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Objective: Because of the modest immunotherapeutic response among ovarian
carcinoma (OC) patients, it is significant to evaluate antitumor immune response and
develop more effective precision immunotherapeutic regimens. Here, this study aimed to
determine diverse immune subtypes of OC.

Methods: This study curated the expression profiles of prognostic immunologically
relevant genes and conducted consensus clustering analyses for determining immune
subtypes among OC patients in TCGA cohort. With Boruta algorithm, characteristic genes
were screened for conducting an immune scoring system through principal component
analysis algorithm. The single-sample gene set enrichment analysis and ESTIAMTE
methods were adopted for quantifying the immune infiltrates and responses to
chemotherapeutic agents were estimated with pRRophetic algorithm. Two
immunotherapeutic cohorts were used for investigating the efficacy of immune score in
predicting therapeutic benefits.

Results: Two immune subtypes were conducted among 377 OC patients. Immune
subtype 2 was characterized by worse clinical prognosis, more frequent genetic variations
and mutations, enhanced immune infiltrates, and increased expression of MHC molecules
and programmed cell death protein 1/programmed death ligand 1 (PD-1/PD-L1). In total,
30 prognosis-relevant characteristic immune subtype–derived genes were identified for
constructing the immune score of OC patients. High immune score was linked with more
dismal prognosis, decreased immune infiltrations, and expression of MHCmolecules. High
immune score presented favorable sensitivity to doxorubicin and vinorelbine and reduced
sensitivity to cisplatin. In addition, immune score possessed the potential in predicting
benefits from anti–PD-1/PD-L1 therapy.
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Conclusion: Collectively, our findings propose two complex and diverse immune
subtypes of OC. Quantitative assessment of immune subtypes in individual patients
strengthens the understanding of tumor microenvironment features and promotes
more effective immunotherapeutic regimens.
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INTRODUCTION

Ovarian carcinoma (OC) is the leading cause of deaths among
females with gynecological malignant tumors (Kuroki and
Guntupalli, 2020). Approximately 90% OC patients are of
epithelial cell origin (Lheureux et al., 2019). Currently,
cytoreductive surgery, platinum-relevant chemotherapy,
targeted therapy, and immunotherapy remain the major
therapeutic regimens (Baci et al., 2020). Nevertheless, OC
possesses the highest mortality among gynecological
malignancies because most patients present advanced and
metastatic tumors at the time of diagnosis (Song et al.,
2020). Although 80% of newly diagnosed patients respond
to the first-line therapy containing cytoreductive surgery and
platinum-based chemotherapy, approximately 75% with
advanced stages experience relapse that represents the main
characteristics of OC (MacGregor et al., 2019). Moreover,
resistance usually occurs, which contributes to a 5-year
survival rate of <50% among females <65 years old and
<30% among females >65 years old (Natoli et al., 2020).
Poly(ADP-ribose) polymerase (PARP) inhibitor has
emerged as the first targeted agent as maintenance
treatment in platinum-sensitive relapsed patients, which
presents the significant association with prominent clinical
benefit (Jiang et al., 2020). Unfortunately, PARP inhibitor is
merely restricted to 10% patients who have BRCA
mutations, and the therapeutic effects are restricted because
of distinct resistance phenomenon (Mirza et al., 2020). Hence,
novel therapeutic regimens and markers remain urgently
required.

Immunotherapy emerges as a prospective therapeutic
modality, possessing well specificity, long-term effects, and few
side effects. The response rate of immune checkpoint blockade
therapy is only 15% for OC patients because of widespread
heterogeneity such as clinicopathologic characteristics,
molecular features, immune microenvironment, and so on
(Gao et al., 2020). Hence, precise identification of underlying
benefits in patients remains critical for improvement of the
immunotherapy considering OC heterogeneity. Nevertheless,
the heterogeneity of immune microenvironment of OC
remains indistinct. At present, consensus signature remains
scarce for inferring the immune activity in OC and stratifying
OC patients accordingly. Although numerous prognostic
signatures have been proposed for stratifying OC patients,
they cannot estimate the antitumor immune activity (Hao
et al., 2018). Here, this study conducted two diverse immune
subtypes with different immune infiltrates and immune responses
and developed an immune scoring system in OC patients, which
strengthened an in-depth comprehending of tumor

microenvironment features and triggered effective
immunotherapeutic regimens.

