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Abstract

Trypanosoma cruzi, the causative agent of Chagas’ disease, induces multiple responses in the heart, a critical organ of
infection and pathology in the host. Among diverse factors, eicosanoids and the vasoactive peptide endothelin-1 (ET-1)
have been implicated in the pathogenesis of chronic chagasic cardiomyopathy. In the present study, we found that T. cruzi
infection in mice induces myocardial gene expression of cyclooxygenase-2 (Cox2) and thromboxane synthase (Tbxas1) as
well as endothelin-1 (Edn1) and atrial natriuretic peptide (Nppa). T. cruzi infection and ET-1 cooperatively activated the Ca2+/
calcineurin (Cn)/nuclear factor of activated T cells (NFAT) signaling pathway in atrial myocytes, leading to COX-2 protein
expression and increased eicosanoid (prostaglandins E2 and F2a, thromboxane A2) release. Moreover, T. cruzi infection of ET-
1-stimulated cardiomyocytes resulted in significantly enhanced production of atrial natriuretic peptide (ANP), a prognostic
marker for impairment in cardiac function of chagasic patients. Our findings support an important role for the Ca2+/Cn/NFAT
cascade in T. cruzi-mediated myocardial production of inflammatory mediators and may help define novel therapeutic
targets.
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Introduction

Chagas’ disease, caused by the infection with the protozoan

parasite Trypanosoma cruzi, constitutes the major cause of infectious

heart disease in Latin America. It is estimated that 10 million people

are infected with T. cruzi in the Central and South America, 100–

120 million are at potential risk of infection and around 50,000 new

cases occur each year [1]. In humans, an acute phase displays

frequently as a non-apparent form with a few or no symptoms.

Thereafter, the patients enter into an asymptomatic, indeterminate

stage, which lasts throughout life in the majority of infected subjects.

The remaining 20–30% of chronically infected individuals develop

cardiac or digestive complications, typically years or decades after

infection. Chronic cardiomyopathy is the most common and severe

manifestation of human Chagas’ disease, causing congestive heart

failure, arrhythmias and conduction abnormalities, which often lead

to stroke and sudden death. This type of dilated cardiomyopathy is

associated with chronic inflammation and fibrosis, cardiac hyper-

trophy and thrombo-embolic events [2].

Compromised microcirculation, caused by T. cruzi infection,

involves endothelial alterations, vasospasm, reduced blood flow

and focal ischemia [3]. Cardiovascular production of vasoactive

mediators has been implicated in the pathogenesis of the

vasculopathy seen in chagasic heart disease [4]. Among other

vasculitis-promoting factors, T. cruzi infection triggers myocardial

overexpression and increased plasma levels of endothelin-1 (ET-1)

in mice and chronic chagasic patients, which correlate with heart

dysfunction [5,6]. A bulk of evidence supports the participation of

this vasoactive peptide, produced by myocardial and endothelial

cells among others, in Chagas’ disease pathogenesis [4,5,7,8–10].

ET-1 activity may result in vascular injury, cardiac remodeling

and enhanced liberation of inflammatory agents [11].

Endothelin-1 is involved in different signaling pathways that

include increase in intracellular calcium levels ([Ca2+]i) and

ERK1/2 activation leading to expression of cyclin D1 and

inflammation-linked genes, all of them contributing to T. cruzi-

mediated cardiac pathology [12,13]. Moreover, ET-1 has been

shown to induce cell hypertrophy in primary cultures of rat
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cardiomyocytes through a calcineurin (Cn)/nuclear factor of

activated T cells (NFAT)-dependent mechanism [14,15]. The

NFAT family includes four ‘classical’ members displaying a high

degree of homology: NFATc1-4, each of which is expressed in

heart tissue [16]. NFAT exists in a highly phosphorylated form in

the cytoplasm, which translocates into the nucleus upon dephos-

phorylation by the phosphatase Cn in response to increases in

[Ca2+]i, where it binds to enhancer elements of downstream genes

leading to transcriptional activation [17].

One of the NFAT target genes associated with inflammation is

cyclooxygenase-2 (COX-2), the inducible enzyme that catalyzes

the rate-limiting step in prostanoid biosynthesis [18–20]. ET-1 is

able to stimulate protein expression of COX-2 and prostacyclin

release in cardiomyocytes [21]. In addition, experimental murine

infection with T. cruzi has been shown to raise the number of

cardiac cells positive for COX-1 and COX-2, as well as the

circulating levels of cyclooxygenase metabolites [22,23]. Both host-

and parasite-derived prostaglandins (PG) and thromboxane A2

(TXA2) are key regulators of pathogenesis during T. cruzi infection

[24]. Remarkably, ET-1 stimulation of cardiac myocytes also

results in NFATc4-dependent up-regulation of hypertrophy

response genes such as atrial natriuretic peptide (ANP) and B-

type natriuretic peptide (BNP) [25,26], potential markers of

myocardial compromise in Chagas’ disease [27,28].

Although ET-1 and eicosanoids have been proposed to play a

role in Chagas’ disease pathogenesis, the link between them has

not yet been addressed. Thus, we have examined the regulation of

Cox2 expression and activity by the combined effect of ET-1 and

T. cruzi infection of cardiomyocytes. Our results show that

induction of Cox2 expression by ET-1 plus T. cruzi in HL-1 atrial

myocytes requires activation of the Ca2+/Cn/NFAT pathway.

NFAT is translocated to the nucleus upon stimulation with the

peptide and subsequent infection where it binds to NFAT response

elements in the promoter region of Cox2 that are essential for

transcriptional induction of the gene. Moreover, trypomastigote

infection of ET-1-pre-treated HL-1 cardiomyocytes significantly

enhanced production of eicosanoids and ANP by these cells. These

findings demonstrate the participation of NFAT in [T. cruzi+ET-

1]-mediated induction of genes involved in the pathogenesis of

chronic Chagas’ heart disease.

