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Abstract: Identification of disease-associated miRNAs (disease miRNAs) are critical for understanding
etiology and pathogenesis. Most previous methods focus on integrating similarities and associating
information contained in heterogeneous miRNA-disease networks. However, these methods establish
only shallow prediction models that fail to capture complex relationships among miRNA similarities,
disease similarities, and miRNA-disease associations. We propose a prediction method on the basis
of network representation learning and convolutional neural networks to predict disease miRNAs,
called CNNMDA. CNNMDA deeply integrates the similarity information of miRNAs and diseases,
miRNA-disease associations, and representations of miRNAs and diseases in low-dimensional
feature space. The new framework based on deep learning was built to learn the original and
global representation of a miRNA-disease pair. First, diverse biological premises about miRNAs and
diseases were combined to construct the embedding layer in the left part of the framework, from a
biological perspective. Second, the various connection edges in the miRNA-disease network, such as
similarity and association connections, were dependent on each other. Therefore, it was necessary
to learn the low-dimensional representations of the miRNA and disease nodes based on the entire
network. The right part of the framework learnt the low-dimensional representation of each miRNA
and disease node based on non-negative matrix factorization, and these representations were used
to establish the corresponding embedding layer. Finally, the left and right embedding layers went
through convolutional modules to deeply learn the complex and non-linear relationships among the
similarities and associations between miRNAs and diseases. Experimental results based on cross
validation indicated that CNNMDA yields superior performance compared to several state-of-the-art
methods. Furthermore, case studies on lung, breast, and pancreatic neoplasms demonstrated the
powerful ability of CNNMDA to discover potential disease miRNAs.

Keywords: disease-associated miRNAs; network representation learning; convolutional neural
network; non-negative matrix factorization; deep learning

1. Introduction

MicroRNAs (miRNAs) are a class of endogenous small RNAs of approximately 20–24 nucleotides in
length. miRNAs regulate gene expression in plants and animals after transcription [1–3]. Accumulating
studies indicate that miRNAs are closely related to the development of human diseases [4–7]. Therefore,
it is imperative to explore potential disease-associated miRNAs (disease miRNAs) in order to understand
disease etiology and pathogenesis.
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Disease miRNAs prediction can provide reliable candidates for experimental research. Several
methods have been proposed for predicting potential disease miRNAs. Mainstream methods
are roughly grouped into two categories. The first category of methods primarily uses the
regulatory relationship between miRNAs and their target mRNA to predict potential miRNA-disease
associations [8]. First, target genes related to miRNAs are obtained by analyzing base complementarity
between the miRNA sequence and the putative target gene sequence. Then, using the interactions
between the target gene and known disease-related genes, the potential disease miRNAs are
predicted [9–12]. However, such methods are difficult to use due to experimentally validated
targets being insufficiently described to date. Although more target gene samples were obtained
through some experiments [13,14], prediction results from these methods have a high false positive rate.

Methods belonging to the second category are based on prior biological knowledge that miRNAs
with similar functions are usually associated with similar diseases [15]. First, network medicine is
the mainstream way of defining related diseases [16–18], some methods make full use of network
topology to identify disease miRNAs [19,20]. Moreover, disease miRNAs are identified by a random
walk on a single miRNA similarity network [21,22]. However, these methods rely too much on known
disease-associated miRNAs and are ineffective for new diseases that lack associated miRNAs. To
address this drawback, disease similarity information and miRNA-disease associations were introduced
to form miRNA-disease heterogeneous networks, where random walks on a two-layer network were
used to predict candidate miRNA-disease associations [23,24]. In addition, there are other methods
available for calculating miRNA-disease correlation scores, several methods use non-negative matrix
factorization [25–29]. By applying structural perturbation [30], by using transduction learning [31], by
using the induction matrix [32], through the binary network projection [33], and extracting potential
features that pertain to positive sample information [34]. However, there are complex and non-linear
relationships between miRNA-miRNA, disease-disease, and miRNA-disease, all previous methods
struggle to extract such relationships.

In this study, we present a new approach on the basis of convolutional neural networks for
predicting miRNA-disease association, called CNNMDA. It contains two parts consisting of a left
and a right. CNNMDA’s left part deeply integrates miRNA similarities, disease similarities, and
miRNA-disease associations, and uses these prior biological knowledge to construct the left embedding
layer of the miRNA-disease node pair. The right part uses network representation learning to obtain a
potential low-dimensional representation of the network node while preserving the topology of the
network. Integrating the low dimensional features of miRNAs and diseases helps to estimate the
likelihood of association between miRNAs and diseases at the global network level. We construct a
deep learning framework based on convolutional neural networks (CNN) for the left and right parts,
and learn the original representation and global representation of miRNA-disease node pairs. For
some high-frequency diseases, CNNMDA can determine them with high accuracy. Moreover, case
studies on 3 diseases indicate that CNNMDA is able to discover potential disease associated miRNAs.

