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Abstract: Individual cells and epithelia control the chemical exchange with the surrounding
environment by the fine-tuned expression, localization, and function of an array of transmembrane
proteins that dictate the selective permeability of the lipid bilayer to small molecules, as actual
gatekeepers to the interface with the extracellular space. Among the variety of channels, transporters,
and pumps that localize to cell membrane, organic cation transporters (OCTs) are considered to be
extremely relevant in the transport across the plasma membrane of the majority of the endogenous
substances and drugs that are positively charged near or at physiological pH. In humans, the following
six organic cation transporters have been characterized in regards to their respective substrates, all
belonging to the solute carrier 22 (SLC22) family: the organic cation transporters 1, 2, and 3 (OCT1–3);
the organic cation/carnitine transporter novel 1 and 2 (OCTN1 and N2); and the organic cation
transporter 6 (OCT6). OCTs are highly expressed on the plasma membrane of polarized epithelia,
thus, playing a key role in intestinal absorption and renal reabsorption of nutrients (e.g., choline and
carnitine), in the elimination of waste products (e.g., trimethylamine and trimethylamine N-oxide),
and in the kinetic profile and therapeutic index of several drugs (e.g., metformin and platinum
derivatives). As part of the Special Issue Physiology, Biochemistry, and Pharmacology of Transporters
for Organic Cations, this article critically presents the physio-pathological, pharmacological, and
toxicological roles of OCTs in the tissues in which they are primarily expressed.
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1. Introduction

The organic cation transporters are primarily members of the solute carrier 22 (SLC22) family,
which itself belongs to the solute carrier (SLC) superfamily, the largest group of membrane transporters
comprising 65 SLC families (SLC1–65) with more than 400 identified genes thus far (for details on
the SLC classification, we refer to the curated BioParadigms.org online SLC table) [1]. SLCs regulate
the transport of most of the molecules essential for cell life across biomembranes and they have been
linked to more than a hundred monogenic disorders [2]. In the human SLC22 family, six organic
cation transporters have been characterized in regard to their respective substrates. The organic
cation transporters 1, 2, and 3 (OCT1–3) are encoded by the genes SLC22A1, -2, and -3. The organic
cation/carnitine transporter novel 1 and 2 (OCTN1 and N2) and the organic cation transporter 6
(OCT6) are encoded by the SLC22A4, -5, and -16, respectively [3]. Other members of the human
SLC22 family comprise eight anion transporters (OATs), one urate transporter (URAT1), and fourteen
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orphan proteins, as no substrate thereof has yet been identified (Figure 1) [1]. Phylogenetic analyses
suggest that SLC22 transporters may have evolved over 450 million years ago, with putative SLC22
orthologues found in worms, sea urchins, flies, and ciona [4]. The transporters discussed in this review
are the highly related members OCT1–3 and OCTN1–2, as well as the more recently characterized
OCT6, encoded by SLC22A16 and cloned alongside with SLC22A15 in 2002. Because no substrate of
the latter has yet been identified, it will not be discussed in this review (see [5] Eraly et al., [6] Okada et
al., [7] Zhu et al., and [8] Drake et al. for the current status of information on human SLC22A15).
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Figure 1. Phylogram of the human solute carrier 22 (SLC22) family members. The following protein
sequence were used: SLC22A1 (O15245.2), SLC22A2 (O15244.2), SLC22A3 (O75751.1), SLC22A4
(Q9H015.3), SLC22A5 (O76082.1), SLC22A6 (Q4U2R8.1), SLC22A7 (Q9Y694.1), SLC22A8 (Q8TCC7.1),
SLC22A9 (Q8IVM8.1), SLC22A10 (Q63ZE4.2), SLC22A11 (Q9NSA0.1), SLC22A12 (Q96S37.1), SLC22A13
(Q9Y226.2), SLC22A14 (Q9Y267.4), SLC22A15 (Q8IZD6.1), SLC22A16 (Q86VW1.1), SLC22A17
(Q8WUG5.1), SLC22A18 (Q96BI1.3), SLC22A20 (A6NK97.1), SLC22A23 (A1A5C7.2), SLC22A24
(Q8N4F4.2), SLC22A25 (Q6T423.2), SLC22A31 (A6NKX4.4), SLC22A32 (Q14728.1), SLC22B1 (Q7L0J3.1),
SLC22B2 (Q7L1I2.1), SLC22B3 (Q496J9.1), SLC22B4 (Q8N4V2.1), and SLC22B5 (Q8N434.2). The organic
cation transporters are highlighted in red. The SLC22A15 transporter that clusters with the other
organic cation transporters has not been functionally characterized yet. This phylogeny was generated
using the open access software Phylogeny.fr [9–11].
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The putative human OCT proteins consist of 12 transmembrane domains (TMDs), intracellular N-
and C-termini, one extracellular loop between the first and the second TMD, and one intracellular loop
between the sixth and the seventh TMD (Figure 2). Currently, no crystal structure of OCTs has been
resolved; hence, the topology and the mode of transport of OCTs are largely based on computational
modeling with E. coli LacY permease and structure-function characterization. In this model, the
binding pocket within the outward-open binding cleft is likely to have overlapping binding sites.
The binding of the substrate leads to a series of conformational changes for the release of the substrate
into the cytosol. Thereafter, the transporter, empty or loaded with a substrate bound in the inward
conformation, can switch back to the outward-open conformation [12,13]. Although most of these
studies have been performed on rat Oct1 and Oct2, this mechanistic model is considered to also be
valid for the human OCTs. However, the differences between human and rodents concerning substrate
selectivity warrant direct structure-function studies on the human OCTs to better understand how
these transporters work in humans [14].
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Figure 2. Predicted secondary structure of the functionally characterized human organic cation
transporters (OCTs). Prediction was generated with the Protter open access software from the
input protein sequence Q86VW1.1 (OCT6) and aligned by CLUSTALW open access software with
the following protein sequences: SLC22A1 (O15245.2), SLC22A2 (O15244.2), SLC22A3 (O75751.1),
SLC22A4 (Q9H015.3), and SLC22A5 (O76082.1). The labeled and non-labeled residues in green color
represent the fully conserved and the non-conserved amino acids, respectively. The orange color
indicates the semiconserved residues.