MATERIALS AND METHODS

Data Extraction and Processing
Molecular data of 377 patients with a diagnosis of OC were
curated from The Cancer Genome Atlas (TCGA; http://
cancergenome.nih.gov/) project. Transcriptome profiles
(HTSeq-FPKM) and clinical data of this TCGA-OC dataset
were downloaded from the GDC data portal (https://portal.
gdc.cancer.gov). Ensemble IDs were transformed to gene
symbols, and FPKM values were converted to transcript per
million (TPM). Publicly available Affymetrix microarrays and
follow-up information of 107 OC patients were harvested from
the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/
geo/) with an accession number of GSE26193 (Gentric et al.,
2019), which were utilized for external verification. GISTIC2.0
was adopted for analyzing copy number variation (CNV) data
retrieved from TCGA, and significantly deleted or amplified
genes were determined at q < 0.05 and fragments that had >0.1
deletion or amplification length. Single-nucleotide
polymorphism (SNP) data of 436 OC patients stored in
Mutation Annotation Format (MAF) files was retrieved
from TCGA via the GDC Data Portal, which was analyzed
with Maftools package (Mayakonda et al., 2018). In total, 200
immunologically relevant genes were collected from the
Molecular Signatures Database (MSigDB; http://www.
broadinstitute.org/msigdb) (Liberzon et al., 2015). Data
were analyzed with R software (version 3.6.1) and available
packages.

Screening of Prognostic Immunologically
Relevant Genes
Univariate Cox proportional hazard regression analyses were
implemented for determining the associations of gene
expression with overall survival (OS) of OC patients. Genes
under p < 0.05 were considered as prognostic immunologically
relevant genes. Hazard ratios (HRs) derived from univariate
Cox regression analyses were utilized for determining
protective (HR <1) or risk genes (HR >1).

Construction of Immune Subtypes by
Consensus Clustering Analyses
Immune subtypes were identified through
ConsensusClusterPlus package (Wilkerson and Hayes,
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2010). A consensus matrix was first conducted via consensus
clustering analyses for classifying OC specimens. Following
PAM algorithm and 1-Pearson correlation coefficient as metric
distanced 500 bootstraps were presented, each involving 80%
of OC patients in TCGA cohort, the number of clusters was set
at 2 to 10, and consensus clustering was adopted for classifying
the prognostic immunologically relevant genes.
Consistency matrix and consistency cumulative
distribution function were adopted for determining the best
classification. This consensus clustering was verified in the
GSE26193 cohort.

Quantification of Hallmark Pathways by
Gene Set Variation Analysis
The 50 hallmark gene sets were curated from theMSigDB project.
Single-sample gene set enrichment analyses (ssGSEA) were
conducted for calculating the enrichment scores of hallmark
gene sets utilizing Gene Set Variation Analysis package
(Hänzelmann et al., 2013). Hierarchical clustering of hallmark
pathway enrichment scores was presented with pheatmap
package.

Quantification of Immune Cell Infiltrations
The gene sets that represented diverse infiltrating immune cell
subpopulations were curated from Bindea et al. (2013).
Thereafter, ssGSEA was conducted for estimating the
abundance of immune cell subpopulations containing innate
and adaptive immune cells in accordance with the expression

of reference genes from transcriptomic profiling. Estimation of
STromal and Immune cells in MAlignant Tumor tissues using
Expression data (ESTIMATE) algorithm (Yoshihara et al.,
2013) was adopted for estimating the presence of stromal
and immune cells within the tumor microenvironment
through calculating specific mRNA expression markers.
Immune scores that represented the infiltrations of immune
cells as well as stromal scores that represented the presence of
stroma in tumor tissues were separately calculated on the basis
of the mRNA expression profiling. In addition, tumor purity
was estimated via integrating stromal and immune scores.
Tumor mutation burden (TMB) was calculated in each
specimen in accordance with the number of variants/the
length of exons utilizing Perl scripts on the basis of JAVA8
background.

