring
macrophages to the site of axonal damage after injury
(Painter et al., 2014). This function too was disrupted in
aged animals, with a delay in macrophage recruitment
(Painter et al., 2014). Age-related immune dysfunction
was also implicated when grafting sections of rat sciatic
nerves from 2- to 18-month-old (young-aged) rats and
vice versa (aged-young) with young-young and aged-aged
graft controls. Both Schwann cells and macrophages play
key roles in debris clearance via phagocytosis after injury
(Scheib and Hoke, 2016). Indeed, there was more debris in
aged-aged controls compared to young-young grafted ani-
mals, with young-aged and aged-young grafts displaying
intermediate levels. Hence, as cells involved in debris clear-
ance (Schwann cells and immune macrophages) age, their
phagocytotic capacity diminishes, a finding replicated in
vitro for both cell types (Scheib and Hoke, 2016).

It has been long noted that Schwann cell ultrastructural
abnormalities accompany ageing in rat peripheral nerves
(Thomas et al., 1980). Schwann cells in aged rats developed
a phenotype with extended attenuated processes projecting
from adaxonal Schwann cell into the axon, in turn com-
partmentalizing the axon length into small sections, appear-
ing ‘honeycombed’ (Thomas et al., 1980). Intracytoplasmic
inclusions were also noted (Thomas et al., 1980). The pres-
ence of disproportionately thin myelin sheaths around some
axons also indicated remyelination to be present (Thomas
et al., 1980). A reduced myelin diameter was also noted in
aged CS57BL/6 mice, alongside alterations to essential
myelin-related proteins including increased carbonylation
and reduced protein expression of PMP22 in sciatic
nerves (Hamilton et al., 2016). We speculate that structur-
ally aberrant aged Schwann cells may not be able to
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function optimally and support neurons, which then may
potentially allow disease mechanisms, such as those in ALS,
to thrive in an already vulnerable environment.

TSCs in aged wild-type mice showed numerical decline,
with a progressively lower proportion of NMJs possessing
TSCs between 14 and 33 months of age (100% NM]Js had
TSCs at 9 months of age) (Snyder-Warwick et al., 2018).
This loss was accompanied by structural changes in the
remaining TSCs, which displayed thinner processes and ir-
regular TSC bodies with heterogeneous S100 staining
(Snyder-Warwick et al., 2018). Brain-specific overexpres-
sion of SIRT1, implicated in mammalian ageing, enhanced
the number of TSC processes and bodies compared to age-
matched controls, with a higher proportion of NMJs pos-
sessing TSCs in, altogether, a more youthful phenotype
(Snyder-Warwick et al., 2018). Additionally, the knock-
down of SIRT1 specific to the dorsomedial hypothalamus
led to excessively large TSC bodies that frequently resided
outside the NM], as well as fewer TSCs per NM] (Snyder-
Warwick et al., 2018). Although aberrance was not identi-
cal in knockdown and aged wild-type animals, both
showed increased frequency of TSC abnormalities, with
the knockdown potentially a ‘more aged’ phenotype
(Snyder-Warwick et al., 2018). Their imperative roles in
sustaining optimal NM] function implicate TSCs as being
a highly relevant cellular candidate linking ageing and ALS.

Discussion

Ageing and amyotrophic lateral
sclerosis

In this review, we have discussed the effects of normal
ageing on the individual cellular components of the lower
motor unit, and their potential mechanistic link with ALS
(see Table 1 for an overall summary of key similarities
between ageing and ALS). With disruption of the NM]J
clearly implicated in ALS pathogenesis (Fischer et al.,
2004; Wong and Martin, 2010; Shahidullah et al., 2013;
Chand et al., 2018) and age-related changes to both indi-
vidual cellular constituents (discussed above) and the NM]J
described (reviewed in Cappello and Francolini, 2017),
there is a real role for the unification of ageing and ALS
research in order to gain true mechanistic insight into this
universally fatal and devastating disease.

Several studies have more directly investigated the link
between normal ageing and ALS. Transcriptomic analysis
of iPSC-derived spinal motor neurons, foetal and adult
spinal tissues suggested that gene expression networks
involved in spinal motor neuron maturation and ageing
are also implicated in sporadic ALS (Ho et al., 2016).
Levels of SIRT1 decrease during murine ageing, and knock-
out in motor neurons revealed less NM]J innervation with
age, suggesting a role for SIRT1 in preventing NM]
damage with age (Herskovits et al, 2018).
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Transcriptomic analysis of SOD1%*** murine spinal cords

identified an overlap between ageing and ALS (90% of
aged spinal cord transcripts upregulated in ALS), with in-
flammation and immune system activation being key path-
ways (Herskovits et al., 2018). Interestingly, overexpression
of SIRT1 in motor neurons delayed ALS disease progres-
sion in SOD1%”** mice (Herskovits et al., 2018), showing
that interventions targeting ageing can in fact benefit ALS.