OCTs are known as polyspecific transporters because they recognize and transport a broad range
of molecules, typically positively charged or zwitterions at physiological pH, such as the organic
amines choline and carnitine, the neurotransmitters dopamine and serotonin, the microbiota products
trimethylamine (TMA) and trimethylamine N-oxide (TMAO), and the vitamin B1 thiamine [15,16].
OCTs also facilitate the transport of a variety of drugs, including the anticancer platinum
derivatives and ifosfamide, the antibiotics gentamicin, cephaloridine and colistin, and the antidiabetic



Int. J. Mol. Sci. 2020, 21, 7890 4 of 21

metformin [3,15,17,18]. Ever since their identification, the thermodynamics, kinetics, and substrate
specificities of OCTs have been characterized in different overexpressing systems, using prototypical
substrates such as radiolabeled tetraethylammonium (TEA) and 1-methyl-4-phenylpyridinium (MPP+),
and the fluorescent compound 4-[4-(dimthylamino)-styryl]-N-methylpyridinium (ASP+). In most
cases, OCTs are Na+-independent electrogenic transporters, whose activity is driven by the membrane
potential across the plasma membrane. Thus, according to the electrochemical gradient of the substrate,
OCTs can act as either influx or efflux systems. An exception is represented by OCTN2, which displays
a bifunctional mode of transport. OCTN2 transports carnitine and its precursor γ-butyrobetaine in
a Na+-dependent manner, and other organic cations in a Na+-independent manner [19]. OCTs are
characterized by different influx kinetics. The OCTN2-mediated L-carnitine uptake seems to follow
Michaelis–Menten kinetics [20]. OCT1 and OCT2 appear to have allosteric properties. Koepsell’s group
elegantly demonstrated that the rat Oct1 monomer functioned in an allosteric mode [21]. Likewise,
our group has shown that the transport of structurally different substrates mediated by the human
OCT2 likely involved two cooperative binding sites, suggesting that human OCT2 also had allosteric
features [18,22,23].