Materials and Methods

Ethics statement
This study was carried out in strict accordance with the

recommendations of Spanish Legislation and the European

Council Directive from the Convention for the Protection of

Vertebrate Animals Used for Experimental and Other Scientific

Purposes. All mice were maintained under pathogen-free condi-

tions in the animal facility at the Centro de Biologı́a Molecular,

Universidad Autónoma de Madrid (Madrid, Spain). The animal

protocol was approved by the Comité de Ética de la Investigación

de la Universidad Autónoma de Madrid. Animals had free access

to food and water and were handled in compliance with European

codes of practice. Mice were euthanized in a CO2 chamber, and

all efforts were made to minimize suffering.

Cell culture, primary cardiomyocytes and infection
Mouse HL-1 cardiomyocytes were plated onto gelatin/fibro-

nectin pre-coated flasks and cultured in Claycomb medium

(Sigma-Aldrich) supplemented with 10% fetal calf serum,

100 U/ml penicillin, 100 mg/ml streptomycin and 2 mM L-

glutamine as previously described [29]. Primary cardiomyocytes

were isolated from BALB/c mice and cultured according to

standard protocols [30]. HL-1 and primary cardiomyocytes were

seeded in 6- (56105/well) or 24- (16105/well) well plates and

infected with T. cruzi trypomastigotes (cell:parasite ratio 1:5), Y

strain, routinely propagated in Vero cells. In some experiments,

cell cultures were starved for 18 h and then treated with

recombinant murine interferon-c (25 U/ml IFN-c, R&D Sys-

tems), 1 mg/ml lipopolysaccharide (LPS, Sigma-Aldrich) or

0.3 nM ET-1 (Sigma-Aldrich) for 2 h before infection. Endotoxin

level in the ET-1 batch was ,1 EU/mg, as determined using a

Limulus amoebocyte lysate analysis kit (Whittaker Bioproducts).

Plates were rinsed to remove free parasites and further incubated

in complete medium at 37uC, 5% CO2 for the indicated times.

In vivo infection
Young adult (6- to 8-wk-old) C57BL/6 mice were purchased

from Charles River Laboratories. For infection experiments,

26103 blood trypomastigotes (Y strain) per mouse were inoculated

by intraperitoneal injection as described [31], keeping a group of

non-infected mice. Age-matched BALB/c mice were infected in

parallel. Parasitemia levels were checked every 2 days by direct

inspection and counting parasites in a 5 ml drop of tail vein blood.

Weekly during one month post-infection, groups of 3 mice were

euthanized in a CO2 chamber, and blood and various tissues were

collected. Samples were processed for RNA or histological

analysis.

RNA isolation, reverse transcription and polymerase
chain reaction (PCR)

Total RNA was extracted from HL-1 cells and mouse heart

tissue by using Trizol reagent (Invitrogen) according to the

manufacturer’s instructions. First-strand cDNA was prepared by

incubation of 1 mg of total RNA with murine leukemia virus

reverse transcriptase and random hexamer oligonucleotides (Bio-

Rad Laboratories) at 40uC for 45 min. Then, 5 ml of the reaction

products was amplified by PCR with 1.25 U of Taq DNA

polymerase (Invitrogen). PCR amplification consisted of 94uC for

Author Summary

Chronic cardiomyopathy is the most common and severe
manifestation of human Chagas’ disease, caused by the
protozoan parasite Trypanosoma cruzi. Among diverse
inflammation-promoting moieties, eicosanoids and the
vasoactive peptide endothelin-1 (ET-1) have been impli-
cated in its pathogenesis. Nevertheless, the link between
these two factors has not yet been identified. In the
present study, we found that T. cruzi infection induces
gene expression of ET-1 and eicosanoid-forming enzymes
in the heart of infected mice. We also demonstrated that
HL-1 atrial myocytes respond to ET-1 stimulus and T. cruzi
infection by induction of cyclooxygenase-2 through
activation of the Ca2+/calcineurin/NFAT intracellular sig-
naling pathway. Moreover, the cooperation between T.
cruzi and ET-1 leads to overproduction of eicosanoids
(prostaglandins E2 and F2a, thromboxane A2) and the pro-
hypertrophic atrial natriuretic peptide. Our results support
an important role for NFAT in T. cruzi plus ET-1-dependent
induction of key agents of pathogenesis in chronic
chagasic cardiomyopathy. Identification of the Ca2+/
calcineurin/NFAT cascade as mediator of cardiovascular
pathology in Chagas’ disease advances our understanding
of host-parasite interrelationship and may help define
novel potential targets for therapeutic interventions to
ameliorate or prevent cardiomyopathy during chronic T.
cruzi infection.

T. cruzi and Endothelin-1 Induce Myocardial COX-2
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45 s for denaturation, 60uC for 45 s for annealing, and 72uC for

45 s for extension, performed for 30 cycles. The sense and

antisense primers used for murine Cox2 were: 59-tcctcctggaacatg-

gactc-39 and 59-gctcggcttccagtattgag-39, respectively [32]. Aliquots

of 10 ml of the PCR products were electrophoresed in a 1.6%

agarose gel containing ethidium bromide.

Real-time PCR of infected heart tissue
Quantitative real-time RT-PCR analysis was performed using

the High Capacity cDNA Archive Kit (Applied Biosystems), and

amplification of different murine genes (Cox2, Cox1, Tbxas1, Nppa,

Edn1 and ribosomal 18S) was performed in triplicate with the use

of TaqMan MGB probes and the TaqMan Universal PCR Master

Mix (Life Technologies) on an ABI Prism 7900 HT instrument

(Applied Biosystems), as reported previously [31]. Quantification

of gene expression was calculated using the comparative threshold

cycle (Ct) method, normalized to the ribosomal 18S control and

efficiency of the RT reaction (relative quantity, 22DDCT).

Histological and immunohistochemical analysis of heart
Cardiac tissues from mice were placed after been cut in two

pieces in 10% neutral buffered formalin for at least 4 h at room

temperature followed by overnight incubation in 70% ethanol.