2. Results and Discussion

2.1. Evaluation Metrics

To evaluate the performance of our prediction model, we performed a 5-fold cross-validation on
CNNMDA. In the miRNA-disease association data set, the known miRNA-disease associations are
called positive samples, while the unknown associations are considered negative samples. In the first
place, all positive samples were extracted, and were divided into five subsets randomly. The next
step was to extract the same number of negative samples as the positive samples, and these negative
samples are also divided into five subsets randomly. In each cross-validation, we took four positive and
four negative samples from five subsets to train the prediction model, and the remaining one positive
sample and one negative sample were used as test data to evaluate the prediction performance.
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Given a threshold τ, a positive sample is obtained when the prediction score is higher than
τ, otherwise a negative sample is added. Accordingly, TPR and FPR are calculated by the
following formula:

TPR =
TP

TP + FN
, FPR =

FP
TN + FP

, (1)

where TP and TN represent the number of positive and negative samples that are judged correctly,
respectively. FN indicates the number of positive samples that are misidentified as negative samples,
and FP represents the number of negative samples that are misidentified as positive examples. We can
calculate different TPRs and FPRs based on different thresholds. The obtained TPRs and FPRs can be
plotted as ROC curves, and the area under the receiver operating characteristic curve (AUC) can be
used as a criterion for evaluating prediction performance.

By observing relevant data, we noted that there were only a few known miRNA-disease associations
(positive samples), accounting for 1

31 of all associated data. It is not difficult to surmise that there is a
serious imbalance between positive samples and negative samples. In this case, the PR (precision-recall)
curve usually reflects more information than the ROC curve [35,36]. Precision indicates the proportion
of positive samples that are defined correctly compared to the number of positive samples currently
defined as positive examples. Recall indicates the proportion of positive samples that are defined
correctly compared to all positive samples. This is calculated as follows:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

. (2)

Similarly, precisions and recalls are calculated by different thresholds. Based on these values, the
PR curve can be plotted and the area under the precision–recall curve (AUPR) can be calculated to
evaluate the prediction performance of the model. In addition, biologists usually choose the top-rank
prediction results for experimental validation, so we calculated the average recall value for 15 diseases
in the top k ∈ {30, 60, 90, . . . , 240} as another evaluation method.

2.2. Comparison with Other Method

To evaluate the prediction performance of CNNMDA, we compare it with several methods that
are at the forefront of the field. These included DMPred [29], GSTRW [37], BNPMDA [33], and Liu’s
method [23], where the parameter settings for each method were set to achieve the best performance.
In CNNMDA, the parameters wl, wf, and wp in the convolution operation were set to 3, 5, and 2,
respectively. Thus, the size of the convolution sliding window J ∈ R3×5, and the sliding window
F ∈ R1×2 in the pooling operation. The number of filters was set to 30 (nconv = 30). The parameters
α, β, λm, and λd. used in the matrix factorization were all obtained from the set {0.2, 0.5, 0.8, 1, 2, 5, 8}
by cross-validating the values of the various parameters. CNNMDA achieved the best performance
when α = 0.2, β = 0.2, λm = 0.2, and λd = 0.2. In addition, the parameter λ in the combination
formula for the left part and right part was set to 0.4. In other comparison methods, the parameters are
set according to the values given in the original article.

As shown in Figure 1A and Table 1, CNNMDA achieved the best average performance for
15 diseases (AUC of ROC curve = 0.968). DMPred’s performance was the second best, where the
AUC was 5% lower than CNNMDA, reaching 0.918. In addition, the AUC values of BNPMDA and
Liu reached 0.838 and 0.870, which were 13% and 9.8% lower than CNNMDA, respectively. GSTRW
performed poorly compared with other methods, and its AUC value was only 0.816, 15.2% lower
than CNNMDA. Among the methods, GSTRW displayed poor performance since only miRNA and
disease similarity information is used in this method. Liu’s method and BNPMDA fully capture the
information of the network topology, and DMPred improves performance by integrating multiple
sources of effective information. Our method, CNNMDA, through deep learning original representation
and global representation of miRNA-disease node pairs, achieved the best prediction performance.
CNNMDA also obtained the best results in each disease.
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Colorectal neoplasms 0.924 0.742 0.882 0.724 0.864 

Glioblastoma 0.916 0.821 0.906 0.781 0.828 
Heart failure 0.986 0.823 0.984 0.929 0.816 
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Figure 1. ROC curves and precision-recall (PR) curves of CNNMDA and other methods for 15 diseases.

Table 1. Prediction results of CNNMDA and the other four methods for 15 diseases in terms of the area
under the receiver operating characteristic curve (AUC).

Diseases Name AUC CNNMDA GSTRW DMPred BNPMDA Liu’s Method

Breast neoplasms 0.991 0.822 0.939 0.906 0.896
Hepatocellular carcinoma 0.978 0.770 0.899 0.784 0.846

Renal cell carcinoma 0.960 0.801 0.897 0.830 0.785
Squamous cell carcinoma 0.932 0.821 0.894 0.793 0.897

Colorectal neoplasms 0.924 0.742 0.882 0.724 0.864
Glioblastoma 0.916 0.821 0.906 0.781 0.828
Heart failure 0.986 0.823 0.984 0.929 0.816

Acute myeloid leukemia 0.969 0.817 0.894 0.784 0.924
Lung neoplasms 0.987 0.795 0.941 0.903 0.931

Melanoma 0.994 0.788 0.909 0.909 0.859
Ovarian neoplasms 0.955 0.831 0.934 0.924 0.855

Pancreatic neoplasms 0.971 0.853 0.913 0.725 0.892
Prostatic neoplasms 0.982 0.828 0.947 0.896 0.895
Stomach neoplasms 0.994 0.781 0.922 0.740 0.838

Urinary bladder neoplasms 0.982 0.821 0.921 0.879 0.870

The bold values indicate the higher AUCs.