Expression and localization studies in different species have revealed that OCT1, OCT2, and
OCT6 displayed relatively narrow patterns of expression limited to individual organs or tissues.
In humans, OCT1 is primarily expressed on the basolateral membrane of enterocytes and hepatocytes
(intestines and liver) [24,25], and OCT2 is expressed on the basolateral membrane of proximal tubular
cells (kidney) [26]. Initially, OCT6 was considered to be testis specific, as it had been detected only
on the luminal membrane of the epididymal epithelium and in the Sertoli cells [27]. Lately, it has
also been detected in endometria and in several cancers, suggesting a possible role of OCT6 in
cancer resistance [28–39]. Noteworthy, in rodents, Oct1 has also been shown to be highly expressed
on the basolateral membrane of proximal tubular cells and Oct2 in the brain and inner ear [40,41].
High expression levels in the intestine, liver, and kidneys of OCT1 and OCT2 advocates a cardinal role
of these transporters in the intestinal absorption, tissue distribution, and hepatic and renal elimination
of several widely prescribed drugs [42]. OCT3, OCTN1, and OCTN2 are more broadly expressed
throughout the body [14,20,43–46]. In polarized epithelia, OCT1, -2, and -3 are restricted to the
basolateral membrane. Through a mating-based split-ubiquitin system screening, it has been found
that tetraspanin CD63, a four transmembrane domains protein that facilitates cell adhesion and motility,
was a protein partner of OCT1, -2 and -3 [47,48]. It has also been demonstrated that CD63 was critical
for the correct basolateral localization of OCT2 in proximal tubular cells [47]. The motif sequence that
might be involved in the basolateral sorting of OCT1, -2 and -3 is not known. Still, it is noteworthy to
highlight the presence of a fully conserved di-leucine sequence, a well-characterized basolateral sorting
sequence, in the cytoplasmic tail of these transporters (Figure 2) [49]. Conversely, OCTN1, OCTN2,
and OCT6 cellular localization may be tissue dependent. For instance, OCTN2 is expressed on the
brush border membrane of enterocytes and proximal tubular cells, and on the sinusoidal membrane of
hepatocytes [20,44–46,50–53]. The delivery of proteins to the apical surface most likely depends on
multiple coordinated mechanisms, including N-glycosylation pattern, interacting protein partners,
and membrane lipid content [49].

As part of the Special Issue Physiology, Biochemistry, and Pharmacology of Transporters for
Organic Cations, this article provides a critical overview of the physiological, pharmacological,
and toxicological impact and function of organic cation transporters in the key organ systems in which
they are expressed. Sources for this review were obtained through extensive literature searches of
publications browsing PubMed. Only papers published in the English language were considered.