Samples were them embedded in paraffin (Tissue Embedding

Station Leica EG1160), and 5-mm tissue sections were prepared

using a motorized Microtome Leica RM2155. Samples were

deparaffinized and rehydrated using a Tissue Processing Station

Leica TP1020. Slides were stained using the Masson’s trichrome

staining and mounted permanently in Eukkitt’s quick hardening

mounting system medium (Biochemika, Fluka Analytical). The

sections were analyzed in a Leica DMD 108 microscope (Leica

Microsystems, Germany). For immunohistochemical studies,

myocardial sections were deparaffinized by routine procedures

and analyzed using anti-murine COX-2 rabbit polyclonal

antibody (Abcam) and biotinylated swine antiserum to rabbit

immunoglobulin (Dako), following a procedure previously de-

scribed [33].

Immunoblot analysis
Immunoblotting was carried out as described elsewhere [19].

Cardiac cells were disrupted and solubilized extracts (20 mg) were

separated in 6% (only for analysis of NFAT translocation to the

nucleus) or 10% sodium dodecyl sulfate-polyacrylamide gels, and

transferred to nitrocellulose filters. After blocking for 2 h with 5%

non-fat dried milk in Tris-buffered saline containing 0.1% Tween-

20, the membranes were probed 2 h at 37uC with murine

monoclonal antibodies against COX-2 (diluted 1:250 in blocking

buffer, BD Biosciences), a-tubulin (1:1000, Sigma-Aldrich), and

with rabbit polyclonal antibodies against NFAT (c1 to c4 isoforms,

1:200, Santa Cruz Biotechnology), prostaglandin E synthase-2

(microsomal, 1:500), thromboxane synthase (1:500, Cayman) and

prostaglandin F synthase/AK31C3 (1:2,000, ProSci). The filters

were washed and incubated with the corresponding secondary

antibody linked to horseradish peroxidase at 1:10,000 dilution,

and the stained bands were visualized by a chemiluminescent

peroxide substrate (Amersham Pharmacia).

Plasmid constructs
Cox2 promoter constructs spanning from 21796 (P2-1900-

LUC) and 2170 (P2-274-LUC) to +104 bp relative to the

transcription start site of the human Cox2 gene and the P2-274-

LUC plasmid with binding sites for NFAT, or AP-1, or both

mutated were described [19]. The pSH102CD418 expression

vector derives from pBJ5 and encodes an NFATc1 deletion

mutant (1–418) that functions as a dominant negative for all

NFAT isoforms [34].

Transfection and luciferase assays
HL-1 cells were transfected by Lipofectamine (Invitrogen) as

described [19]. Briefly, exponential growing cells (26105/well)

cultured in 24-well plates were incubated for 3 h at 37uC with a

mixture of 0.5–1 mg of the corresponding reporter plasmid and

Lipofectamine-containing Opti-MEM (Invitrogen). The total

amount of DNA in each transfection was kept constant by using

the empty expression vectors. Complete medium was then added

to cells and incubated at 37uC for additional 16 h. Transfected

cells were exposed to different stimuli (0.3 nM ET-1, or phorbol

12-myristate 13-acetate -PMA- plus A23187 calcium ionophore -

Ion-, Sigma-Aldrich) and/or T. cruzi-infected as indicated. In some

experiments, FK506 (100 ng/ml, Sandoz Ltd., Tokyo, Japan) was

added for 1 h. Then, cells were harvested and lysed. Luciferase

activity was determined by using a luciferase assay system

(Promega) with a luminometer Monolight 2010 (Analytical

Luminescence). Transfection experiments were performed in

triplicate. Data of luciferase activity are presented as fold induction

(observed experimental relative luciferase units (RLU)/basal RLU

in absence of any stimulus). Results were normalized for extract

protein concentrations measured with a Bradford assay kit (Pierce,

Thermo Fisher Scientific).

Intracellular calcium measurements
Agonist-induced changes in [Ca2+]i were detected using the

Ca2+-sensitive dye Fura-2/AM as described [35]. Briefly, cell

monolayers at 80% confluence were trypsinized, washed and then

loaded with 1 mM Fura-2/AM under continuous stirring for

30 min at 37uC. The cells (26106/ml) were exposed to 0.3 nM

ET-1 and/or infected with T. cruzi trypomastigotes (cell:parasite

ratio 1:5), and placed in an Aminco Bowman Series 2

spectrofluorometer (Thermo). Uninfected cultures were used as

controls. At the indicated times, the fluorescence signal of Fura-2

was recorded, with excitation and emission at 340 and 510 nm,

respectively.

Electrophoretic mobility shift assay (EMSA)
Nuclear extracts were prepared from ET-1-treated and/or T.

cruzi-infected HL-1 cells as described [36] with minor modifica-

tions. Purity of fractions was proven by analyzing cytoplasmic and

nuclear marker proteins including a-tubulin (cytoplasmic), and

topoisomerase IIb and c-jun (nuclear). In brief, 5 mg of nuclear

protein was incubated with 1 mg of poly(dI–dC) DNA carrier in

DNA binding buffer (10% (wt/vol) polyvinylethanol, 12.5% (vol/

vol) glycerol, 50 mM Tris, pH 8, 2.5 mM dithiothreitol, 2.5 mM

ethylenediaminetetraacetic acid) for 30 min at 4uC. Then, 105

counts per minute (c.p.m.) (108 c.p.m./mg) of the 32P-labeled

double-stranded oligonucleotide (2 mg) were added, and the

reaction was incubated at room temperature for 30 min. A

synthetic oligonucleotide containing the NFAT consensus se-

quence 59-gggtggggtggggaaagccgaggcgga-39 (nucleotides 298 to

273) in the rat Cox-2 promoter was used as probe/competitor in

EMSAs. For competition experiments, a 50-fold molar excess of

unlabeled oligonucleotide was added before the addition of the

probe. Supershift assays were performed by incubating nuclear

extracts with either normal rabbit IgG or anti-NFATc4 antibody

for 15 min at 4uC before the addition of the probe. DNA-protein

complexes were resolved by electrophoresis in 4% non-denaturing

polyacrylamide gels and were subjected to autoradiography.