Quantification of Immune Score by Principal
Component Analyses
The mRNA expression values in diverse immune subtypes
were analyzed with limma package (Ritchie et al., 2015). In
accordance with log2 |fold-change| >1 and false discovery rate
(FDR) < 0.0001, immune subtype–derived genes were
screened. With univariate Cox regression models, prognosis-
relevant immune subtype–derived genes were identified with
p < 0.05. Thereafter, Boruta feature importance analyses were
conducted for feature selection with Boruta package (Shi et al.,
2019). The expression profiling of the finally identified genes
was curated for presenting principal component analysis
(PCA). Moreover, principal component 1 (PC1) and PC2
were extracted and acted as immune score. The immune
score was calculated following the formula: immune score =
∑(PC1i + PC2i), in which i meant the expression of the finally
identified prognosis-relevant characteristic immune
subtype–derived genes.

Function Annotation Analyses
The clusterProfiler package (Yu et al., 2012) was implemented
for presenting Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Gene Ontology (GO) enrichment analyses. GO
terms comprised three categories: biological process, cellular
component, and molecular function.

Prediction of the Benefits From
Chemotherapy
Six commonly applied chemotherapeutic agents (paclitaxel,
etoposide, gemcitabine, doxorubicin, vinorelbine, and
cisplatin) were selected from the Genomics of Drug
Sensitivity in Cancer (GDSC) project (www.cancerRxgene.
org) (Yang et al., 2013), the largest publicly available
pharmacogenomics database. The predictive procedure was
conducted with pRRophetic package (Geeleher et al., 2014).
The half-maximal inhibitory concentration (IC50) was
determined utilizing ridge regression analyses. On the basis
of GDSC training set, the predictive accuracy was evaluated
with 10-fold cross-verification.

TABLE 1 | Identification of prognostic immunologically relevant genes across OC
patients.

Gene HR HR.95L HR.95H p Value

ATP2B1 1.21901 1.00119 1.48422 0.04863
AXL 1.147504 1.00359 1.31206 0.04418
BDKRB1 1.317952 1.01262 1.71535 0.04005
C5AR1 1.189023 1.05108 1.34507 0.00593
CCR7 0.802639 0.6763 0.95259 0.01188
CLEC5A 1.193255 1.05213 1.35331 0.00594
CXCL10 0.92617 0.87058 0.98531 0.01516
CXCL11 0.87755 0.81709 0.94249 0.00034
CXCL9 0.902788 0.84517 0.96434 0.00237
FPR1 1.128597 1.00823 1.26333 0.03552
GCH1 0.825432 0.69403 0.98172 0.03012
ITGB8 1.177166 1.0391 1.33358 0.01039
LAMP3 0.879158 0.79961 0.96662 0.00778
LCK 0.860916 0.74519 0.99462 0.04203
LTA 0.735439 0.58439 0.92553 0.0088
NFKB1 1.20125 1.00195 1.44019 0.04759
PTGER2 1.165763 1.05511 1.28802 0.00258
RAF1 1.264731 1.00908 1.58515 0.04151
RNF144B 0.870796 0.77745 0.97535 0.01679
SCN1B 1.32173 1.11378 1.56851 0.0014
SELL 0.867218 0.7711 0.97532 0.01746
SELENOS 0.796482 0.63984 0.99147 0.04169
SLAMF1 0.628884 0.4579 0.86372 0.00417
SLC31A2 1.330856 1.01141 1.7512 0.04125
SLC7A1 1.197531 1.03083 1.39119 0.01843
STAB1 1.159254 1.03486 1.29861 0.01072
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Collection of Genomic and Clinical Data of
Immunotherapy Cohorts

Two immunotherapy cohorts were collected in our study:
metastatic melanoma treated with anti–programmed cell death
protein 1 (PD-1) inhibitors from Liu et al. (2019) and locally
advanced or metastatic urothelial carcinoma treated with
anti–programmed death ligand 1 (PD-L1) inhibitor
atezolizumab from the IMvigor210 cohort (Mariathasan et al.,
2018). For the cohortof Liu et al. (2019), following normalization
with limma package, the FPKM data were converted into TPM
values across specimens. For IMvigor210 cohort, mRNA
expression profiling and prognostic information were curated
from http://research-pub.Gene.com/imvigor210corebiologies
with the Creative Commons 3.0 License. Raw count data were
standardized with DEseq2 package, which was converted to TPM.