As shown in Figure 1B and Table 2, we obtained the average AUPR of all the methods with
respect to 15 diseases, and plotted the corresponding PR curves. It is not difficult to surmise that the
average AUC-PR area of CNNMDA under 15 diseases was also significantly higher than for other
methods. Compared with GSTRW, BNPMDA, Liu’s Method and DMPred, CNNMDA displayed
AUC-PR increases of 43.9%, 28.9%, 27.7%, and 24%, respectively. Moreover, in 13 of the 15 diseases,
CNNMDA achieved the best performance.

In addition, to further verify the superior performance of our method compared with other
methods, we applied a commonly used method called a paired t-test. After calculation, the p-values of
all paired t-test results were less than 0.05 (Table 3), indicating that the performance of CNNMDA is
significantly better than other methods.

This was accompanied by a higher recall rate, which means that we have successfully identified
more positive samples in the top k candidate list, further indication of the superiority of this model’s
prediction performance. Therefore, we calculated the average recall rate for all methods in 15 diseases
(Figure 2). Our method achieved the highest average recall rate at different thresholds, where the top
30 reached 0.712, the top 60 reached 0.921, and the top 90 reached 0.980. The recall rate of DMPred was
the second best at all thresholds, and ranked 0.512 in the top 30, 0.726 in the top 60, and 0.860 in top
90. The recall rate of BNPMDA and Liu was very close. The average recall rates of the top 30, the top
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60, the top 90 in the former were 0.459, 0.645, and 0.753, and the latter were 0.411, 0.641, and 0.763,
respectively. In contrast, GSTRW exhibited poor performance, and the recall rates in the top 30, top 60
and top 90 were 0.191, 0.469, and 0.661, respectively.

Table 2. Prediction results of CNNMDA and other four methods for 15 diseases in terms of the area
under the precision–recall curve (AUPR).

Diseases Name AUPR CNNMDA GSTRW DMPred BNPMDA Liu’s Method

Breast neoplasms 0.919 0.261 0.681 0.245 0.378
Hepatocellular carcinoma 0.871 0.234 0.539 0.574 0.335

Renal cell carcinoma 0.549 0.127 0.325 0.328 0.152
Squamous cell carcinoma 0.290 0.104 0.191 0.272 0.170

Colorectal neoplasms 0.425 0.136 0.279 0.177 0.273
Glioblastoma 0.277 0.142 0.270 0.452 0.166
Heart failure 0.874 0.160 0.669 0.451 0.157

Acute myeloid leukemia 0.262 0.118 0.236 0.367 0.207
Lung neoplasms 0.706 0.140 0.481 0.480 0.343

Melanoma 0.896 0.157 0.410 0.477 0.309
Ovarian neoplasms 0.543 0.152 0.453 0.386 0.239

Pancreatic neoplasms 0.593 0.133 0.308 0.136 0.283
Prostatic neoplasms 0.673 0.150 0.414 0.175 0.231
Stomach neoplasms 0.881 0.207 0.503 0.306 0.303

Urinary bladder neoplasms 0.694 0.134 0.331 0.292 0.229

The bold values indicate the higher AUPRs.

Table 3. Comparison of different methods based on AUCs with a paired t-test.

p-Value between CNNMDA
and Another Method DMPred GSTRW BNPMDA Liu’s Method

p-values of ROC curves 3.3219 × 10−5 8.5916 × 10−23 5.4483 × 10−10 2.0247 × 10−10

p-values of PR curves 1.4386 × 10−8 2.7951 × 10−13 1.181 × 10−2 2.9012 × 10−8
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2.3. Case Studies of Lung Neoplasms, Breast Neoplasms, and Pancreatic Neoplasms

To demonstrate CNNMDA’s ability to discover potential candidate disease miRNAs, we carried out
our method on case studies of lung, breast, and pancreatic neoplasms. Because of space limitations, here,
we focused on analyzing the candidates for lung neoplasms and listed the potential top 50 candidate
miRNAs in detail (Table 4). For the other two diseases, we briefly analyzed the top 50 candidates,
and their candidates are listed separately in Supplementary Table S1 and Supplementary Table S2,
respectively. To ensure the reliability of prediction results, we first verified our predictions through
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four public databases, dbDEMC [38], PhenomiR [39], miRCancer [40], and TCGA [41]. Among them,
dbDEMC explored miRNAs with abnormal expression in different cancers, where miRNAs with
significantly different expression levels in cancer compared with normal tissues were retrieved and
statistically analyzed through a “Significance Analysis of Microarrays” method. Similarly, PhenomiR
consisted of dysregulated miRNAs associated with diseases. miRCancer provided a comprehensive
collection of miRNA expression profiles in a variety of human cancers that are automatically extracted
from published literature. TCGA sequenced the entire genome of some neoplasms, including at least
6000 candidate genes and microRNA sequences. It stored genomic characterization and sequence
analysis of different tumor types. Since lung cancer is one of the most frequent cancers at present, we
took lung neoplasms as an example and analyzed the top 50 candidate miRNAs in detail (Table 4).
Among them, dbDMEC contained 43 candidates, and 32 candidates were verified by PhenomiR,
indicating that they have been confirmed to be upregulated or downregulated in lung neoplasms.
In addition, 10 candidates are included in the miRCancer, which further confirms their associations
with the disease, and 7 miRNAs are contained in TCGA, indicating their different expression levels
between cancer and normal tissues. The remaining 7 candidates were verified by the literature, where
5 miRNAs were confirmed to exert dysregulations in lung tissues compared with normal tissue [42–46].
miR-15a is involved in the regulation of non-small cell lung cancer and controls cell cycle progression
in a synergistic and Rb-dependent manner [47], while miR-374a was confirmed to have different effects
at different stages of lung cancer [48].

