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Nonlinear Dose–Response Modeling
of High-Throughput Screening Data
Using an Evolutionary Algorithm

Jun Ma1,2, Eric Bair3, and Alison Motsinger-Reif2

Abstract
Nonlinear dose–response relationships exist extensively in the cellular, biochemical, and physiologic processes that are affected
by varying levels of biological, chemical, or radiation stress. Modeling such responses is a crucial component of toxicity testing and
chemical screening. Traditional model fitting methods such as nonlinear least squares (NLS) are very sensitive to initial parameter
values and often had convergence failure. The use of evolutionary algorithms (EAs) has been proposed to address many of the
limitations of traditional approaches, but previous methods have been limited in the types of models they can fit. Therefore, we
propose the use of an EA for dose–response modeling for a range of potential response model functional forms. This new method
can not only fit the most commonly used nonlinear dose–response models (eg, exponential models and 3-, 4-, and 5-parameter
logistic models) but also select the best model if no model assumption is made, which is especially useful in the case of high-
throughput curve fitting. Compared with NLS, the new method provides stable and robust solutions without sensitivity to initial
values.
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Introduction

The dose–response relationship is a cornerstone of toxicology

and pharmacology. It is commonly observed in many cellular,

biochemical, and physiologic processes in the presence of vary-

ing levels of biological, chemical, or radiation stress. Toxicol-

ogists and pharmacologists routinely conduct dose–response

experiments to explore the effects of compounds or substrates

at various concentrations on biological systems, such as cells,

tissues, and whole organisms. Data generated from experi-

ments are subsequently utilized to model dose–response rela-

tionships and fit curves, which allows scientists to interpolate

or extrapolate missing information.1

Dose–response modeling has been extensively studied in the

past few decades, as it is of key importance in toxicology and

pharmacology. The dose–response relationship usually resem-

bles a sigmoidal curve with both upper and lower limits. Both

parametric and nonparametric models have been proposed to fit

sigmoidal curves. Considering that nonparametric models are

not very reliable with a small sample size, which is often the

case in experimental designs of dose–response studies, para-

metric models are preferred for dose–response curve fitting.

The most commonly used approach to fit nonlinear parametric

models is NLS.2 In general, NLS estimates model parameters

by making linear approximations and then refines the para-

meters by successive iterations based on the sum of squares.

There are many algorithms available for NLS implementation,

such as the Gauss-Newton algorithm,3 the Levenberg-

Marquardt algorithm,4 and the NL2SOL algorithm.5 Although

NLS is a very powerful method for modeling nonlinear rela-

tionships, it has several drawbacks. First, it is highly sensitive

to the choice of starting values.2 The initial parameter values of

NLS must be close to the true values, otherwise there may be
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no convergence. Moreover, poor initial values may lead to the

algorithm settling into local minimum solutions instead of

globally optimal solutions that define the least squares

estimates.2

The increasing use of high-throughput screening (HTS)

magnifies the limitations of NLS in dose–response modeling.

High-throughput screening is widely used in the pharmaceuti-

cal and biotechnology fields, and in academic, and federal

institutes.6-8 Specifically, it is being applied in the discovery

of toxicity,9 biopharmaceuticals,10 cosmetics, catalysts,11 pes-

ticide research,12 and plant science.13 Such screens assay hun-

dreds of thousands of chemical compounds or organic

molecules simultaneously against specific targets under given

conditions. Dose–response modeling for HTS data is challen-

ging, not only because of the large size and the limitations of

NLS but also because the data for each curve are sparse. For

example, there are typically only 6 to 10 concentrations for

each sample across many of even the most high-profile and

high-impact experiments.14,15 Additionally, many of these

experiments also screen a number of individual cell lines. It

is reasonable to expect that the response pattern of each

response curve will be different across chemicals in a screen,

as well as across individuals within a screen for just one chem-

ical. Restricting the type of models that can be fit greatly limits

the impact of such experiments.6 Additionally, considering that

thousands of curves must be estimated, it is impractical to fit

each one manually. Therefore, it is necessary to develop com-

putational tools that can automatically model high-throughput

dose–response data with minimal human supervision.