Telomere shortening is a hallmark of normal cellular
ageing. SOD1%?** mice crossed with telomerase knockout
mice showed earlier disease onset, shortened life expectancy
and an overall enhanced pathological phenotype (Linkus
et al., 2016), indicating a role for telomere dysfunction in
ALS. Moreover, in patients with sporadic ALS, human tel-
omerase reverse transcriptase (W'TERT), a component of the
telomerase enzyme, was lower in post-mortem spinal cords,
a result replicated in leucocytes from patient blood samples
compared to healthy control subjects (De Felice et al.,
2014). Indeed, telomere length was significantly reduced
in patients too (De Felice et al., 2014). Altogether, given
the neuroprotective roles of telomerase in combatting cel-
lular stresses, alterations of this enzyme with ageing may
lead to vulnerability of neurons and contribute to ALS
pathology (De Felice et al., 2014).

Day 32 human iPSC-derived TDP-43 mutant motor neu-
rons showed enhanced vulnerability and neurodegeneration
compared to their Day 5 counterparts and wild-type con-
trols (Kreiter et al, 2018). Alterations to cytoskeletal
morphology and axonal mitochondria and lysosomes
were noted, with size, shape, and organelle motility mod-
ified (Kreiter et al., 2018). Interestingly, these mechanisms
of motor neuronal degeneration were independent of the
TDP-43 cytoplasmic aggregation ALS pathological hall-
mark (Kreiter et al., 2018), indicating that looking at
ageing and ALS together can uncover novel pathological
mechanisms and potentially yield future therapeutic targets.

The question remains as to why certain individuals are
selectively vulnerable to ALS, whilst others grow old with-
out acquiring ALS or other age-associated neurodegenera-
tive diseases. An interindividual heterogeneity in
susceptibility to ageing might contribute to the explanation,
with recent evidence suggesting that certain individuals age
better and others worse than expected, termed Delta ageing
(Rhinn and Abeliovich, 2017) (Fig. 1). Additionally,
TMEM106B and progranulin were identified as acceler-
ators of ageing (Rhinn and Abeliovich, 2017), indicating
that such factors might determine the effects of ageing on
an organism level. Differential rates of ageing were also
noted at a cellular level, notably, within a single anatomical
region (Maxwell et al., 2018). Alpha motor neurons, which
showed no difference in number and size on ageing, were
found to have greatly varied amounts of lipofuscin accu-
mulation, reflecting subcellular changes (Maxwell et al.,
2018). Differential susceptibility to ageing was noted
amongst old mouse NM]Js in an array of muscles, falling
into three categories: muscles susceptible in early ageing,
muscles with a delayed response to ageing, and muscles
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resistant to the effects of ageing, such as extraocular mus-
cles, which are also known to be spared in ALS (Valdez et
al., 2012). Comparison to SOD1%%3* NMJs in these mus-
cles revealed similar susceptibility and phenotypes in ALS
and ageing (Valdez et al., 2012). Despite a consensus that
TDP-43 pathology is absent in SOD1-ALS (Mackenzie et
al., 2007), cytoplasmic TDP-43 aggregates were found in
spinal motor neurons in old mice and SOD1%?*#, showing
a stark overlap in pathology between ageing and ALS
(Valdez et al., 2012). Hence, with ageing affecting cells at
different rates, it is possible that ‘Delta ageing’ occurs on
both an organism level and cellular level, maybe somewhat
accounting for varied susceptibility to ALS between and
within individuals.

With mechanisms of ageing and ALS showing a number
of parallels, there is an unmet requirement to integrate the
two fields of research. An approach is to age existing
models of ALS so that they faithfully recapitulate the
age-associated human presentation of the disease.
Integrative modelling is the optimal approach for valid-
ation of key findings and for providing best evidence for
a mechanistic link between ageing and ALS. Specifically,
the unification of in vitro and in vivo, animal and human
models of ALS and ageing, alongside post-mortem tissue,
each with their own benefits and drawbacks (Table 2), is
key to achieve high fidelity conclusions. Human iPSCs
provide a patient and human-specific model of disease,
with familial and sporadic ALS patient iPSC-derived neu-
rons recapitulating a number of disease-specific pheno-
types (Hall et al, 2017; Tyzack et al, 2017, 2019;
Fujimori et al., 2018; Luisier et al., 2018; Simone et al.,
2018; reviewed in Ziff and Patani, 2019). They therefore
provide a useful and simplified model of human neurode-
generative disease. However, during reprogramming,
human iPSCs obtain foetal age profiles, resetting age-
related genetic, epigenetic and phenotypic signatures of
their donors (Miller et al., 2013; Mertens et al., 2015;
Ho et al., 2016). It is thereby plausible that human iPSC
studies are picking up early disease changes rather than
relevant later disease phenotypes that require ageing, high-
lighting the need for adding age to existing ALS models.