Statistical Analyses
All the computational and statistical analyses were
implemented with R software (https://www.r-project.org/).
Through t-distributed stochastic neighbor embedding
(t-SNE)–based method, the subtype assignments were
verified utilizing the mRNA expression profiling of immune
genes. Univariate Cox proportional hazards regression models
were utilized for estimating the HRs. OS, disease-specific
survival (DSS), and progression-free interval (PFI) analyses
were presented utilizing Kaplan–Meier methods, and
comparisons between groups were presented through log-
rank tests. Comparisons between two groups with normally
distributed variables were conducted with unpaired Student
t test. In addition, two groups with non–normally distributed
variables were compared with Mann–Whitney U test. A two-
tailed p < 0.05 indicates statistical significance.

FIGURE 1 | Characterization of diverse immune subtypes of OC patients. (A) Heatmap depicting the sample clustering when consensus k = 2 in accordance with
the expression profiling of prognostic immunologically relevant genes. (B) The t-SNE analyses visualizing two discrete immune subtypes with expression matrix of
prognostic immunologically relevant genes. (C) Heatmap showing the activation difference in hallmark gene sets between two immune subtypes. (D) Kaplan–Meier
analyses for the survival difference between two immune subtypes.
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RESULTS

Characterization of Two Diverse Immune
Subtypes of OC
This study downloaded mRNA expression profiling of
immunologically relevant genes of OC specimens from TCGA
cohort. Utilizing univariate Cox regression models, we first
screened 26 prognostic immunologically relevant genes across
OC patients (Table 1). Through consensus clustering analyses,
OC patients were clustered in accordance with the expression
profiling of prognostic immunologically relevant genes. The
stability of this clustering was evaluated from k = 2–10. As a

result, k = 2 was the optimal choice (Figure 1A). Thus, two
immune subtypes were identified as immune subtype 1 (n = 200)
and immune subtype 2 (n = 177) across OC patients. Our t-SNE
analyses suggested that OC specimens were clearly separated into
two diverse subtypes in accordance with the expression matrix of
prognostic immunologically relevant genes (Figure 1B). We
further investigated the biological discrepancy between
immune subtypes. Compared with immune subtype 1,
oncogenic pathways, such as MYC, E2F, DNA repair, and
PI3K-Akt-mTOR signaling, presented prominent activation in
immune subtype 2 (Figure 1C). In addition, immune activation
pathways, such as allograft rejection, tumor necrosis factor α

FIGURE 2 | Immune subtypes with diverse genomic variations across OC. (A,B) Landscape of the GISTIC score and frequency of significant amplifications (red)
and deletions (blue) across OC specimens with GISTIC2.0 software. Red meant amplification, whereas blue meant deletion. (C,D) Prominently amplified and deleted
fragments in immune subtype 1. (E,F) Prominently amplified and deleted fragments in immune subtype 2. The q value and score calculated by GISTIC2.0 for variations (x
axis) were depicted corresponding to the genome locations (y axis). The dotted lines indicate centromeres. The green lines meant q value threshold to determine
significantly mutated genes. (G,H) Oncoprint of the somatic mutation landscape across OC specimens from (G) immune subtype 1 and (H) immune subtype 2.
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FIGURE 3 | Two immune subtypes with disparate immune infiltrates and immune response across OC patients. (A) The ssGSEA identifying the difference in
immune infiltrates between immune subtypes 1 and 2. (B) ESTIMATE inferring the difference in stromal and immune scores and tumor purity between two immune
subtypes. (C) Comparison of the difference in expression of MHC molecules between two immune subtypes. (D,E) Box plots presenting the difference in expression of
PD-1 and PD-L1 between two immune subtypes. (F,G) Estimation of the difference in TMB and MSI scores between two immune subtypes. ***p < 0.001.
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signaling via nuclear factor κB, interleukin 6 (IL6)–JAK–STAT3
signaling, inflammatory response, complement, and IL2–STAT5
signaling, had higher activation in immune subtype 1 than
immune subtype 2. Kaplan–Meier analyses uncovered the
patients in immune subtype 2 with more dismal clinical
outcomes (Figure 1D).