A number of software and R packages are currently avail-

able for curve fitting, such as benchmark dose software

(BMDS),16 nlstools, MCPMod, drc, and DoseFinding. How-

ever, few of these successfully address both concerns men-

tioned above: the sensitivity of initial values in NLS and

high-throughput curve fitting. Almost all require manual inter-

vention during the curve fitting process. For example, US Envi-

ronmental Protection Agency developed a BMDS to help

Agency risk assessors facilitate applying benchmark dose

methods.16 Although it is highly impactful and widely used,

this software still requires extensive human interaction when

dealing with high-throughput dose–response data. To address

concerns about initial value sensitivity in NLS, Beam and Mot-

singer-Reif17 implemented an evolutionary algorithm (EA) for

dose–response modeling (EADRM) and achieved good results.

Evolutionary algorithms are adaptive heuristic search

approaches and global optimization techniques widely used

in artificial intelligence and computing.18 Originally motivated

by Charles Darwin’s theory of natural evolution and survival of

the fittest, EAs are capable of solving complex optimization

issues by imitating evolutionary concepts such as reproduction,

mutation, recombination, and selection.18 Unlike traditional

optimization techniques that attempt to determine a single, best

solution, EAs generate a population of random possible solu-

tions. Each solution is evaluated by a fitness function, and

mutations are then induced to more fitted solutions to create

the next-generation population. The selection process contin-

ues until the optimal solution is found.19

In the present study, to further address challenges in high-

throughput curve fitting, we expand the functionalities of

EADRM by adding a broad range of dose–response models

such as exponential models and 3-, 4-, and 5-parameter logistic

models. We also compare different model selection criteria (ie,

Akaike information criterion [AIC], Bayesian information cri-

terion [BIC], and R2) to achieve the best model selection

performance. Additionally, we use extensive simulations and

real-data analysis to demonstrate our new approach. We show

that the EA approach can not only fit the most commonly used

nonlinear dose–response models but also select the best model

if no model assumption is made, which is especially useful for

high-throughput curve fitting. Compared with NLS, this

approach provides stable and robust solutions without sensitiv-

ity to initial values.

Materials and Methods

Evolutionary Algorithm

Evolutionary algorithms as a class are heuristic-based

approaches to solve problems that cannot be easily solved in

polynomial time and/or in tandem with other methods, acting

as a quick way to find a somewhat optimal starting place for

another algorithm to work off of.20 The premise of any EA is to

mimic the process of natural selection to evolve models that fit

a given application—in this case, finding a dose–response

curve model. An EA contains 4 overall steps: initialization,

selection, genetic operators, and termination. These steps each

correspond, roughly, to a particular facet of natural selection

and provide easy ways to modularize implementations of this

algorithm category. Simply put, in an EA, fitter members will

survive and proliferate, while unfit members will die off and

not contribute to the gene pool of further generations, much

like in natural selection. In this study, we use a very general EA

approach as described in detail below.

Additionally, we compared the curve fitting performance of

our EA approach with another popular EA, differential evolu-

tion (DE).21 Differential evolution is a relatively new EA and is

a powerful stochastic real-parameter optimization algorithm in

current use.22 Differential evolution operates through similar

computational steps as employed by a standard EA and is

population-based like genetic algorithms. However, unlike tra-

ditional EAs, the DE variants perturb the current-generation

population members with the scaled differences of randomly

selected and distinct population members. Specifically, the

candidate solutions are initialized randomly at first. Then at

each iteration and for each candidate solution x, perform the

following steps:

1. Generate a trial vector: v ¼ a þ (b � c) / 2, where a, b,

and c are 3 distinct candidate solutions picked randomly

among the population.
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2. Randomly swap vector components between x and v to

produce v0. At least one component from v must be

swapped.

3. Replace x in the population with v0 only if it is a better

candidate.22,23

Built-In Dose–Response Models

Log-logistic models, including 3-, 4-, and 5-parameter logistic

models, are by far the most commonly used dose–response

models. Therefore, their corresponding model functions are

built into our tool. In addition, an exponential model is also

incorporated into our tool because the dose–response relation-

ship may sometimes not resemble a sigmoid curve.

Equations 1 to 3 show 3 log-logistic models:

Three� parameter model : f ðxÞ

¼ d�
1þ exp

�
b�

�
logðxÞ � logðeÞ

��� ;

Four � parameter model : f ðxÞ

¼ cþ d � c�
1þ exp

�
b�

�
logðxÞ � logðeÞ

��� ;

Five� parameter model : f ðxÞ

¼ cþ d � c�
1þ exp

�
b�

�
logðxÞ � logðeÞ

�� �f :

In these log-logistic models, x is a dose value and (x)

denotes a corresponding response value. b, which is often

called the hillslope, is a coefficient denoting the steepness of

the dose–response curve. c and d are called Emin and Emax,

respectively, and represent the lower and upper asymptotes

or limits of the response. e represents EC50, which is the con-

centration of a drug that gives a half-maximal response. f is an

asymmetry factor. f ¼ 1 suggests a symmetrical curve around

the inflection point, which is a 4-parameter model.