2. Organic Cation Transporters (OCTs) in the Liver

There is a good deal of evidence that OCT1 and OCT3 are expressed in rodent, as well as human
liver, whereas OCTN1 and OCTN2 may be expressed in rodent but not in the human hepatocytes.
OCT1 represents the most studied hepatic OCT [15]. In this section, we discuss OCT1 primarily and
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mention some valuable, although not necessarily translatable, animal studies on liver Oct3 and Octn
transporters. Oct1 was cloned from the rat in 1994 and found to be highly expressed in the liver and
kidney [54]. The human OCT1 was cloned shortly after that and was found in the liver, at the sinusoidal
side of hepatocytes, but only marginally expressed in the kidney [24,25]. The SLC22A1 gene is under
the control of the hepatic nuclear transcription factor HNF-4a. When it binds to the promoter region of
the SLC22A1 gene, HNF-4a activates the transcription of the OCT1 mRNA. The HNF-4a-mediated
transcriptional activation of the SLC22A1 gene is inhibited by the bile acid chenodeoxycholic acid,
which is the most potent endogenous ligand of the nuclear receptor farnesoid X receptor (FXR) [55].
Indeed, the hepatic expression of OCT1 is lower in patients and animals with cholestasis, a condition
in which bile acids accumulate in the liver because of an inefficient elimination in the bile [24,56–58].
A number of independent studies have shown that OCT1 expression was also reduced in liver tumors.
Although the role of OCT1 in liver carcinogenesis has not been elucidated, it is conceivable that the
expression level of OCT1 is likely to determine the pattern of fluorocholine hepatic accumulation,
a positron emission tomography (PET) tracer, a substrate of OCT1 that shows promising results in
the differential diagnosis of intrahepatic lesions [59–61]. At the protein level, OCT1 can be regulated
by protein kinase A (PKA) and Ca++/calmodulin [62]. Recently, by using rat Oct1 reconstituted in
nanodiscs, it has been found that the allosteric binding of rat Oct1 was regulated through interactions
with the surrounding lipid microenvironment [63].

Thus far, OCT1 has been primarily characterized from a pharmacological perspective, and its
physiological role has only been partially defined. Recently, it has been shown that the total Oct1
knockout mouse, viable with no apparent deficiencies or phenotype, displayed an increased ratio of
AMP to ATP, which activated the energy sensor AMP-activated kinase (AMPK), and substantially
reduced triglyceride levels in the liver [64]. This phenotype seems to be due to the reduced uptake of
thiamine in the Oct1-deficient animals. Thiamine (vitamin B1) is involved in energy transformation
pathways as a cofactor of the pyruvate dehydrogenase complex, the α-ketoglutarate dehydrogenase,
and the branched-chain α-ketoacid dehydrogenase [65]. Thiamine deficiency compromises the ability
of the cell to synthesize ATP, resulting in a constitutive phosphorylation of AMPK, and increased
catabolic rate and energy consumption [64,66]. When human OCT1 is expressed in the Oct1-/- mouse,
the transgenic liver appears to become prone to steatosis, indicating a role of OCT1 in hepatic lipid
and energy metabolism [66]. The pharmacological relevance of OCT1 has been facilitated by the
flourishing of pharmacogenomics studies in the last two decades. There is extensive clinical evidence
suggesting that the therapeutic effects and toxicity of drugs could be changed in subsets of individuals
carrying a certain genetic variant of the SLC22A1 gene encoding for OCT1. In the SLC22A1 gene,
many nonsynonymous single nucleotide polymorphisms (SNPs) have been identified, some affecting
expression or transport activity and others altering substrate selectivity [67]. Genetic variants of the
SLC22A1 gene have been associated with altered pharmacokinetics and pharmacodynamics of several
drugs including opioids, the β2 agonist fenoterol, and metformin [68–72]. For instance, carriers of the
p.Met420del (rs35191146) or p.Arg61Cys (rs12208357) variants, which are associated with decreased
transport activity, experienced reduced therapeutic effects, assessed through a glucose tolerance test,
as compared with individuals carrying OCT1 wild-type [64,69].