Immune Subtypes With Diverse Genomic
Variations Across OC
With GISTIC2.0, genes with prominent amplifications or
deletions were investigated across OC specimens. Figures
2A,B display genes with prominent amplifications and
deletions within each fragment. There were 2,681 significant

genes (q < 0.05) harboring 59 amplified fragments as well as
4,005 significant genes (q < 0.05) within 42 deleted fragments
across OC specimens from immune subtype 1 (Figures 2C,D).
Meanwhile, 3,773 genes had amplifications within 56 fragments,
whereas 5,479 genes had deletions harboring 43 fragments across
OC specimens from immune subtype 2 (Figures 2E,F). This
indicates the prominent difference in CNVs between immune
subtypes, with more frequent CNVs in immune subtype 2. We
also investigated the distribution of SNPs across OC specimens.
In total, 139 OC samples had genetic mutations in immune
subtype 1 (Figure 2G), whereas 120 had mutations in immune
subtype 2 (Figure 2H), indicating that samples in immune
subtype 1 presented higher probability of genetic mutations.
Both in two subtypes, TP53 was the most frequently mutated

FIGURE 4 | Development of an immune scoring system for OC. (A) GO enrichment results of immune subtype–derived genes. (B) KEGG pathway enrichment
results of immune subtype–derived genes. (C) Identification of characteristic immune subtype–derived genes with Boruta feature importance analyses. (D) Alluvial
diagram depicting the connections of immune subtypes, immune score, and survival status. (E) Kaplan–Meier analyses for the OS discrepancy in OC patients with high
and low immune score in TCGA cohort. (F) Verification of the OS difference between high and low immune score patients in the GSE26193 dataset. (G,H)
Kaplan–Meier analyses for the DSS and PFI difference in OC patients with high or low immune score in TCGA cohort.
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gene, followed by MUC16. In addition, missense mutation was
the leading mutated type.

Two Immune Subtypes With Distinct
Immune Infiltrates and Immune Response
With ssGSEA algorithm, we estimated the infiltrations of
immune cell subpopulations across OC specimens. In
comparison to immune subtype 2, most immune cell
subpopulations presented remarkably enhanced infiltrations in
immune subtype 1, containing activated, immature, and memory
B cells; activated, central memory, and effector memory CD4
T cells; activated, central memory, and effector memory CD8
T cells; gamma delta, and regulatory T cells; T follicular, type 1,
type 2, and type 17 helper cells (Th1, Th2, Th17); activated,
immature, and plasmacytoid dendritic cells; CD56bright and
CD56dim natural killer cells; natural killer cells; natural killer
T cells; eosinophils; macrophages; mast cells; myeloid-derived
suppressor cells; monocytes; and neutrophils (Figure 3A). In
accordance with ESTIMATE algorithm, we inferred that immune
subtype 1 showed increased stromal and immune score as well as
reduced tumor purity than immune subtype 2 (Figure 3B). In
addition, most MHC molecules had higher mRNA expression in
immune subtype 1 than 2 (Figure 3C). PD-1/PD-L1 signaling is
responsible for tumor immune escape, which acts as the major
immune checkpoints in cancer immunotherapy. Remarkably

enhanced expression of PD-1 and PD-L1 was investigated in
immune subtype 1 than 2 (Figures 3D,E). TMB status represents
a potential immune response predictor, and we investigated that
immune subtype 1 presented increased TMB score compared
with immune subtype 2 (Figure 3F). In addition, we noticed the
reduced microsatellite instability (MSI) score in immune subtype
1 (Figure 3G). Above evidences uncovered that two immune
subtypes presented diverse immune infiltrates and immune
responses. Especially, patients in immune subtype 1 might
have better chance to respond to immunotherapy.