Equation 4 shows an exponential model:

f ðxÞ ¼ b� expðlxÞ;

where b is a scale factor and l is a growth factor.

Users can choose any model to fit their data. If users do not

know which model to use, the tool automatically selects the

best model.

Implementation of EA

An EA was implemented to optimize parameters in the selected

model. The following describes the optimization process.

A. Initialization

For a faster convergence rate, the initial solution is gener-

ated using sensible initialization. That is, the initial parameter

values are created based on previous curve fitting experience.

For log-logistic models, Emin and Emax are set to the minimum

and maximum response values, respectively. EC50 is set to the

average of the minimum and maximum concentration values.

The hillslope is set to 2.5, and the asymmetry factor is set to 1.

For exponential models, the scale factor is set to 1, and the

growth factor is set to 2.5. Subsequently, the initial solution

is mutated up to +100% to generate a population with a user-

defined number of random possible solutions. Further, the hill-

slope value and the scale factor are provided with a negative

sign with a 50% chance. If users choose a specific model to fit

their data, all solutions will use that model. If no model is

specified, 25% of the solutions will use each of the 4 models

mentioned above.

B. Evaluation

Each of the random solutions is evaluated by a fitness func-

tion to determine how well it fits the data. The fitness function

in this study is the BIC, as shown below:

BIC ¼ p� lnðnÞ � 2� lnðLÞ

where p represents the number of parameters, n is the sample

size, and L is the maximum likelihood of the model. The lower

BIC value signals a better solution. In addition to a fitness

function, the BIC also serves as a criterion for model selection,

as it gives a penalty on the number of parameters.

C. Selection

Tournament selection is used to select the best solutions

from a population.24 Specifically, the user-defined number of

solutions (tournament size N) is randomly selected from the

population and then the fitness function is used to select the

solution with the best fitness from the N solutions. The process

is repeated T times (number of tournaments), the value of

which is specified by the user.

D. Mutation

The solutions selected from the current generation are

mutated up to +10% to create the next-generation population

of size P, which is specified by the user.

E. Termination

The selection and mutation processes are repeated until the

user-defined number of generations is reached. Finally, the best

solution is selected.

Simulation Data Set and High-Throughput
Experimental Data Set

To evaluate the performance of our new tool, real data were

used to generate semisynthetic simulations and to demonstrate

the performance of the methods on real data. Brown et al25

performed a high-throughput experiment evaluating the asso-

ciation of genetic variants with differential dose response with

anticancer drugs. Lymphoblastoid cell lines (LCLs) were used

to perform genome-wide association mapping of the cytotoxic
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response of 520 European Americans to 29 different anticancer

drugs. Details of the experiment and previous results can be

found in several previous publications.25,26 The LCL model has

been successfully used to evaluate dose response in a broad

range of applications in pharmacology and toxicology.27

Briefly, Epstein-Barr virus immortalized LCLs were seeded

in 384-well plates containing temozolomide (0.10, 0.25, 0.50,

1.0, 2.0, 2.5 mM) obtained from LKT Laboratories.25 After

incubation, the results were quantified on an Infinite F200

microplate reader.25

A 7-stage quality control (QC) pipeline was used for the

cytotoxicity data detailed in a previous study,28 including the

removal of plates containing mostly dead cells, imputation of

grossly errant raw fluorescence units (RFUs), QC for the neg-

ative control RFUs, and QC for drug vehicle RFUs. The fol-

lowing equation was utilized to compute the percent

viability25:

Yijkl ¼
Yijkl;raw � Vij;10%DMSO

Vij;0:2%DMSO � Vij;10%DMSO
;

where Yijkl, Raw is the RFU of the jth cell line from the ith

genotype, exposed to the kth drug concentration for the lth

quadruplicate replication, and Yijkl is the corresponding esti-

mated percent viability. Vij,10%DMSO and Vij,0.2%DMSO are the

average RFUs for the negative control and vehicle wells,

respectively.25

The final QC procedure includes the following steps. First,

ensure that every dose–response curve is monotonic.25 Second,

scale the data so that the mean viability at the lowest drug

concentration is 1.0.25 Third, remove assays containing viabil-

ities above 1.3 or below �0.05.25 These QC steps result in

cleaning 0.5% to 1.5% of data.25

The data for response to temozolomide from this experiment

were used to create simulated data. To generate simulated data

sets, small amounts of variation were added to the response

values. The variation follows a truncated normal distribution

with mean 0 and a standard deviation (SD) of 1, bounded

between �1.5 and 1.5.