In vitro, a number of approaches have been taken to age
cells so that they better replicate iz vivo disease pathogen-
esis. The small molecule inhibitor of telomerase, BIBR1532,
shortened telomeres in human iPSC-derived midbrain dopa-
minergic neurons (Vera et al., 2016), capturing not only
age-related but also disease-specific phenotypes in a cell
type-specific manner (Vera et al., 2016). Overexpression
of progerin, the mutant protein underlying Hutchinson-
Gilford progeria syndrome (characterized by premature
ageing), revealed an enhanced disease phenotype in the
aged model, with aged grafts also failing to provide func-
tional recovery in a mouse model (Miller et al., 2013).
Genotype-specific phenotypes (absent from all controls)
were noted with progerin overexpression (Miller et al.,
2013), indicating that certain genotype-specific phenotypes
might only be revealed in an aged system. Despite their
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focus on Parkinson’s disease, these studies fortify the link
between normal ageing and neurodegenerative diseases.
Indeed, similar approaches are required to delineate cell
type-specific features of ageing in ALS.

Bypassing the pluripotent state by direct transdifferentia-
tion of donor fibroblasts to induced neurons maintains age-
associated expression profiles from donors, in contrast to
reprogramming to an iPSC state (Mertens et al., 2015). A
comparison of expression profiles from ageing fibroblasts,
induced neurons and ageing human cortical tissue revealed
RANBP17 (a nuclear pore associated transport protein) as
an ageing factor (Mertens et al., 2015). Brain levels of the
protein decreased with ageing as did amounts in mature
induced neurons, where reduced RANBP17 induced a func-
tional age-associated phenotype (Mertens et al., 2015).
Knockdown of RANBP17 via short hairpin RNAs caused
age-associated alterations to young fibroblast transcrip-
tomes (Mertens et al., 2015). Transdifferentiation and for-
mation of induced neurons therefore provides a patient-
and human-specific in vitro model that maintains age-
related genetic signatures, which iPSCs do not. Recently,
heterochromatin protein 1 binding protein 3 (HP1BP3)
was identified as a mediator of ageing, with hippocampal
knockdown by virally introduced short hairpin RNA caus-
ing working memory and contextual fear memory aber-
rance (cognitive disruption), transcriptomic alterations,
and reducing neuronal excitability and synaptic plasticity
(Neuner et al., 2018). Notably, there was a large overlap
between downregulated genes in knockdown conditions
and genes downregulated in human frontal cortex ageing,
suggesting HP1BP3 is a key regulator in ageing, with age-
related alterations at molecular, cellular and even func-
tional levels noted iz vivo (Neuner et al., 2018). The inte-
gration of ageing and ALS research via more relevant
patient models will ultimately provide more reliable thera-
peutic interventions for patients. Indeed the failure of trans-
lation thus far, emphasized by the fact that Riluzole is the
only UK approved pharmaceutical life enhancing therapy
for ALS patients, might resemble a failure to accurately
model the disease (Johnson, 2015). High fidelity models
that account for age-related cell type-specific effects will
lead to therapeutics that might in turn enhance patient
healthspan (length of time living in optimal health) and
lifespan (life expectancy). Indeed, the aim of both ALS
(rapid progressive functional decline) and ageing thera-
peutics is to allow patients to live longer in optimum
health (enhance healthspan), so that quality of life is max-
imized (Fig. 3). An integration of research into ageing and
ALS thereby unlocks the potential for therapeutic advance-
ment in both fields.

Concluding remarks

In this review, we have discussed the potential role of cell
type-specific ageing in ALS. We critically review evidence
for the overlap between ageing and ALS on molecular,
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Figure 3 Healthspan versus lifespan: ageing and ALS. Patient functionality alters with age. There is an increase in functionality from birth
to optimum reproductive age where, evolutionarily, humans reach peak performance to give best chance of survival on a species level. From then,
there is a gradual decline in functionality that can lead to disability once a certain threshold is passed. In ALS, this functional decline is particularly
pronounced, with end of life trajectory of terminal illness and death at a much younger age. A variety of end of life trajectories exist, leading to
significant disability before death (when compared to sudden death where there is no further functional decline) (Lunney et al., 2003).

Functionality is a key component of quality of life, so while lifespan or longevity is seen on the x-axis, healthspan (years spent in good health/quality
of life/functionality) is seen on the y-axis. The aim of therapeutics in ageing (Crimmins, 2015; Olshansky, 2018) and ALS research is to maximize

healthspan and minimize functional decline and disability.

cellular and functional levels, suggesting that normal ageing
could have an important contribution to ALS, likely along-
side other genetic, lifestyle and environmental factors. With
accumulating literature for mechanistic parallels between
normal ageing and ALS, the unification of the two research
fields, development of ALS models incorporating ageing
and common aim of enhanced patient healthspan will ul-
timately provide life—quality and quantity—enhancing
therapy for patients.
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