T. cruzi and Endothelin-1 Induce Myocardial COX-2
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Measurements of metabolites
For eicosanoid measurements, HL-1 cells were maintained for

12 h in culture medium supplemented with 0.5% fetal calf serum,

then pre-treated or not with 10 mM indomethacin (Sigma-Aldrich)

or 10 mM NS-398 (Alexis) for 1 h, and further stimulated with

0.3 nM ET-1 for 2 h. After treatment, cardiomyocytes were

infected with T. cruzi trypomastigotes for 24 h. At that time, media

supernatants were collected and analysed for PGE2, PGF2a and

TXB2 by ELISA (Cayman) according to manufacturer’s specifi-

cations. In addition, eicosanoid levels were determined by ELISA

in the sera from both uninfected and T. cruzi-infected C57BL/6

mice at 21 days of infection.

For ANP measurements, 24-h supernatants from ET-1-stimu-

lated and/or T. cruzi-infected HL-1 cells, as well as serum

specimens from both uninfected and T. cruzi-infected mice, were

analyzed by ELISA (Kamiya Biomedical) following the instruc-

tions of the supplier.

For ET-1 measurements, the sera from uninfected and T. cruzi-

infected mice were analyzed by ELISA (Phoenix Pharmaceuticals),

according to the manufacturer’s guidelines.

Statistical analysis
Statistical analysis was performed by using GraphPad Prism 5.0

software. Arithmetics means and standard error of the means

(s.e.m.) were calculated. Significant differences among groups were

made by using the one-way analysis of variance test followed by

Tukey’s test. A difference between groups of P,0.05 was

considered significant.

Results

Trypanosoma cruzi infection induces the expression of
markers of cardiac damage and eicosanoid enzymes in
the heart

As shown in previous works from our group [30,37],

C57BL/6 mice proved susceptible to infection with the Y

strain of T. cruzi, albeit less severely than BALB/c mice, and

survived acute infection (Figure 1A,B). Intense myocardial

parasitism and inflammatory pathology were observed at 21

days of infection, together with enhanced COX-2 expression

revealed by immunohistochemistry in both cardiomyocytes

and heart-infiltrating leukocytes (Figure 1C). Accordingly, T.

cruzi-infected C57BL/6 mice showed an augmented (up to 100

fold) expression of myocardial Cox2 mRNA (Figure 1D)

coincident with the highest parasite burden in the heart and

maximum severity of myocarditis [30]. In addition, we

detected a parallel increase (up to 15 fold) in the expression

of the TXS gene (Tbxas1). However, no effect was observed on

the expression of Cox1 mRNA (data not shown). Overall,

results similar to those above were found in T. cruzi-infected

BALB/c mice. Moreover, mRNA levels of ET-1 (Edn1) and

ANP (Nppa), a prognostic marker for impairment in cardiac

function of chagasic patients [28], were up-regulated in heart

tissue of infected C57BL/6 mice (Figure 1D). Upon infection,

ET-1 increased in the two mouse genetic backgrounds. This

enhanced mRNA expression in the heart of infected animals

was accompanied by elevated serum levels of both peptides

and circulating eicosanoids (TXB2 and PGF2a) (Figure 1E). It

is important to note that observed values from BALB/c and

C57BL/6 animals cannot be directly compared to each other,

since data are normalized to non-infected values that can differ

between both mouse strains.

Trypanosoma cruzi- and endothelin-1-regulated Cox2
expression in mouse cardiomyocytes

The observed Cox2 mRNA expression in infected heart could

come from infected cardiomyocytes, endothelial cells, fibroblasts

and/or infiltrating leukocytes. Hence, we tested whether cardio-

myocytes up-regulate Cox2 upon T. cruzi infection in vitro. A strong

induction of COX-2 protein expression was observed in neonatal

cardiomyocyte primary cultures infected with T. cruzi, comparable

to that induced by a well-known pro-inflammatory stimulus as

LPS plus IFNc (Figure 2A). To better examine the molecular

regulatory mechanism of gene expression of this inducible enzyme

by infection, we used the terminally differentiated murine HL-1

cardiomyocyte cell line infected with T. cruzi. Although some

reports have described an impaired inflammatory ability of HL-1

cells to express NO synthase-2 or to activate NF-kB [38], others

find the opposite [39]. Nonetheless, in our hands these cells retain

contractile and phenotypic characteristics of the adult cardiomy-

ocytes and they are much better suitable for transfection

experiments than immature cardiac myocytes, as it has been

described [40]. After 3 h of parasite infection, Cox2 mRNA could

not be detected. Similarly, a very weak Cox2 induction was also

noted in cardiomyocytes cultured in the presence of 0.3 nM ET-1.

However, when ET-1-pre-treated HL-1 cells were infected with T.

cruzi trypomastigotes ([T. cruzi+ET-1]), a strong increase in Cox2

mRNA expression was detected (Figure 2B). These findings were

confirmed by analysing COX-2 protein (Figure 2C).

The above results suggested that the combined effect of T. cruzi

infection and ET-1 treatment on Cox2 expression was taking place

at the transcriptional level. To confirm this, HL-1 cardiac cells

were transfected with a Cox2 promoter/luciferase construct

spanning from nucleotide 21796 to +104 bp relative to the

human Cox2 gene transcription start site (P2-1900-Cox-2-LUC).

As shown in Figure 2D, T. cruzi plus ET-1 (0.3 nM) induced a

four-fold increment (P,0.05) in luciferase activity in transiently

transfected cells compared to untreated controls. In contrast, T.

cruzi-infected cardiomyocytes and ET-1-stimulated uninfected cells

showed very little increase. Interestingly, addition of the Cn

inhibitor FK506 (100 ng/ml) significantly attenuated [T. cru-

zi+ET-1]-mediated induction of Cox2 promoter.