The real data were also used to demonstrate the methods

performance in context of experimental results. Previous

results had shown a strong association with differential

response to temozolomide with a single-nucleotide polymorph-

ism (SNP) in the O(6)-methylguanine-DNA methyltransferase

(MGMT) gene.25 The SNP significantly changes gene expres-

sion, in return changes the response to the drug. This gene has

been shown to be associated with patient survival in clinical

data.29,30

Tool Performance Evaluation

Understanding the impact of parameter choices is important in

any EA.31,32 The simulated data sets were used to investigate

the influence of EA parameters on the convergence rate. Evo-

lutionary algorithm parameters include initial population size,

equilibrium population size, and initial tournament size. For

each parameter being tested, a series of values were evaluated,

while other parameters were fixed to the following values:

initial population—5000, equilibrium population—200, and

tournament size—25. The generated raw data were subse-

quently averaged.

To tune EA parameters for better performance, 6 different

combinations of parameters were evaluated to determine which

has the best performance in terms of fitness, variation, and

execution time. The simulation experiments were repeated 20

times for each set of parameters, and the mean fitness values,

SD, and mean computation time were then calculated.

To compare the initial value sensitivity between EA and

NLS, we set up 7 widely ranging starting values for EC50, from

0.0001 to 1000, and then recorded the corresponding results for

nonlinear fit with EA and 2 NLS methods: NL2SOL33 and

Gauss-Newton.34

To investigate this tool’s performance on model selection,

1000 simulation data sets were generated based on a

3-parameter model with added noise magnitude SD 0.01 and

another 1000 with added noise magnitude SD 0.1. The tool was

then employed to select the appropriate model using different

fitness functions (AIC, BIC, and R2), and the percentage of

selecting the “true” 3-parameter model was calculated.

To demonstrate the utility of using the evolutionary approach,

we compared our model fits to curves generated in a random

search. To compare this new tool’s performance on high-

throughput curve fitting against current computational tools,

namely, R package drc and R package DEoptim, our tool was

used to fit a high-throughput experimental data set. The mean

and SD of R2 values for all curve fitting were recorded. Addi-

tionally, the corresponding bias and fitness were also summar-

ized. Moreover, t test as well as analysis of variance (ANOVA)

with post hoc Tukey Honest Significant Difference (HSD) tests

were performed to check if the curve fitting performance of our

method was significantly better than other methods.

All the code and simulations were written and conducted

using the R language. All simulations were conducted in

Ubuntu 16.04 LTS using an Intel Xeon Processor E5-2620.

An R package implementation is available through CRAN

(EADRM.R).

Results

Influence of EA Parameters on Convergence Rate

As evolutionary computation is an iterative optimization pro-

cedure, it is of great importance to explore the speed at which

an EA converges. Previous studies suggest that the perfor-

mance of EA is heavily influenced by several parameters such

as initial population size, equilibrium population size, and ini-

tial tournament size. Therefore, it is necessary to investigate the

effect of these parameters on the convergence rate.

Simulation was performed using data generated from

5-parameter logistic models. For each parameter examined, a

series of values were evaluated while other parameters were

fixed to the following values: initial population—5000, equili-

brium population—200, and tournament size—25. The

4 Dose-Response: An International Journal



numerical experiments to estimate both convergence rate and

running time were performed 50 times, and the raw data were

subsequently averaged. As illustrated in Figure 1, all 3 para-

meters demonstrate similar patterns regarding convergence

rate. In general, a small parameter size results in premature

convergence on areas of poor fitness, while a relatively large

parameter size usually has a good convergence rate. However,

the further increase in an already large parameter size does not

lead to faster convergence. Figure 2 shows the relationship

between a single parameter’s size and execution time. It sug-

gests that there is an exponential trade-off between execution

time and tournament size. Additionally, there is a linear trade-

off between execution time and initial population size as well

as equilibrium population size.