Among the top 50 candidates for breast neoplasms (ST1), dbDEMC and PhenomiR included 46
and 33 candidates, respectively, whose expression levels varied significantly in breast tumors compared
with the normal tissues. The miRCancer contained 22 candidates indicating their associations with
breast neoplasms, and 3 candidates were confirmed by TCGA, which demonstrates their different
expression levels in different biological states. The remaining 3 candidates were verified by the literature.
Among them, miR-142 is upregulated in human breast cancer stem cells (BCSCs) as compared to the
non-tumorigenic breast cancer cells [49]. In addition, miR-542 can be used to predict the prognosis
of breast cancer patients based on the mRNA expression of target gene lymphocyte antigen 9 (LY9),
resulting in the secretion of frizzled protein-related protein 1 (SFRP1) [50]. miR-30e has separately
been identified as an independent subtype-specific prognostic marker in breast cancer [51].

The top 50 pancreatic tumor candidates are listed in ST2, where 45 and 34 candidates are contained
in the dbDEMC and PhenomiR, respectively. There are 19 candidates in the miRCancer that are known
to be associated with the disease. Moreover, TCGA comprises 3 candidates. Five other candidates
were also confirmed by the literature [52,53], where we also confirmed their different regulatory effects
on pancreatic tumors. Moreover, the downregulation of the tumor protein UNC51-like kinase 1 (ULK1)
by miR-372 inhibits the survival of human pancreatic cancer cells [54]. While miR-483 promotes cell
proliferation by down-regulating its target gene Smad4 in pancreatic ductal adenocarcinoma (PDAC)
cells. The three case studies provided above demonstrated the strong performance of CNNMDA in
discovering potential disease associated miRNAs [55].
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Table 4. The top 50 lung neoplasms-related candidates.

Rank miRNA Name Evidence

1 hsa-mir-106b dbDEMC, PhenomiR
2 hsa-mir-15a Literature [47]
3 hsa-mir-16 dbDEMC, PhenomiR, miRCancer
4 hsa-mir-130a dbDEMC, PhenomiR
5 hsa-mir-193b dbDEMC, PhenomiR, TCGA
6 hsa-mir-520d dbDEMC
7 hsa-mir-429 dbDEMC, miRCancer
8 hsa-mir-122 dbDEMC, PhenomiR, miRCancer
9 hsa-mir-149 dbDEMC, PhenomiR

10 hsa-mir-424 dbDEMC, PhenomiR
11 hsa-mir-451a dbDEMC
12 hsa-mir-378a Literature [42]
13 hsa-mir-708 dbDEMC
14 hsa-mir-20b dbDEMC, PhenomiR, TCGA
15 hsa-mir-15b dbDEMC, PhenomiR, miRCancer
16 hsa-mir-520a dbDEMC, TCGA
17 hsa-mir-10a dbDEMC
18 hsa-mir-520b dbDEMC
19 hsa-mir-625 dbDEMC
20 hsa-mir-141 dbDEMC, PhenomiR, miRCancer
21 hsa-mir-449a dbDEMC, PhenomiR, miRCancer
22 hsa-mir-99a dbDEMC, PhenomiR, TCGA
23 hsa-mir-195 dbDEMC, PhenomiR, miRCancer
24 hsa-mir-151a Literature [43]
25 hsa-mir-296 Literature [44]
26 hsa-mir-449b dbDEMC, PhenomiR, miRCancer
27 hsa-mir-28 dbDEMC, PhenomiR
28 hsa-mir-342 dbDEMC, PhenomiR
29 hsa-mir-372 dbDEMC, PhenomiR, TCGA
30 hsa-mir-345 dbDEMC, PhenomiR
31 hsa-mir-92b dbDEMC, PhenomiR
32 hsa-mir-328 dbDEMC, PhenomiR
33 hsa-mir-367 dbDEMC, PhenomiR
34 hsa-mir-373 dbDEMC, PhenomiR
35 hsa-mir-302b dbDEMC, PhenomiR, miRCancer
36 hsa-mir-194 dbDEMC, PhenomiR
37 hsa-mir-1258 dbDEMC
38 hsa-mir-320a dbDEMC, PhenomiR
39 hsa-mir-152 dbDEMC, PhenomiR
40 hsa-mir-302c dbDEMC, PhenomiR
41 hsa-mir-151b dbDEMC
42 hsa-mir-204 dbDEMC, PhenomiR
43 hsa-mir-23b dbDEMC, PhenomiR
44 hsa-mir-129 dbDEMC, PhenomiR, TCGA
45 hsa-mir-451b Literature [45]
46 hsa-mir-374a Literature [48]
47 hsa-mir-211 dbDEMC, PhenomiR
48 hsa-mir-208a Literature [46]
49 hsa-mir-1254 dbDEMC, miRCancer
50 hsa-mir-337 dbDEMC, PhenomiR, TCGA