OCT3 colocalizes with OCT1 in the sinusoidal hepatocyte membrane [24]. The role of OCT3
in liver physiology is probably linked to the homeostasis of molecules that are not substrates of
OCT1, such as the neurotransmitters adrenaline, noradrenaline, and histamine [14,73]. Studies have
shown that the degree of hepatic fibrosis and ductular reaction induced by bile duct ligation or carbon
tetrachloride (CCl4) treatment was significantly higher in Oct3-/- than wild-type mice, because of
an overproduction of TGFβ by stellate cells [74]. As adrenaline and histamine have been shown to
promote fibrotic remodeling of the airways and the heart, respectively [75,76], it is possible that the
different handling of these neurotransmitters concurs to the excessive hepatic remodeling observed in
Oct3-/- mice. Similar to OCT1, the hepatic expression of OCT3 is significantly affected by cholestasis in
both humans and rodents; however, the mechanism of transcription repression might be different [24].
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OCTN2, encoded by the SLC22A5 gene, is a high-affinity, Na+-dependent, electrogenic carnitine
carrier [20]. Carnitine is a vitamin-like compound, highly enriched in red meat or synthesized from
γ-butyrobetaine in liver, kidney, and brain [77]. About 25% is synthesized in the body, while the rest
is derived from dietary meats [78]. Carnitine is primarily involved in the translocation of mid- and
long-chain fatty acids from the cytosol into the mitochondrial matrix, where fatty acid β-oxidation takes
place [79]. An important experimental model for the comprehension of carnitine’s physiological role is
the juvenile visceral steatosis (jvs) mouse. Jvs mice are characterized by impaired intestinal absorption,
tissue distribution, and reabsorption of carnitine, which leads to systemic carnitine deficiency resulting
in hepatic steatosis, hypoglycemia, hyperammonaemia, and growth retardation [80]. Shortly after
being cloned, Octn2/OCTN2 was found mutated in jvs mice, as well as in patients with systemic
carnitine deficiency (OMIM212149) [81]. Notably, OCTN2 can also transport, in a Na+-dependent
manner, γ-butyrobetaine, the carnitine precursor (Km~13 µM) [19]. The role of Ocnt2 in the hepatic
uptake of carnitine has been demonstrated in primary cultured mouse hepatocytes, which showed
a Km of ~5 µM, consistent with a high-affinity system [52,53]. Carnitine deficiency in the liver, over
loss of Octn2, leads to an accumulation of fatty acids in the cytoplasm of hepatocytes. In line with
the pivotal role of carnitine in lipid metabolism, the Octn2 expression level is closely linked to lipid
homeostasis. The nuclear receptor Pparα, activated by free fatty acids, has been shown to induce the
mRNA expression of Octn2 in rodents and pigs in several tissues, including the liver [82–87]. Insulin,
which positively correlates with fatty acids oxidation in human skeletal muscle [88] has been associated
with an increase in carnitine uptake and expression of OCTN2 in skeletal muscle [89]. Taken together,
these findings suggest that OCTN2 induction represents an adaptive protective mechanism against
lipid metabolism dysfunction.

Mouse Octn1 was found to be expressed in non-parenchymal mouse liver cells, with reports
showing functional expression in stellate cells. Upregulation of Octn1 and activation of stellate
cells, after treatment with the liver toxin dimethylnitrosamine, were seen to lead to increased liver
levels of the natural, nutrient-derived, OCTN1 substrate, antioxidant ergothioneine, which resulted in
protection from inflammation, oxidative stress, and more severe liver fibrosis [90]. Although OCNT1
was originally cloned from fetal human liver tissue, neither OCTN1 nor OCTN2 seem to be expressed in
adult human liver tissue, although low amounts of mRNA may be detected [91,92]. This highlights the
historical difficulties of discerning the physiological and pharmacological relevance of each transporter
in humans, in accordance with varying tissue expression patterns.

3. OCTs in the Kidney

OCT2 and OCTN2, and to a lesser extent, OCT3 and OCTN1 are expressed in the human
kidney. OCT2 and OCT3 are considered to be expressed on the basolateral side of proximal tubule
cells [26,93], while OCTN2 and OCTN1 are located (assumed for OCTN1) at the apical brush border
membrane [15,94]. The expression pattern of Octs is different in rodents, where Oct1 colocalizes with
Oct2 at the basolateral membrane of proximal tubule cells. Mice lacking Oct2-/- are normal, suggesting
that the expression of Oct1 alone is sufficient to sustain normal renal function. Because of this functional
redundancy, our understanding of the potential role of OCT2 primarily relies on studies that employ
mice lacking both Oct1 and Oct2 (Oct1/2-/-), which display an impaired tubular secretion of organic
cations [95].