Parameter Selection in EA

Since EA parameters have a significant impact on the effi-

ciency and ability of EA optimization, it is important to tune

these parameters to achieve good performance. In this simula-

tion, 6 parameter combinations (Table 1) were evaluated to

determine which has the best performance in terms of fitness,

variation, and execution time. The simulation experiments

were repeated 20 times for each set of parameters, and the

mean fitness values, SD, and mean computation time were then

calculated. The results are given in Tables 2 to 4.

As summarized in Table 2, all 6 sets of parameters returned

very good solutions. Set 5 had the best fitness, followed by set 6

and set 3. Table 3 suggests that set 6 generated the most consistent

results, followed by set 4 and set 5. In addition, set 1 had the fastest

execution time of 23.832 seconds, followed by 58.327 seconds for

set 2, presented in Table 4. Although set 5 had slightly better

fitness than set 6, it ran about 2.5 times slower than set 5. Con-

sidering these factors, set 6 had the best overall performance and

was thus selected for the default parameter settings.

Comparison With Random Search

The random search was run so that an equal number of random

curve fits to the number of curves evaluated within the EA

Figure 1. Effect of evolutionary algorithm parameter size on convergence rate. The x-axis represents the number of generations and the y-axis
is the R2 value.

Figure 2. Execution time versus evolutionary algorithm parameter size. The x-axis represents parameter size and the y-axis represents
corresponding execution time (seconds).

Table 1. Configuration Parameter Values for Each Combination.

Configuration 1 2 3 4 5 6

Initial population 5000 20 000 5000 5000 20 000 10 000
Equilibrium population 200 200 1000 200 5000 1000
Tournament size 25 25 25 100 500 300

Ma et al 5



across all generations. Table 5 presents the results for the best

fits generated by the 2 approaches. The EA algorithm very

clearly outperforms the random search.

Comparison of Initial Value Sensitivity
Between EA and NLS

Nonlinear least squares is a powerful method for modeling

nonlinear relationships but has a major disadvantage: sensitiv-

ity to the starting values. The initial parameter values of NLS

must be close to the true values, otherwise it may not converge

or may converge to a local minimum. In this study, the EA is

evaluated to assess whether it can overcome this disadvantage

of NLS. Considering that EC50 is the most sensitive parameter

in the nonlinear-response model, we set up 7 widely ranging

starting values for EC50, from 0.00001 to 10 and then recorded

the corresponding results for nonlinear fit with EA and 2 NLS

methods: NL2SOL and Gauss-Newton. The simulation was

conducted using the curve parameters from a 4-parameter

logistic model. Tables 6 and 7 summarize the results.

As expected, both NLS methods produced good solutions

with optimum model parameters when the initial EC50 value is

close to the true value of 0.01, whereas inappropriate starting

values of EC50 led to convergence failure or poor fitness, as

presented in Tables 6 and 7. Compared with NLS, EA produced

efficient and robust solutions with better fitness for the full

range of initial EC50 values, suggesting that EA is relatively

insensitive to the choice of initial parameter values.

Model Selection Performance

In addition to modeling nonlinear relationships, our tool can

also select the best model from the most commonly used non-

linear dose–response models, including exponential models

and 3-, 4-, and 5-parameter logistic models. A major part of

the innovation of this method is that it allows analysts to be

agnostic to the optimal functional form for the curve fit. To

investigate this tool’s performance on model selection, 1000

simulation data sets were generated based on a 3-parameter

model with added noise magnitude SD 0.01 and another

1000 with added noise magnitude SD 0.1. The tool was then

employed to select the appropriate model using different fitness

functions (AIC, BIC, and R2). These 3 popularly used fitness

functions were compared in regard to their performance to

consistently select the correct functional form as the best final

model. The percentage of selecting the “true” 3-parameter

model was calculated and Table 8 summarizes the results. The

results indicate that BIC had the best performance among the

3 fitness functions. It selected the true 3-parameter model in

65% of the data sets with noise SD 0.01 and in 52% of the data

sets with noise SD 0.1.

Comparison With Current Computational Tools
on High-Throughput Data Analysis

A significant amount of dose–response data is being generated

thanks to advances in HTS technology. To evaluate our tool’s

performance on high-throughput data analysis, dose–response

curve fitting was performed on simulated data sets and our tool

was compared with a popular R package DEoptim, which

implements the DE algorithm for global optimization. In this

comparison, EA automatically selected dose–response models,

Table 2. Average Parameter Values for Each Combination.