Functional enrichment analysis of miRNAs is helpful in understanding the function of
disease-related miRNAs. Some tools [56–58] can be used to analyze the association between the
function of the potential disease-associated miRNAs and disease progression. Among these tools,
TAM [57] is a convenient online tool (http://cmbi.bjmu.edu.cn/tam), it integrates miRNAs into different
sets according to various rules and provides investigators with the potential biological functions of

http://cmbi.bjmu.edu.cn/tam
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the list of miRNAs. We performed functional enrichment analysis for the predicted top 50 potential
disease-related miRNAs based on TAM. Here, we focused on the analysis of candidate miRNAs related
to lung neoplasms (Figure 3). The results of the enrichment analysis of breast neoplasms and pancreatic
neoplasms are listed in Supplementary Figures S1 and S2, respectively. Among the top 50 candidate
miRNAs that relate to lung neoplasms, 12 miRNAs are involved in cell cycle-related functions, and 13
miRNAs are involved in human embryonic stem cell regulation functions. Furthermore, 9 miRNAs are
concerned with apoptosis. In addition, 7, 7, and 6 miRNAs are related to cell proliferation, hormones
regulation, and immune response, respectively. All the miRNA-related functions mentioned above
have been confirmed to be closely related to the development of diseases. For instance, numerous
studies have confirmed that cell cycle changes are closely related to cancer. When the normal cell
cycle changes, the changes may lead to the division of some cells in the body and further cause
cancer [59,60]. Specifically, it has been confirmed that cell cycle regulators play an important role
in lung neoplasms [61]. As for human embryonic stem cell regulation, some research indicates it
may be the origin of some solid tumors, including lung neoplasms, stomach neoplasms, and breast
neoplasms [62,63]. Moreover, the metastasis of lung cancer may occur due to the dysregulation of
some hormones in the human body [64], and the senescence of the immune system is a possible cause
of lung cancer [65]. The other enriched functions associated with more miRNAs, such as apoptosis and
cell proliferation, are related to the occurrence and development of diseases [66]. The above analysis
can provide some insights into the putative roles of these candidates in lung neoplasms.
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Figure 3. Functional enrichment analysis of lung cancer-related miRNAs. The horizontal ordinates
represent 35 significant enriched functions of the top 50 candidate miRNAs associated with lung
neoplasms. The vertical coordinates represent the number of miRNAs associated with each
enriched function.
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3. Materials and Methods

3.1. Dataset

We obtained miRNA-disease association data from the human miRNA-disease database
(HMDD v2. 0) [67]. The database has collected thousands of miRNA-disease associations that
have been experimentally verified. There were 492 miRNAs and 329 diseases in the dataset of our
study, which contained 5218 known associations between them. The disease terms we used were
derived from the U.S. National Library of Medicine. In terms of diseases, phenotype similarities and
the semantic similarities between them were extracted from related literature [68].

3.2. Representation of miRNA and Disease Heterogeneous Data

3.2.1. MiRNA Similarity Measure

miRNAs with approximate function have high probabilities of being associated with similar
diseases. Most existing miRNA similarity data are obtained by calculating the similarity of the diseases
to which they are associated. For example, miRNA m1 is associated with diseases d2, d3, and d4, miRNA
m2 is associated with diseases d1, d3, and d4. By calculating the similarity between disease set {d2,
d3, d4} and set {d1, d3, d4} as the similarity between m1 and m2 [69], it can be defined as M12. miRNA
similarities used in this study were calculated according to the above method. The similarity of Nm

miRNAs is represented by matrix
[
Mi j

]
∈ RNm×Nm and each value is between 0 and 1.

3.2.2. Disease Similarity Measure

Similarities between disease pairs can be judged by their semantics and phenotype; under normal
conditions, if there are more common semantic terms and phenotypes between disease pairs, then
they have a high probability of similarity. Accordingly, previous work calculated disease similarity
based on the phenotypic and semantic information of the disease [29]. Disease similarities used in this
study were obtained using Xuan’s method. The similarity of Nd diseases are represented by matrix[
Di j

]
∈ RNd×Nd and each value is also between 0 and 1.

3.2.3. miRNA-Disease Associations

We used the matrix A ∈ RNm×Nm to represent the associations between Nm miRNAs and Nd
diseases. If miRNA mi is known to be associated with a disease d j, Ai j = 1; contrastingly, Ai j = 0
indicates that their association has not been explored.