Transcriptional regulation of the Cox2 promoter by the
combined effect of Trypanosoma cruzi and endothelin-1

To map the Cox2 promoter region responsible for [T. cruzi+ET-

1] inducibility, we used several Cox2 promoter deletion/mutation

constructs. Deletion up to 2170 (P2-1900 to P2-274) of the Cox2

promoter region did not significantly affect [T. cruzi+ET-1]

inducibility (Figure 2E). Given the relevance of the region

spanning from nucleotides 2170 to 246 for the recorded

induction of the Cox2 promoter, we next determined the

contribution of the known transcription factor sites present in this

region [19] to the overall transcriptional regulation of [T.

cruzi+ET-1]-dependent Cox2 expression. Transfection experiments

showed that mutation of the dNFAT (P2-274 dNFAT mut) or

pNFAT (P2-274 pNFAT mut) sites resulted in a 65 and a 60% loss

in the [T. cruzi+ET-1]-induced Cox2 promoter activity, respective-

ly, whereas double mutation of both NFAT (P2-274 p- and

dNFAT mut) sites drastically reduced this activation. Conversely,

mutagenesis of the AP-1-like site (P2-274 AP-1 mut) present in this

region did not significantly diminish the inducibility of the Cox2

promoter by [T. cruzi+ET-1]. To further confirm the central role

of NFAT activation in the transcriptional regulation mediated by

T. cruzi in ET-1-stimulated HL-1 cells, we co-transfected a

dominant-negative version of NFAT (dnNFAT), previously

T. cruzi and Endothelin-1 Induce Myocardial COX-2
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Figure 1. Trypanosoma cruzi infection induces Cox2, Tbxas1, Edn1 and Nppa in infected heart tissue. (A and B) C57BL/6 (black circles) and
BALB/c (white circles) mice were infected with 26103 blood-trypomastigote forms of the Y strain. (A) Parasitemia expressed as the mean 6 standard
error of the mean (s.e.m.) of the number of parasites per 5 ml of blood. (B) Percent of mice survival. Results are representative of 2 independent
experiments, each performed with 6 mice per group. (C) Tissue inflammation, parasitism and COX-2 expression in heart from uninfected (left panels)
and T. cruzi-infected (21 days post-infection, right panels) mice. Representative results of histological analysis (Mason’s trichrome staining) of cardiac
tissue specimens from BALB/c and C57BL/6 mice (top and center panels, respectively) are shown. Bars = 100 mm. Bottom panels display
representative results of COX-2 immunostaining (IS) in the hearts from C57BL/6 mice. Original magnification for microphotographs 6400. (D) Cox2
(COX-2), Tbxas1 (TXS), Edn1 (ET-1) and Nppa (ANP) gene expression in the heart during the acute phase of infection in C57BL/6 and BALB/c mice. RNA
from heart tissue at different days post-infection was used to perform RT-PCR with specific probes, and normalized to ribosomal 18S RNA as
described in ‘Materials and Methods’. Values are expressed as means 6 s.e.m. from 3 independent infections, each performed with 3 mice per group.
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described to abolish NFAT-dependent promoter activity [19],

together with the P2-274-Cox-2-LUC plasmid. Interestingly,

expression of dnNFAT abrogated [T. cruzi+ET-1]-induced tran-

scription of the reporter (Figure 2E), supporting the hypothesis of

the involvement of NFAT signaling in the regulation of Cox2 gene

expression by the cooperation between ET-1 and T. cruzi infection

in cardiomyocytes.

Trypanosoma cruzi infection leads to activation of the
Ca2+/Calcineurin/NFAT intracellular signaling pathway in
endothelin-1-treated cardiomyocytes

T. cruzi trypomastigote invasion of cardiac myocytes triggers a

transient [Ca2+]i elevation [41]. Similarly, upon the addition of

trypomastigotes to HL-1 cells, we observed a transient [Ca2+]i

response associated to a considerable, sustained increase in [Ca2+]i

during the invasion process (Figure 3A). Comparable outcome,

although with higher [Ca2+]i levels, was obtained in T. cruzi-

infected HL-1 cells pre-treated with 0.3 nM ET-1.

In HL-1 cells, basal expression of several isoforms of NFAT

proteins (c1, c3 and c4) was detected by immunoblot analysis.

Interestingly, stimulation with T. cruzi plus ET-1 induced a

remarkable increase in the expression of NFATc4 and to a lesser

extent, NFATc1 and NFATc3 (Figure 3B). Moreover, NFATc4

was present in the cytoplasm of untreated cardiac cells, but upon

parasite infection of ET-1-stimulated cardiomyocytes, it was

translocated into the nucleus. Pre-treatment with FK506

(100 ng/ml), a Cn inhibitor, prevented this translocation, thereby

resulting in an accumulation of cytoplasmic NFATc4 protein

(Figure 3C). To a much lesser extent, we also observed NFATc1

and NFATc3 migration to the nucleus (data not shown). Together,

the above results indicate the activation of the NFATc4 isoform by

[T. cruzi+ET-1] through a Ca2+/Cn signaling process.

To analyse NFATc4 binding to the NFAT sequences of the

Cox2 promoter, we performed EMSAs with nuclear extracts of

atrial HL-1 myocytes (Figure 3D). PMA (15 ng/ml) supple-

mented with Ion (1 mM) was used as a control stimulus. The

NFAT oligonucleotide probe from Cox2 promoter specifically

bound nuclear proteins from [T. cruzi+ET-1]- and

[PMA+Ion]-treated HL-1 cells, which was efficiently competed

with a 50-fold molar excess of cold oligonucleotide (Cox-2-

NFAT). These inducible complexes were severely diminished

in nuclear extracts from cells stimulated with T. cruzi plus ET-1

in the presence of FK506. No NFAT binding could be

demonstrated in response to ET-1 stimulation in the absence of

parasites or T. cruzi infection alone. To determine unambig-

uously the presence of the NFATc4 protein in the complexes,

we performed super shifting with an NFATc4-specific anti-

body. This antibody clearly displaced the migration of the

bound probe, allowing the formation of more retarded

complexes likely constituted by DNA/NFAT/antibody

(Figure 3D). As the NFATc4-specific antibody completely

supershifted the complex, it is indicative that c4, but no other

NFAT isoform, is bound to Cox2 promoter DNA in detectable

amount. As a negative control, normal rabbit IgG was used.

Taken together, these data suggest the binding of NFATc4 to

the corresponding sites within the Cox2 promoter in response

to T. cruzi infection of ET-1-pre-treated HL-1 cells.

Trypanosoma cruzi infection of endothelin-1-treated HL-1
cardiomyocytes enhances the production of eicosanoids
and atrial natriuretic peptide

To assess whether [T. cruzi+ET-1]-mediated induction of Cox2

expression was associated with an increase in its enzymatic

activity, eicosanoid release by HL-1 cells was measured.