Configuration Top Bottom EC50 W F R2

1 0.73422545 0.05123052 0.01137427 2.37301427 0.86565270 0.99913
2 0.64101163 0.00621338 0.00557989 3.50794703 0.31203447 0.99951
3 0.77019582 0.05667068 0.01129192 2.14239609 1.09939554 0.99975
4 0.718118531 0.068346785 0.007967174 2.757923304 0.545626302 0.99983
5 0.666575395 0.072511186 0.005997677 2.752326288 0.656949838 0.99996
6 0.795849688 0.094701674 0.006332252 2.645839398 0.456528064 0.99992

Table 4. Execution Time for Each Configuration.a

Configuration 1 2 3 4 5 6

Time
(seconds)

23.832 58.327 482.901 141.635 2612.074 1025.689

aSimulations were conducted in Ubuntu 16.04 LTS using an Intel Xeon Pro-
cessor E5-2620.

Table 3. Standard Deviation Values for Each Combination.

Configuration Top Bottom EC50 W F R2

1 0.67 3.22e-05 3.74e-05 0.27 0.52 0.0074
2 0.87 2.16e-05 6.57e-05 1.03 0.04 0.0056
3 0.05 7.68e-05 2.91e-05 0.96 1.03 0.0083
4 0.19 4.67e-05 5.54e-05 0.13 0.26 0.0027
5 0.33 5.18e-05 5.76e-05 0.25 0.49 0.0038
6 0.11 1.74e-05 3.22e-05 0.04 0.23 0.0021

Table 5. Fitness Summary of EA and Random Search on High-
Throughput Simulation Data.

EA
Random
search

P value of t test comparing
EA and the random search

Mean of R2 0.9893765 0.3795297 4.86E-08
SD of R2 0.0076938 0.5957368 8.73E-14

Abbreviations: EA, evolutionary algorithm; SD, standard deviation.

6 Dose-Response: An International Journal



while Deoptim used 3-, 4-, and 5-parameter dose–response

models separately. Table 9 displays the results. It shows that

EA has better fitness and higher stability than Deoptim.

Furthermore, we performed ANOVA with post hoc test on

mean of R2 and SD of R2 for EA versus DEoptim. For mean

of R2, the P values of EA versus DEoptim 3-parameter and EA

versus DEoptim 4-parameter were .023245 and .046371,

respectively. For SD of R2HueD_Ref2, the P values of EA versus

DEoptim 3-parameter, EA versus DEoptim 4-parameter, and

EA versus DEoptim 5-parameter were .000029, .000348, and

.000395, respectively. These P values suggest that the high-

throughput curve fitting performance of EA is significantly

better than DEoptim in terms of fitness and stability.

Bias and Variance of Parameter Estimates

Tables 10 displays the results of the bias and evaluations of our

method through the simulations, where minimizing both of

Table 6. Bias Summary of Initial Value Sensitivity Comparison Between EA and NLS.a

Initial EC50 estimate

EA 0.00001 0.0001 0.001 0.01 0.1 1 10

Emin 0.01575936 �0.00053479 0.00070563 0.00107233 0.00347825 0.00208942 0.012794713
Emax 0.00581124 0.00319672 �0.00153412 0.00083525 �0.00153153 0.00486367 �0.002855443
EC50 �0.00040074 �0.00009231 0.00016316 0.00016299 0.00022918 7.664E-05 1.1363E-05
W �0.11399323 0.02740953 0.02197609 �0.00803709 0.01748289 0.00881108 0.118607461

NL2SOL
Emin NA NA 0.001067345 0.000980467 NA NA NA
Emax NA NA 0.001200976 �0.001009779 NA NA NA
EC50 NA NA �0.00986743 0.009867433 NA NA NA
W NA NA 0.039838297 0.039838195 NA NA NA

Gauss-Newton
Emin NA NA NA 0.001279372 NA NA NA
Emax NA NA NA �0.000900964 NA NA NA
EC50 NA NA NA 0.000286743 NA NA NA
W NA NA NA �0.04198383 NA NA NA

Abbreviations: EA, evolutionary algorithm; NLS, nonlinear least squares.
aNA suggests that an algorithm failed to converge. The true parameter values are as follows: Emin¼ 0.19263656, Emax¼ 0.84931990, EC50¼ 0.01012566, and W¼
2.00398890.