3.3. Prediction Model Based on Network Representation Learning and Dual CNN

Here, we developed a novel prediction method based on network representation learning and
dual CNN to infer potential miRNA-disease associations. Its prediction model is divided into a left
part and a right part (Figure 4). The left part learns feature association representation between a
miRNA mi and a disease d j through original feature information. The right part projects all miRNA
and disease nodes into a low-dimensional space, thereby integrating their global information to obtain
representative low-dimensional features of mi and d j. These two parts use CNN layer deep learning
node level representation and global level representation, respectively. Next, the two sides obtain
prediction scores for mi and d j through the fully connected layer, respectively. Finally, we integrated
two scores as a final prediction score between mi and d j.
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3.3.1. Embedding Layer on the Left

The left part integrates original feature information of miRNA and disease pairs. This is performed
on the basis that miRNAs may be associated with similar diseases if they have similar functions and vice
versa. Therefore, we combined miRNA and disease similarities as well as associations between them
to form the feature representation of the left part. As an example, we have described the integration
process of miRNA m1 and disease d5 (Figure 5). The first row of M is denoted as M1. It contains
similarity information between miRNA m1 and all of the miRNAs. The fifth row of AT is denoted as
AT

5 , it consists of the association of disease d5 with all of the miRNAs. miRNA m1 is similar to m3, m5,
and m6, and the disease d5 has known association with m3 and m5. Thus m1 and d5 are likely to be
associated, as they are all related to m3 and m5. Similarly, we integrate the first row of matrix A (A1)
together with the third row of matrix D (D5). miRNA m1 is known to be associated with d1, d3, and d4,
and disease d5 is similar to d1 and d3, since both m1 and d5 are related to d1 and d3. Therefore m1 and
d5 may be associated with each other. Finally, we integrated M1, A1, D5, and AT

5 to form the feature
matrix B ∈ R2×(Nm+Nd).
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3.3.2. Embedding Layer on the Right

In the right part, miRNA (disease) is projected into k-dimensional space to obtain representative
low-dimensional features of miRNA and disease pairs, and integrate their global information.
Non-negative matrix factorization (NMF) is an effective way to get a low-dimensional representation,
and is widely used in data representation [70,71]. It aims to calculate two optimal non-negative matrices
such that their product approximates the original matrix. Specifically, for the miRNA similarity matrix
M ∈ RNm×Nm , each row in it can be considered as a feature vector of a single miRNA, and we need
to find non-negative matrices W ∈ RNm×k and X ∈ RNm×k whose products approximate to M, such as
M ≈WXT. Therefore, there is an optimization item as follows:

min
W≥0,X≥0

‖M−WXT
‖

2
F, (3)

where ‖·‖F is the Frobenius norm of a matrix, X represents a low-dimensional feature matrix of miRNA,
and W is the basic matrix which is similar to the parameter matrix. Finally, k represents the target
dimension that we reduce to.

Similarly, we also project disease information into k-dimensional space, in terms of disease
similarity matrix D ∈ RNd×Nd , calculating matrices V ∈ RNd×k and Y ∈ RNd×k, and D ≈ VYT. Thus,
combined with Equation (3), we obtain the following objective function:

min
W,X,V,Y≥0

‖M−WXT
‖

2
F + α‖D−VYT

‖
2
F, (4)

where α is a parameter for control the contribution of the second item. Y represents a low-dimensional
disease feature matrix, and V is a basic matrix.

The i-th row of feature matrix X, xi, which is a row vector, represents the k-dimensional features of
miRNA mi. Similary, the j-th row of feature matrix Y, y j, also a row vector, represents the k-dimensional
features of disease d j. If the k-dimensional features of mi and d j are mostly consistent, there may be
potential links between them. The association probability between them is estimated by the formula
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(xi)
(
yT

)
j
=

(
xyT

)
i j

, and the score should be close to Ai j, which is the true association probability

between mi and d j. As a result, we extend the objective function to:

min
W,X,V,Y≥0

‖M−WXT
‖

2
F + α‖D−VYT

‖
2
F + β‖A−XYT

‖
2
F, (5)

where β is a parameter used to adjust the contribution of the third item.
In addition, if miRNA mi is similar to miRNA m j, mi is likely related to other miRNAs whose

similarity scores are relatively high with m j. To preserve this network topology information, we
introduce the graph regular term, which indicates that if the two miRNAs (diseases) mi and m j are
close in original feature space, these two miRNAs (diseases) should also be closer to each other when
their feature dimensions are reduced. However, prior to this, we need to establish a graph model for
miRNA and disease feature matrices.

For the miRNA feature matrix, a graph model Sm is constructed. The elements Sm
ij are comprised of:

Sm
ij =


1, i f mi is the k− nearest

neighbor o f m j
0, otherwise

(6)

where mi and m j represent the i-th miRNA and the j-th miRNA, respectively. The similarity score
between them is obtained from matrix M, and similarity scores of the mi are sorted with the rest of the
miRNAs to determine whether m j belongs to the k-nearest of mi.

For the disease feature matrix, a supplementary graph model Sd is constructed:

Sd
pq =


1, i f dp is the k− nearest

neighbor o f dq

0, otherwise
(7)

where dp and dq represent disease p and disease q. The similarity between dp and dq are obtained from
matrix D.