Compared to mock-treated cells, stimulation of myocytes with

0.3 nM ET-1, or trypomastigote infection over a 24-h period, or

the combination of both, induced a significant production of COX

metabolites, mainly TXB2, the stable metabolite of TXA2, and

prostaglandins E2 (PGE2) and PGF2a. Particularly, a striking

increase of TXB2 levels, significantly higher than those obtained

with T. cruzi and ET-1 separately, was detected in response to [T.

cruzi+ET-1] (Figure 4A). Likewise, induction of the Ca2+/Cn/

NFAT/COX-2 pathway and eicosanoid production were also

achieved in ET-1-primed HL-1 cells exposed to a parasite lysate

preparation, thereby suggesting that cardiac cell invasion by

trypomastigotes is not absolutely required to produce the

cooperative effect with the peptide (not shown). TXB2, PGE2

and PGF2a synthesis was drastically reduced in the cells incubated

with indomethacin (10 mM), a non-steroidal anti-inflammatory

drug known to inhibit both COX-1 and COX-2 enzymatic

activity, or with a COX-2-selective inhibitor (NS398, 10 mM),

indicating the important involvement of COX-2 in eicosanoid

production upon ET-1 stimulation and T. cruzi infection of HL-1

cardiomyocytes. Treatment of HL-1 cells with COX inhibitors or

Cn antagonist had no significant effect on cardiomyocyte-T. cruzi

association and did not affect the capacity of the parasites to

transform into amastigotes and multiply intracellularly (not

shown). Furthermore, analyses for microsomal prostaglandin E

synthase-2 (mPGES-2), prostaglandin F synthase (PGFS) and

thromboxane synthase (TXS), enzymes that convert the COX

product PGH2 to PGE2, PGF2a and TXA2, respectively, revealed

that [T. cruzi+ET-1] also induced the expression of TXS and

PGFS proteins in atrial HL-1 myocytes (Figure 4B).

In addition, stimulation with ET-1 promoted a three-fold

increased (P,0.05) release of ANP. Compared to that observed in

mock-treated controls, T. cruzi also up-regulated ANP levels in the

supernatants of 24-h-infected cells, which were significantly

augmented by the cooperative action of [T. cruzi+ET-1]

(Figure 4C).

Discussion

Trypanosoma cruzi induces multiple responses in the heart, a

critical organ of infection and pathology in the host. We herein

demonstrated that Cox2 mRNA and protein are induced in mouse

heart tissue during T. cruzi infection correlating with cardiac

parasite load and myocarditis. This up-regulation was also

associated to induction of TXS and of two markers of heart

dysfunction previously implicated in Chagas’ disease pathogenesis,

such as ET-1 and ANP [7,10,27]. Up-regulation of Cox2 mRNA

and protein in myocardial tissue of infected C57BL/6 mice is

consistent with a previous report [22] that revealed increased

COX-2 protein expression in the heart of infected BALB/c mice.

Moreover, several evidences have suggested a role of cycloox-

oygenase-derived eicosanoids in the cardiopathogenesis of Chagas’

disease (revised in [42,43]).

*P,0.05. (E) Levels of circulating peptides (ET-1 and ANP) and eicosanoids (PGF2a and TxB2) in the sera of uninfected (black bars) and T. cruzi-infected
(grey bars) C57BL/6 mice. Mouse sera were collected before and after 21 days of infection, and were assayed in triplicate by capture ELISA for ANP
(top panel), ET-1 (central panel), PGF2a and TxB2 (bottom panel). Each bar represents the mean values for groups of 6 mice 6 s.e.m. Similar results
were obtained in two additional experiments. *P,0.05; **P,0.01.
doi:10.1371/journal.pntd.0002034.g001
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Figure 2. Trypanosoma cruzi infection of endothelin-1-pre-treated HL-1 cardiomyocytes induces cyclooxygenase-2 expression. (A)
COX-2 protein expression in primary BALB/c cardiac myocytes infected with T. cruzi. Neonatal mouse heart cells were isolated and ex vivo infected
with Y strain trypomastigotes (cell:parasite ratio 1:5) for 24 h. To obtain a positive control, the cells were incubated with 25 U/ml recombinant IFN-c
plus 1 mg/ml LPS. Uninfected cells (Mock) were used as controls. The levels of COX-2 and b-actin proteins were analysed by immunoblotting as
described under ‘Materials and methods’. (B) Effects of ET-1 pre-treatment and T. cruzi infection of HL-1 cardiomyocytes on Cox2 mRNA expression.
HL-1 atrial muscle cells were stimulated with 0.3 nM ET-1 for 2 h, and/or infected with T. cruzi trypomastigotes (cell:parasite ratio 1:5) for 3 h, and the
levels of Cox2 mRNA were assessed by reverse transcription and PCR; Actb (b-actin) was used as a loading marker. (C) Effects of ET-1 pre-treatment
and T. cruzi infection of HL-1 cardiomyocytes on COX-2 protein expression. HL-1 atrial muscle cells were stimulated with 0.3 nM ET-1 for 2 h, and/or
infected with T. cruzi trypomastigotes for 3 h, and the levels of COX-2 and a-tubulin proteins were analysed by immunoblotting. (D) Effects of ET-1
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Using adult HL-1 atrial myocytes, we further demonstrated that

cooperation between T. cruzi and ET-1 stimulated Cox2 mRNA and

protein expression leading to the release of eicosanoids. ET-1 seems

to be mainly implicated in the establishment of chagasic cardiomy-

opathy rather than in the control of infection. Previous studies on T.

cruzi-infected ET-1 null mice have highlighted the pathogenic role

of cardiac myocyte-derived ET-1 in Chagas’ heart disease, but these

animals did not display higher parasitemia nor lower survival rate

than infected wild-type mice [8]. In chagasic heart dysfunction,

locally produced ET-1 acts on cardiac myocytes in both an

autocrine and/or paracrine manner and chronically induces muscle

injury [5,7]. In addition, exposure of neonatal rat ventricular

cardiomyocytes to ET-1 has been shown to result in higher COX-2

and prostacyclin formation [21,44]. In our study, ET-1 induced a

dose-dependent increase (not shown) in COX-2 activity and

eicosanoid biosynthesis in HL-1 cells subsequently infected with

T. cruzi. To mimic the pathological microenvironment characteristic

of T. cruzi-mediated cardiomyopathy, a 0.3 nM ET-1 concentra-

tion, close to that detected in the circulation of infected mice and

patients exhibiting cardiac involvement [5,6], was selected for pre-

treatment of cardiomyocytes.