Table 7. Fitness Summary of Initial Value Sensitivity Comparison Between EA and NLS.a

Initial EC50 estimate

0.00001 0.0001 0.001 0.01 0.1 1 10

EA R2 0.99964070 0.99994730 0.99996639 0.99999178 0.99995316 0.99990717 0.999820964
NL2SOL R2 NA NA 0.998632603 0.998632603 NA NA NA
Gauss-Newton R2 NA NA NA 0.998632603 NA NA NA

Abbreviations: EA, evolutionary algorithm; NLS, nonlinear least squares.
aNA suggests that an algorithm failed to converge. The true parameter values are as follows: Emin¼ 0.19263656, Emax¼ 0.84931990, EC50¼ 0.01012566, and W¼
2.00398890.

Table 8. Model Selection Frequency for the Different Measures of
Goodness of Fit.a

Model AIC BIC R2

SD ¼ 0.01 5-Parameter model 0 4 8
4-Parameter model 0 31 67
3-Parameter model 3 65 25
2-Parameter model 97 0 0

3-Parameter model % 3% 65% 25%
SD ¼ 0.1 5-Parameter model 0 10 5

4-Parameter model 0 38 52
3-Parameter model 1 52 43
2-Parameter model 99 0 0

3-Parameter model % 1% 52% 43%

Abbreviations: AIC, Akaike information criterion; BIC, Bayesian information
criterion; SD, standard deviation.
aThree-parameter model is the “true” model.

Table 9. Fitness Summary of EA and DEoptim on High-Throughput
Simulation Data.

EA DEoptim -3P DEoptim -4P DEoptim -5P

Mean of R2 0.9899628 0.9757765 0.9815101 0.9880943
SD of R2 0.008992174 0.01429076 0.004906434 0.004086065

Abbreviations: EA, evolutionary algorithm; SD, standard deviation; -3P,
3-paramenter; -4P, 4-paramenter; -5P, 5-paramenter.
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these measures indicates improved performance. Our results

show extremely minimal bias, indicating that the method pro-

duces models with both high fitness values and highly accurate

parameter estimates.

The bias of the results from DEoptim and NLS was also

calculated and compared to our method (given in Table 10).

Generally across parameters, our EA approach demonstrated

less bias, and the results of ANOVA with post hoc test compar-

ing them demonstrate it is a significant difference (Table 11).

Performance on Experimental Data

The real data used were from cytotoxicity assays, where

Epstein-Barr virus immortalized LCLs were seeded in plates

containing temozolomide. A previous in vitro genome-wide

association analysis was conducted with over 2 million QC

SNPs and 516 LCLs derived from a Caucasian cohort. It sug-

gests that SNP rs531572 within the MGMT gene is associated

with differential response to temozolomide, a DNA alkylator

agent used for treatment of adult patients with newly diagnosed

glioblastoma multiforme.

In this study, the EA tool was used to verify if these SNPs

were potentially functionally relevant. We examined how the

genotype was related to differential dose response in terms of

EC50 values. Specifically, the EA tool was used to fit dose–

response curves from 516 LCLs and estimate corresponding

EC50 values. Subsequently, 1-way ANOVA was employed to

test for statistical significance. As shown in Figure 3, rs531572

was found to be highly significantly associated with EC50 val-

ues. The P value from 1-way ANOVA was .024.

Additionally, the curve fitting performance of our tool was

compared with that of R package DEoptim and R package drc

on this experimental data set. In this comparison, EA automat-

ically selected dose–response models, while DEoptim and drc

used 3-, 4-, and 5-parameter dose–response models separately.

Table 12 summarizes the results. It suggests that EA has better

curve fitting performance than DEoptim in terms of fitness and

stability. It also shows that EA outperforms drc with 3- and

4-parameter models.

Software Platform and Availability

This tool was developed using the R statistical language. The

code used in this article is available via https://github.com/

junmacode/Dose-Response-Modeling-EA. Additionally, an R

package EADRM.R is available through CRAN.

Discussion

In the present study, we implemented an EA to model nonlinear

dose–response relationships. Our original motivation for this

new tool was to address 3 major limitations from current curve

fitting tools: the sensitivity of curve fits to initial values with

NLS models, the limitation of an analyst having to arbitrarily

choose the functional form of a model, and challenges with

high-throughput curve fitting due to differences in functional

form and other factors across different cell lines, chemicals,

and so on.