Identification of Immune Subtype-Derived
Genes
In accordance with log2 |fold-change| >1 and FDR <0.0001, we
screened 499 immune subtype–derived genes (Supplementary
Table S1). Thereafter, biological significance of these immune
subtype–derived genes was investigated through GO and KEGG
annotation analyses. Our investigation results demonstrate that
immune subtype–derived genes mainly participated in
modulating immunity-relevant biological processes (such as
lymphocyte mediated immunity, adaptive immune response,
humoral immune response mediated by circulating
immunoglobulin, complement activation, complement
activation, immunoglobulin mediated immune response,
B cell–mediated immunity, and immune response-activating
cell surface receptor signaling pathway), cellular components
(such as immunoglobulin complex, immunoglobulin complex,
MHC protein complex, and MHC class II protein complex), and
molecular functions (such as antigen binding, immunoglobulin
receptor binding, peptide antigen binding, chemokine activity,
chemokine receptor binding, cytokine receptor activity, MHC
class II receptor activity, and pattern recognition receptor activity;
Figure 4A). In addition, immunity-relevant pathways were
enriched by immune subtype–derived genes such as cell
adhesion molecules, allograft rejection, antigen processing and
presentation, cytokine-cytokine receptor interaction, intestinal
immune network for immunoglobulin A production, Th17 cell
differentiation, chemokine signaling pathway, complement and
coagulation cascades, human T-cell leukemia virus 1 infection,
Th1 and Th2 cell differentiation, and primary immunodeficiency
(Figure 4B). Above data confirmed the critical roles of immune
subtype–derived genes in modulating tumor immunity.

Development of an Immune Scoring System
for OC
With Boruta feature importance analyses, we identified 119
characteristic immune subtype–derived genes (Figure 4C and
Supplementary Table S2). Among them, univariate Cox
regression models uncovered that 30 characteristic immune
subtype–derived genes presented distinct correlations to OC
prognosis (Table 2). On the basis of the above genes, an
immune scoring system was developed through PCA
algorithm. Alluvial diagram depicted the connections of
immune subtypes, immune score, and survival status
(Figure 4D). Survival analyses uncovered that patients with

TABLE 2 | Prognosis-relevant characteristic immune subtype–derived genes
in OC.

Gene HR HR.95L HR.95H p Value

GBP5 0.98209 0.96569 0.99877 0.03545
CXCL11 0.98853 0.98237 0.99472 0.000295
CXCL10 0.99851 0.99751 0.99951 0.003436
CD2 0.98196 0.96669 0.99747 0.022801
IL2RG 0.99208 0.98468 0.99954 0.037483
CXCL9 0.9941 0.99014 0.99807 0.003616
GBP4 0.98868 0.98047 0.99696 0.00749
FCGR2A 1.00657 1.00143 1.01172 0.012093
SLAMF7 0.97624 0.95388 0.99913 0.04196
TRAC 0.99069 0.9826 0.99884 0.02522
CD163 1.01292 1.00531 1.02059 0.000845
ANKRD22 0.95146 0.91092 0.99381 0.025132
TAP1 0.99627 0.99405 0.99849 0.001017
SELL 0.97426 0.95262 0.99638 0.022841
GBP1P1 0.95934 0.93987 0.97921 7.21E-05
SIGLEC1 1.01404 1.00027 1.028 0.045651
GBP1 0.99713 0.99453 0.99974 0.030903
CD38 0.92642 0.87223 0.98399 0.012961
EPB41L3 1.04629 1.01447 1.0791 0.004082
HLA-B 0.99987 0.99974 0.99999 0.039989
CXCL13 0.9882 0.97945 0.99702 0.008825
WARS 0.99727 0.99546 0.99909 0.003241
ETV7 0.97791 0.96095 0.99516 0.012303
OR2I1P 0.96662 0.93594 0.99831 0.039137
STAT1 0.99828 0.99681 0.99975 0.02183
USP30-AS1 0.93008 0.8837 0.9789 0.005486
ZBP1 0.95285 0.91443 0.99288 0.021422
BATF2 0.97058 0.94958 0.99205 0.007472
UBD 0.9877 0.97632 0.99922 0.036419
C2 0.99526 0.99131 0.99923 0.019289
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high immune score presented more dismal clinical prognosis
than those with low immune score (Figure 4E). The predictive
efficacy of this immune score in OC prognosis was externally
confirmed in the GSE26193 dataset (Figure 4F). Moreover, high
immune score was indicative of poorer DSS (Figure 4G) and PFI
(Figure 4H) for OC patients.