The graph regular terms for miRNAs and diseases are defined as:

1
2

∑Nm

i, j=1
‖xi − x j‖

2Sm
ij = tr

(
XTLmX

)
, (8)

1
2

∑Nd

p,q=1
‖yp − yq‖

2Sd
pq = tr

(
YTLdY

)
, (9)

where tr(.) represents the trace of a matrix, xi represents the i-th row of the matrix X, and yp represents
the p-th row of the matrix Y. Lm = Dm −Sm and Ld = Dd −Sd are graph Laplacian matrices for Sm and Sd,
respectively, Dm and Dd are the diagonal matrices and Dm(i, i) =

∑Nm
j=1 Sm(i, j), Dd(p, p) =

∑Nd
q=1 Sd(p, q).

Combining the graph regular terms into the objective function gives:

min
W,X,V,Y≥0

‖M−WXT
‖

2
F + α‖D−VYT

‖
2
F + β‖A−XYT

‖
2
F+λmTr

(
XTLmX

)
+ λdTr

(
YTLdY

)
, (10)

where λm and λd are parameters used to adjust the regularization terms.
Since the objective function in Equation (10) is not convex, it is unrealistic to hope to find a global

optimal solution. We propose a strategy to find local minima by iteratively updating one item with
other items fixed, such as updating X with W, Y, and V fixed. In addition, to constrain the matrix
elements that are non-negative (wi j ≥ 0, xi j ≥ 0, vpq ≥ 0, ypq ≥ 0), we add the corresponding Lagrangian
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function. Finally, according to the trace and Frobenius norm of a matrix, the objective function L can
also be expressed as:

L = Tr
(
MMT

−WXTMT
−MXWT + WXTXWT

)
+αTr

(
DDT

−VYTDT
−DYVT + VYTYVT

)
+βTr

(
AAT

−XYTAT
−AYXT + XYTYXT

)
+λmTr

(
XTLmX

)
+ λdTr

(
YTLdY

)
+Tr

(
δWT

)
+ Tr

(
µXT

)
+ Tr

(
φVT

)
+ Tr

(
θYT

)
,

(11)

where δ, µ, ϕ, θ represents a Lagrange multiplier. Then the partial derivatives of X, W, Y, and Z can
be calculated through the following function:

∂L
∂X

= −2MTW + 2XWTW − 2βAY + 2βXYTY + 2λmLmX + µ, (12)

∂L
∂W

= −2MX + 2WXTX + δ, (13)

∂L
∂V

= −2αDY + 2αVYTY + φ, (14)

∂L
∂Y

= −2αDTV + 2αYVTV − 2βATX + 2βYXTX + 2λdLdY + θ. (15)

According to Karush–Kuhn–Tucker (KKT) conditions [72], δi jwi j = 0, µi jxi j = 0,ϕi jvi j = 0,θi jyi j = 0,
the following equations are obtained:

(−MTW + XWTW − βAY + βXYTY + λmLmX)i jxi j = 0, (16)

(−MX + WXTX)i jwi j = 0, (17)

(−αDY + αVYTY)i jvi j = 0, (18)

(−αDTV + αYVTV − βATX + βYXTX + λdLdY)i jyi j = 0. (19)

Finally, we obtained the following update rules:

xi j ← xi j

(MTW + βAY + λmSmX)i j

(XWTW + βXYTY + λmDmX)i j
, (20)

wi j ← wi j
(MX)i j

(WXTX)i j
, (21)

wi j ← wi j
(MX)i j

(WXTX)i j
, (22)

yi j ← yi j

(αDTV + βATX + λdSdY)i j

(αYVTV + βYXTX + λdDdY)i j
. (23)

Here, we iteratively update W, X, V, and Y through the above update formula until convergence.
The first row of X, x1, is the feature vector of miRNA m1 and the fifth row of Y, y5, is the feature vector
of disease d5. If the k-dimensional features of m1 and d5 are mostly consistent, there may be potential
links between them. Moreover, x1 and y5 are integrated together to form a global feature representation
matrix P ε R2×k (Figure 6).
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3.3.3. Convolutional Module on the Left

Feature matrix B, consisting of m1 and d5, is input to the CNN module to learn the original
node pair representation between m1 and d5. In the convolutional layer, the convolution filter
size is set to wl × w f , and the number of filters is nconv. Therefore, the convolution filters can be
represented as Wconv ∈ Rwl×w f×nconv . The output after the convolution operation is expressed as
C1 ∈ R2×(Nm+Nd−w f +1)×nconv . The following formulas represents the convolution process of X:

Xconv,i, j = (X(i, j, 1),X
(
i, j, 2), . . . , X

(
i, j, j + w f − 1

))
Xconv,i, j ∈ Rwl×w f , (24)

C1(i, j, t) = g
(
Xconv,i, j ∗Wconv(:, :, t) + bconv(t)