Our results show that this approach provides stable and

robust solutions without sensitivity to initial values. As shown

in section “Results,” in spite of dramatically different starting

values (from 0.0001 to 1000), EA produced excellent solutions

and converged to almost the same parameter values. Unlike

NLS, which provides good solutions only when the initial val-

ues are very close to the true value, users of our tool do not need

to spend time determining an appropriate starting point as they

can randomly choose a starting value. One possible and impor-

tant use case of this approach could be to use the EA to deter-

mining reasonable initialization values for downstream use in

NLS.

Further, the tool can automatically model high-throughput

dose–response data with minimal human supervision. As men-

tioned, hundreds of thousands of dose–response curves can be

generated for a single project due to advances in HTS

Table 10. Bias Summary of EA, DEoptim, and NLS on High-Throughput Simulation Data.

Emin Emax EC50 W

EA �0.00070563 0.000153412 �0.00016317 0.002197609
DEoptim -3P 0.015759363 �0.00158113 0.000400745 0.113993234
DEoptim -4P 0.012794713 0.002855443 �0.00030185 �0.11860746
DEoptim -5P 0.001259372 �0.00100964 0.000286743 0.091983837
NLS -3P 0.012450104 0.000459162 �0.0003162 0.009005562
NLS -4P 0.010108173 �0.00022554 0.000238942 �0.00936991
NLS -5P 0.001011274 0.000711825 �0.00022617 0.007266751

Abbreviations: EA, evolutionary algorithm; NLS, nonlinear least squares; -3P, 3-paramenter; -4P, 4-paramenter; -5P, 5-paramenter.

Table 11. P Values of ANOVA Post Hoc Tukey HSD for Bias Com-
parisons Between Different Curve Fitting Methods.

Emin Emax EC50 W

EA vs DEoptim -3P <0.001 <0.001 <0.001 <0.001
EA vs DEoptim -4P <0.001 <0.001 <0.001 <0.001
EA vs DEoptim -5P <0.001 <0.001 <0.001 <0.001
EA vs NLS -3P <0.001 0.004862 <0.001 0.004028
EA vs NLS -4P <0.001 0.009378 <0.001 0.003971
EA vs NLS -5P <0.001 0.002163 <0.001 0.003185

Abbreviations: ANOVA, analysis of variance; EA, evolutionary algorithm; NLS,
nonlinear least squares; -3P, 3-paramenter; -4P, 4-paramenter; -5P,
5-paramenter.
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technology, and it is impossible to fit these curves manually.

Our tool provides a good model selection function to automate

analysis with minimal analytical intervention. More impor-

tantly, since EA uses BIC as the fitness function, it can perform

model selection during the optimization process. In contrast,

most tools can perform model comparison only after all models

are optimized.

Additionally, both simulation and real-data analysis suggest

that our tool fits dose–response data better than another popular

R package, DEoptim, which implements the DE algorithm for

global optimization. There are 2 main reasons for this. First, we

have optimized the hyperparameters of evolutionary algorisms

specifically for dose–response modeling. Second, our tool is

capable of automatically selecting the best dose–response

model while only a fixed model can be used for dose–response

curve fitting in DEoptim. Our EA produces parameter esti-

mates that are highly accurate, with minimal bias and less bias

compared to DEoptim.

Although we are encouraged by these initial results, there

are still important caveats that need to be considered, and as

possible addressed in future work. Although we implement

several functional forms in this toolkit, there are others that

should be considered. There is room to extend built-in models,

such as the Brain-Cousens models, Cedergreen-Ritz-Streibig

models,35 log-logistic fractional polynomial models, and log-

normal models. This will make our tool more powerful and

enable it to handle other types of responses. Additionally, the

computation time for the current implementation is limiting. As

this is an introduction to the approach, ongoing efforts will

rewrite the tool in C to significantly reduce run time. For very

large HTS efforts, combining this tool with faster approaches

may be optimal. In ongoing work, we will implement this

approach into the popular BMDS.16 As mentioned above, the

EA could be used to find the best functional form and reason-

able initial parameters in a minimal number of generations and

then other faster approaches could be used to find final models.

Also, using an EA does not address some of the caveats that are

inherent to nonlinear curve fitting in general. For example, for

data with no asymptote, a unique solution cannot be

guaranteed.
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