This Immune Score Predicts Immune
Infiltrates and Immune Responses of OC
Further analyses demonstrate that OC specimens with low
immune score presented the characteristics of enhanced
infiltrations of most immune cell subpopulations (Figure 5A).
In addition, there were increased stromal and immune scores as

well as weakened tumor purity in low immune score group
(Figure 5B). In Figure 5C, most MHC molecules had
enhanced expression for patients with low immune score.
Above data indicate that the immune score possessed the
potential in estimating immune infiltrates and immune
responses of OC.

This Immune Score Associates With
Chemotherapeutic Responses
We investigated the expression of prognosis-relevant
characteristic immune subtype–derived genes across OC
specimens. Figure 6A depicts that most genes presented
enhanced expression both in immune subtype 2 and high

FIGURE 5 | This immune score predicts immune infiltrates and immune responses of OC. (A)Distribution of immune infiltrates between high and low immune score
OC patients with ssGSEA algorithm. (B) The difference in stromal and immune score and tumor purity between high and low immune score groups. (C) Comparison of
the expression of MHC molecules in two groups. ***p < 0.001.
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immune score group. In addition, IC50 values of commonly
applied chemotherapeutic agents were determined across OC
patients. No significant difference in estimated IC50 values of
paclitaxel, etoposide, and gemcitabine was detected between
immune score groups (Figure 6B). Higher IC50 values of
doxorubicin and vinorelbine as well as reduced IC50 value of
cisplatin were observed in low immune score group. This
indicates that patients with high immune score presented
higher sensitivity to doxorubicin and vinorelbine as well as
lower sensitivity to cisplatin.

This Immune Score Acts as a Predictor of
Immunotherapeutic Benefits
We collected genomic and clinical data of two
immunotherapeutic cohorts. Figure 7A visualizes the diverse
therapeutic responses to anti–PD-1 inhibitor in the cohort of
Liu et al. Especially, we found that low immune score group had
the higher fraction of response to anti–PD-1 immunotherapy
(Figure 7B). High immune score was linked with more dismal
clinical prognosis (Figure 7C). In addition, distinct therapeutic
responses and clinical outcomes were investigated between high
and low immune score groups in the IMvigor210 cohort
(Figures 7D–F).

DISCUSSION

OC is an aggressive epithelial malignancy, which represents the
main cause of cancer morbidity and mortality among females
(Matei and Nephew, 2020). Therapeutic options of OC are of
limited clinical benefits and adversely influence patients’ quality

of life, which represent an unmet need for tolerable effective
therapies. Immuno-oncology regimens, which reverse the
immune-suppressive tumor microenvironment, may unleash
the immune system against cancer cells (Iyer et al., 2021).
Hence, determining diverse immune subtypes in the tumor
immune microenvironment might offer an insight into the
antitumor immune responses as well as promote more
effective precision immunotherapeutic regimens.

This study conducted two immune subtypes in accordance
with prognostic immunologically relevant genes through
consensus clustering analyses. Especially, immune subtype 2
presented more dismal clinical prognosis than immune
subtype 1. Cancer is a malignancy triggered by genomic
variations and mutations (Kanchi et al., 2014). Immune
subtype 1 was characterized by more frequent genetic
mutations. A few genomic mutations, such as TP53, are
correlated to immunotherapeutic efficacy and possess
predictive potential (Sun et al., 2020). TP53 mutation was the
first mutated gene across OC. Compared with immune subtype 2,
TP53 presented higher mutated frequency in immune subtype 1.
Our evidences indicate the difference in genomic variations and
mutations between immune subtypes.

Tumor-infiltrating lymphocytes in the tumor
microenvironment present correlations to OC outcomes, and
immune evasion mechanism is linked with dismal prognosis
(Ghisoni et al., 2019). Immune responses are orchestrated by
diverse immune cell subpopulations and immune checkpoint
molecules (Wang et al., 2021; Zhang et al., 2021).
Accumulating evidences suggest that immune infiltrates are
correlated to immunotherapeutic responses of OC patients
(Yang et al., 2021). Our data demonstrate that immune
subtype 1 presented the features of enhanced immune