Trypanosoma cruzi invasion of HL-1 cells increased [Ca2+]i,

similar to previous report on primary cardiomyocytes [41].

Furthermore, ET-1 induces Ca2+ release in cardiac myofibers

[45]. Alterations in [Ca2+]i regulation are frequently recorded in

Chagas’ disease. In cardiomyocytes from chagasic patients there is

a dysregulation of the diastolic [Ca2+]i, while Ca2+ channel

blockers display therapeutic potential against chronic chagasic

cardiomyopathy [46,47]. It has been largely established the

requirement for sustained increases, including Ca2+ oscillation

frequency, in [Ca2+]i to mediate Cn activation and the nuclear

translocation of NFAT [48]. Few studies so far have addressed the

impact of T. cruzi infection on the Cn/NFAT pathway in host

cells. NFAT has been identified as an important element in innate

immunity to T. cruzi and also involved in parasite immune evasion

[49,50]. The Ca2+/Cn/NFAT pathway has proven functional in

adult mouse heart muscle cells and ET-1 has been shown to

activate this signaling route in HL-1 atrial myocytes [51,52].

Noticeably, NFAT proteins have been described as key molecules

for the regulation of Cox2 gene transcription in many different cell

types [19,53–55]. Our present report constitutes the first

demonstration that the cooperative effect of ET-1 and T. cruzi

infection transcriptionally controls Cox2 expression through

activation of the Cn/NFATc4 signaling cascade in cardiomyo-

cytes. Particularly, the two NFAT binding sites in the Cox2

promoter appear to be critical for the observed induction.

Mutation of any of these sites strongly diminished Cox2

transcription raised by T. cruzi infection of ET-1-stimulated

cardiomyocytes, and dominant negative NFAT prevented that

stimulation.

Interestingly, this Cn/NFAT pathway has a pivotal role in

pathological cardiac hypertrophy [26]. In this regard, we found

that ET-1 plus T. cruzi infection leads to enhanced production of

the pro-hypertrophic ANP, a prognostic factor for impairment in

cardiac function of chagasic patients [28]. Augmented ANP was

previously observed in atrial muscle cells upon ET-1 stimulation

[56] and, during T. cruzi infection, ET-1 and ANP seem to be

important late factors in myocardial remodeling and hypertrophy

[10,27]. Increased ANP production is somehow linked to the

myocardial regulatory pathway induced by [T. cruzi+ET-1]. Thus,

PGE2 and PGF2a are known to promote ANP synthesis and

release [57,58], while Ca2+ influx is involved in ET-1-triggered

ANP expression [59]. More interestingly, NFATc4 was found to

regulate several hypertrophy-associated gene transcription in

cardiomyocytes, including ANP [26,58]. Taken the data together,

it is likely that Ca2+ elevation, induced by [T. cruzi+ET-1], has led

to NFATc4 activation, COX-2 induction and augmented ANP

secretion by HL-1 cells.

A dual role of cyclooxygenase-derived eicosanoids in the course

of Chagas’ disease has been postulated (revised in [42,43]).

Morever, the same COX metabolites that mediate host survival

during the acute phase may contribute to the progression of

cardiac remodeling and heart damage in the chronic phase [60].

The mechanisms involved in the increased prostanoid production

in parasite-infected hosts are not yet fully understood. Our findings

indicate that the combined effect of ET-1 priming and T. cruzi

infection mimics what likely takes place in the heart during

infection, inducing eicosanoid-forming enzyme activity through

the Ca2+/Cn/NFAT signaling pathway, and leading to enhanced

release of prostanoids by atrial cardiomyocytes. Acutely infected

mice display elevated PGF2a plasma levels, whereas PGE2 has

been found to favor the development of cardiac fibrosis and

functional deficits after infection by T. cruzi [23,61]. TXA2,

measured as the stable metabolite TXB2, is the main eicosanoid

produced during chronic infection with T. cruzi and this pro-

inflammatory agent could be responsible of several of the

pathophysiological features of chagasic cardiomyopathy [23,24].

TXA2 may exacerbate cardiomyocyte apoptosis, facilitate cytokine

biosynthesis by monocytes, activate endothelial cells, and also

promote platelet activation, aggregation and degranulation [62]. It

is conceivable that the liberated TXA2 might play a role in a

feedback loop for ET-1 expression/response, as efficient regulation

of ET-1 by a TXA2 mimetic in rat heart smooth muscle cells has

been documented [63]. Moreover, the released PGF2a could

further induce COX-2 expression and activity, as occurs in

carcinoma cells [64]. Enhanced levels of eicosanoids synthesized

by [T. cruzi+ET-1]-activated HL-1 cells were down-regulated by

addition of COX-2 inhibitors, indomethacin or NS398. In this

regard, meloxicam or etoricoxib, two specific COX-2 inhibitors,

minimized the amount of inflammation and fibrosis in the cardiac

tissue of infected mice, whereas delayed treatment with aspirin,

which blocks COX-1 and COX-2 indistinctly, improved cardiac

dysfunction in a murine model of Chagas’ heart disease [22,60].