)
,i ∈ [1, 2], j ∈

[
1, Nm + Nd −w f + 1

]
, t ∈ [1, nconv], (25)

where X(i, j, 1). indicates the first column vector in the sliding window when the filter moves to the
j-th position of the i-th layer, and C1(i, j, t) represents the convolution result when the t-th filter slides
to the j-th position of the i-th layer. g is a nonlinear activation function and bconv is a bias vector. In
the above formula, the stride is set to 1 by default. In the pooling layer, we apply the max-pooling
operation to compress the convolution result C1, and get the output P1 ∈ R(Nm+Nd)×nconv :

P1(i, p, t) = max(C1
(
i, wp ∗ (p− 1) + 1, t

)
, . . . , C1

(
i, wp ∗ p, t

)
), (26)

where P1(i, p, t) is the pooling result for the p-th position in the i-th row, and wp is the width of the sliding
window in the pooling operation. Next, P1 is used as the input to enter the second convolution layer
after the same convolution and pooling operations as above to get the result H1 ∈ R

1
2×(Nm+Nd)×2nconv .

We then flatten H1 to a column vector c ∈ Rv×1(v = 1
2 × (Nm + Nd) × 2nconv). Finally, through the fully

connected layer WL and the softmax layer, we obtain the association prediction score between m1 and
d5. The score is defined as score1 ∈ R2×1:

score1 = WL × c. (27)

3.3.4. Convolutional Module on the Right

The embedding in the right part, P ∈ R2×k, is used as input to learn global information about
miRNA m1 and disease d5 through their representative k-dimensional features. The process of
convolution and pooling on the right is similar to the left, and the detailed operation process is defined
as follows:

Yconv,i, j = (Y(i, j, 1),Y
(
i, j, 2), . . . , Y

(
i, j, j + w f − 1

))
Yconv,i, j ∈ Rwl×w f , (28)

C2(i, j, t) =g
(
Yconv,i, j ∗Wconv(:, :, t) + bconv(t)

)
, (29)

P2(i, p, t) = max(C2
(
i, wp ∗ (p− 1) + 1, t

)
, . . . , C2

(
i, wp ∗ p, t

)
), (30)
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where Y indicates the value of the sliding window at different positions. C2 is the feature output after
the convolution layer, which then passes through the pooling layer to obtain P2. We also use P2 as the
input for the next convolution layer, and obtain the output H2 ∈ R

1
2×k×2nconv through convolution and

pooling operations. The next step is to flatten H2 to a column vector o ∈ Rv×1(v = 1
2 × k× 2nconv). Finally,

through the fully connected layer WR and the softmax layer, we obtain the association prediction score
between m1 and d5. The score is defined as score2 ∈ R2×1:

score2 = WR × o. (31)

3.3.5. Combined Strategy

Considering the two parts of the prediction scores between m1 and d5 from different perspectives,
the optimal performance of the two parts may be different. Therefore, we integrated score1 and score2

as the final association score. It is defined as follows:

score = λ× score1 + (1− λ) × score2, (32)

where λ ∈ (0, 1) is a parameter used to weigh the score contributions of score1 and score2. The left
and right CNN models all establish a loss function based on cross entropy, defined as loss1 and
loss2, respectively:

loss1 = −
∑T

i=1
[ylabel × log a + (1− ylabel) × log(1− a)], (33)

a =
escore1(1)

escore1(0) + escore1(1)
, (34)

loss2 = −
∑T

i=1
[ylabel × log b + (1− ylabel) × log(1− b)], (35)

b =
escore2(1)

escore2(0) + escore2(1)
, (36)

where ylable represents the actual associated label between the miRNA and the disease. If the association
between the miRNA and the disease is known, ylable = 1, otherwise, ylable = 0. score1(0) and score1(1)
represent the association scores of miRNAs and diseases on the left side. It is similar to a binary
classification problem, where score1(0) represents the probability that m1 and d5 are not associated,
and score1(1) represents the probability of an association. Finally, we used the softmax function to
obtain the association probability a. Similarly, for the calculated right path association probability
b, score(1) indicates the final prediction score between m1 and d5, and T represents the number of
training samples.

3.4. Predicting Novel Disease-Related miRNAs

The predictive performance of CNNMDA was evaluated through a cross-validation process and
several case studies, and was applied to predict potential candidate miRNAs for all 329 diseases. We
used all positive and negative samples to train CNNMDA. The predicted results of 329 diseases are
listed in Supplementary Table S3. Moreover, the candidate miRNAs related to 3 diseases are analyzed
in case studies and they come from Supplementary Table S3.

4. Conclusions

CNNMDA has been developed as a novel method based on network representation learning and
dual convolutional neural networks for predicting potential miRNA-disease associations. CNNMDA
captures the internal relationships between miRNAs and diseases, including miRNA similarities
and disease similarities. Meanwhile, it also captures the associations between miRNAs and diseases.
Moreover, the representations of the miRNA nodes and the disease nodes are learned based on an entire
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miRNA-disease network, and as such are deeply integrated to enhance logical reasoning. The new
framework based on network representation learning and dual convolutional neural networks is able
to learn the original and global representations of a miRNA-disease pair. CNNMDA’s performance
was verified by cross-validation with 15 common diseases and case studies on 3 diseases. Experimental
results indicated that CNNMDA outperforms existing methods in terms of both AUCs and AUPRs. It is
able to generate reliable candidate miRNA-disease associations for subsequent validation by biologists.
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