FIGURE 6 | This immune score is associated with chemotherapeutic responses of OC patients. (A) Heatmap visualizing the expression distributions of prognosis-
relevant characteristic immune subtype–derived genes across OC patients. (B) The difference in estimated IC50 values of chemotherapeutic agents (paclitaxel,
etoposide, gemcitabine, doxorubicin, vinorelbine, and cisplatin) in high and low immune score groups.
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infiltrates and increased expression of MHC molecules. Few
predictive markers such as PD-L1 expression and TMB in
tumor cells might enable OC positioning as well as patients’
risk stratification (Bi et al., 2020; Wan et al., 2021). Herein, our
evidences show that immune subtype 1 was linked with increased
TMB score among OC patients. Anti–PD-1/PD-L1 inhibitors
have presented the favorable efficacy against diverse cancer types
but merely can reach modest objective responses against relapsed
OC patients (Westergaard et al., 2020). Immune subtype 1
showed remarkably enhanced expression of PD-1 and PD-L1
than immune subtype 2, indicating that patients in immune
subtype 1 presented higher possibilities to respond to
anti–PD-1/PD-L1 therapy.

Here, we screened 499 immune subtype–derived genes that
might modulate immunity-relevant biological processes and
signaling, indicative of their critical roles in tumor immunity.
With combination of Boruta feature importance analyses and
univariate Cox regression models, 30 prognosis-relevant
characteristic immune subtype–derived genes were identified
for developing an immune scoring system through PCA
algorithm. Further analyses uncovered that high immune score

predicted more dismal clinical prognosis and progression of OC
patients. In addition, we noticed that high immune score was
linked with reduced immune infiltrates and MHC molecule
expression. Hence, this immune score may reflect preexisting
antitumor immunity of OC. In two anti–PD-1/PD-L1 therapy
cohorts, we evaluated the capacities of immune score in
estimating therapeutic responses. Our findings indicate that
immune score presented favorable efficacy in predicting the
benefits from anti–PD-1/PD-L1 therapy.

Initial chemotherapy is effective, but most patients experience
chemoresistance (Jordan et al., 2020). Chemoresistance occurs
because of the presence of subpopulations of dormant tumor cells
within the tumor mass, which facilitate and maintain tumor
growth as well as trigger chemoresistance, contributing to relapse
following chemotherapeutic agents (Chang et al., 2020).
Evidences have demonstrated that immune/inflammatory
signals exert prominent functions in chemoresponse or
chemoresistance (Jordan et al., 2020). Herein, high immune
score indicates enhanced sensitivity to doxorubicin and
vinorelbine as well as reduced sensitivity to cisplatin,
demonstrating that this immune score possessed the potential

FIGURE 7 | This immune score acts as a predictor of immunotherapeutic responses. (A) Landscape of therapeutic responses to anti–PD-1 inhibitor in the Liu et al.
cohort. (B) The fractions of responses to anti–PD-1 immunotherapy in high and low immune score groups in the Liu et al. cohort. (C) Kaplan–Meier analyses for high and
low immune score patients in the Liu et al. cohort. (D) Landscape of therapeutic responses to anti–PD-L1 inhibitor in the IMvigor210 cohort. (E) The fractions of
responses to anti–PD-L1 inhibitor in high and low immune score groups in the IMvigor210 cohort. (F) Kaplan–Meier analyses for patients with high or low immune
score in the IMvigor210 cohort.
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in estimating the responses of OC patients to chemotherapeutic
agents (doxorubicin, vinorelbine, and cisplatin). Our results
uncovered that understanding the tumor immunity allowed us
to overcome chemoresistance as well as ameliorate patients’
clinical prognosis (Ghoneum et al., 2021).

The well-defined immune score possessed several advantages
than conventional prognostic signatures in OC. First, this
immune score might be used to compare diverse immune
modulatory factors as well as to investigate the interactions of
tumor cells with immune microenvironment. Second, it assists in
stratifying OC patients into diverse subpopulations who are
suitable for distinct immune checkpoint blockades or benefit
from chemotherapy. Moreover, our immune subtype and
immune score might facilitate the genomic analyses of
genotype–immunophenotype interactions, which is critical for
improving the understanding about immunogenomic profiles
of OC.

CONCLUSION

Collectively, our study characterized the immune subtypes of OC
from an immunogenomic perspective. Moreover, we conducted
immune score for assessing the immune status and predicting
clinical prognosis and therapeutic benefits of OC patients, which
might be significant for the stratification of individuals in
immunotherapy clinical trials.
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