However, the potential benefits of COX inhibition for chronic

pre-treatment and T. cruzi infection of HL-1 cardiomyocytes on the inducibility of the Cox2 promoter. Cells were transiently transfected with the P2-
1900-Cox-2-LUC reporter construct, and then stimulated with 0.3 nM ET-1 for 2 h, and/or infected with trypomastigotes for 3 h. For some
experiments, FK506 (100 ng/ml) was added to [T. cruzi+ET-1]-activated cardiomyocytes. PMA+Ion was used as a standard stimulus. Luciferase activity
is expressed as fold induction relative to the transfection with empty expression vector. Data are the means 6 s.e.m. of three independent
experiments, each performed in triplicate. *P,0.05. (E) Involvement of NFAT in Cox2 induction by T. cruzi plus ET-1. HL-1 cells were transiently
transfected with the P2-1900-Cox-2-LUC reporter construct, with the P2-274-Cox-2 promoter construct, or with the same construct containing distal
and/or proximal NFAT sites (dNFAT and pNFAT, respectively), and/or actvated protein-1 (AP-1) site mutated (indicated by X). For some experiments,
the cells were transiently co-transfected with the P2-274-Cox-2-LUC reporter plasmid along with a dominant-negative version of NFAT (dn-NFAT).
Three hours later, the cells were stimulated with ET-1 (0.3 nM) for 2 h and infected with T. cruzi parasites for 3 h. Luciferase activity is expressed as
percentage of induction (mean 6 s.e.m.) relative to that achieved in P2-1900-Cox-2-LUC transfected cells. One out of three separate experiments
performed is shown. *P,0.05; ** P,0.001 (respect to the P2-274 construct).
doi:10.1371/journal.pntd.0002034.g002
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Figure 3. Activation of the Ca2+/Calcineurin/NFAT intracellular signaling pathway in endothelin-1-stimulated and Trypanosoma
cruzi-infected cardiomyocytes. (A) HL-1 cells, exposed or not to 0.3 nM ET-1, were loaded with the Ca2+ indicator Fura-2/M and changes in [Ca2+]i

upon T. cruzi infection were recorded. Uninfected cells were used as a control. Arrows indicate the time (min) when either culture medium (M) or T.
cruzi trypomastigotes (T) was added. The results presented are representative of three independent experiments. (B) ET-1 stimulated and T. cruzi-
infected HL-1 cardiomyocytes were disrupted and the protein expression of the four NFAT isoforms (c1 to c4) was analysed by immunoblotting.
Alpha-tubulin protein levels were determined as a control of loading. (C) HL-1 cells were incubated for 2 h with ET-1 (0.3 nM) and subsequently
infected with T. cruzi trypomastigotes for 3 h. For some experiments, FK506 (100 ng/ml) was added 1 h before stimulation. Fractionated extracts from
both untreated and treated cells were analysed by immunoblotting with an antiserum to NFATc4. The phosphorylated cytosolic (P-NFATc4) or
dephosphorylated nuclear (NFATc4) forms of the factor are indicated. Cyto, cytosolic extracts; Nucl, nuclear extracts. (D) Electrophoretic mobility shift
assay (EMSA) analysis to determine NFATc4 binding to the NFAT sites of the Cox2 gene (Cox-2 NFAT). HL-1 myocytes were stimulated with 0.3 nM ET-
1 for 2 h and/or infected with T. cruzi trypomastigotes for 3 h. For some experiments, FK506 (100 ng/ml) was added 1 h before stimulation. Mock-
treated cells were considered as controls. PMA (15 ng/ml) supplemented with 1 mM Ion was used as a standard stimulus. Nuclear extracts were
analysed by EMSA using a Cox-2 NFAT radiolabeled probe. A 50-fold molar excess of unlabeled Cox-2 NFAT oligonucleotide (T. cruzi+ET-1+Cox-2
NFAT) was added to determine specific binding. NFATc4 antibody or normal rabbit IgG was added to the extracts before incubation with the probe.
Arrows indicate specific supershifted complexes. This is representative of at least three independent experiments.
doi:10.1371/journal.pntd.0002034.g003
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Figure 4. Production of eicosanoids and atrial natriuretic peptide by endothelin-1-stimulated and Trypanosoma cruzi-infected HL-1
cardiac cells. (A) Cardiomyocytes were serum-starved for 12 h, then incubated for 1 h in the presence of cyclooxygenase inhibitors (10 mM
indomethacin -Indo- or 10 mM NS-398) and further stimulated with 0.3 nM ET-1 for 2 h. After treatment, the cells were infected with T. cruzi
trypomastigotes for 24 h. HL-1 myocytes infected with the parasite or stimulated with ET-1 alone were included in the assay. Culture supernatants
were collected and analysed for PGE2, PGF2a and TxB2 (TxA2 stable metabolite) by ELISA (Cayman). The results represent means 6 s.e.m. of three
individual experiments assayed in triplicate. *P,0.05 and **P,0.001 compared with mock-treated cells; #P,0.05 and ##P,0.001 compared with NS-
398- and Indo-treated cells, respectively. (B) Effects of T. cruzi infection and ET-1 stimulation on the expression of prostanoid terminal synthases in

T. cruzi and Endothelin-1 Induce Myocardial COX-2

PLOS Neglected Tropical Diseases | www.plosntds.org 10 February 2013 | Volume 7 | Issue 2 | e2034



chagasic patients are still unknown. Even though T. cruzi-derived

TXA2 and PGF2a have been associated with pathogenesis [24,43],

no consistent evidence of parasite COX-2 and TXAS expression is

available so far. As we detected overexpression of myocardial

enzymes by using mouse-specific probes/antibodies and damp-

ened eicosanoid production in cardiomyocytes treated with

mammalian enzyme-specific inhibitors, our data mostly reflect

the contribution of prostanoids secreted by host cells to Chagas’

myocarditis.

In conclusion, we have demonstrated that eicosanoid-convert-

ing enzymes are expressed in the infected heart and also that

cardiomyocytes respond to ET-1 and T. cruzi infection by

induction of COX-2 through activation of the Ca2+/Cn/NFAT

intracellular signaling pathway. The cooperation between T. cruzi

and ET-1 also led to overproduction of eicosanoids and the pro-

hypertrophic factor ANP. These results support an important role

for NFAT in [T. cruzi+ET-1]-dependent induction of key agents of

pathogenesis in chronic chagasic cardiomyopathy. Identification of

the Ca2+/Cn/NFAT cascade as mediator of cardiovascular

pathology in Chagas’ disease advances our understanding of

host-parasite relationship and may help define novel potential

targets for therapeutic interventions to ameliorate or prevent

cardiomyopathy during chronic T. cruzi infection.
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