OCT2 has been well characterized for its relevance in creatinine tubular secretion, although
creatinine has been shown to be a substrate of all the above listed transporters, at least in vitro [96].
Creatinine is largely cleared from the blood by glomerular filtration; however, 10–40% of creatinine
is actively secreted into the collecting duct for excretion in proximal tubules [26,97]. OCT2 is
deemed to be responsible for the majority of the uptake of creatinine, aided by OAT2 and most
likely OCT3, into the tubule cells for subsequent active secretion into the collecting duct over apically
(urine-facing)-located SLC47 family members (multidrug and toxin extrusion MATE transporters,
MATE1 and MATE2-K) [98–100]. The most well-known drugs that lead to transient elevation of serum
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creatinine through interference at the transporter level with OATs, OCTs, or MATEs are cimetidine,
isavuconazole, ranolazine, trimethoprim, vandetanib, probenecid, and pyrimethamine and several
antivirals used in the treatment of HIV (dolutegravir, rilpivirine, and cobicistat) [96,101–103]. Elevations
in serum creatinine under treatment with these compounds do not underlie pathological interruption of
kidney function. As serum creatinine is widely used as a diagnostic marker in monitoring nephrotoxicity,
drug development relies on the clear delineation between nephrotoxicity and non-pathological transient
inhibition of creatinine secretion. Currently, guidance of drug regulatory agencies demands that each
molecule in development be tested in vitro for inhibition of OCT2 transport activity in order to predict
potential drug–drug interactions [104,105]. An example of a drug–transporter interaction leading to
a drug–drug interaction is the reduction in renal metformin secretion by the combined inhibition of
MATE and, to a lesser extent, OCT2 and possibly OCT3, by cimetidine [106–112].

Actual kidney injury mediated by substrates of OCT2 most notably includes anticancer platinum
agents, of which cisplatin is the most studied [113]. Cisplatin is a substrate of OCT2, whose toxicity
stems from the intracellular accumulation by OCT2-mediated cellular uptake, as seen in rodent
models [114–118]. Oct1/2-/- mice are partially resistant to cisplatin-induced nephrotoxicity [40,118,119].
Some protective effects of cimetidine co-application under cisplatin treatment have also been
demonstrated in mice [40,117] and humans [120,121], with supporting in vitro evidence [122].
Another very small human study using the OCT2 inhibitor pantoprazole (proton-pump inhibitor)
could not ameliorate cisplatin-caused nephrotoxicity in pediatric and adolescent cancer patients [123].
In rodents, it has been indicated that the drug-induced kidney injury incurred by the aminoglycoside
gentamicin [18], triptolide [124], and the plant toxin ochratoxin A [125] was dependent on Oct2
expression and function. In vitro data also suggest that the nephrotoxic effects of the antiviral agents
defovir, cidofovir, and tenofovir [126], and the anticancer agent ifosfamide also underlie OCT2
uptake [127].

Genetic polymorphisms in OCT2 and OCTN1 have been identified to affect metformin renal
excretion, leading to significantly increased peak concentrations and larger serum areas under the curve.
On the one hand, patients carrying the OCT2 p.Ala270Ser (rs316019) variant or the OCTN1 p.Thr306Ile
(rs272893) may require, similar to those with renal impairment, metformin-dosing reductions [128].
Therefore, it is possible that OCTN1 on the apical membrane is involved in the secretion of metformin
into the collecting duct. On the other hand, individuals carrying the OCT2 variant p.Ala270Ser
(rs316019), associated with a lower OCT2 activity, benefit from a lower risk of cisplatin-induced
nephrotoxicity [115,116].

OCTN2 is physiologically most relevant for the reabsorption of carnitine, where loss or
non-functionality of this transporter leads to primary systemic carnitine deficiency through carnitine
wasting by renal excretion [78,81,129–131]. This has been discussed in the previous section in the
context of the liver, because the liver, skeletal muscles, and the heart are tissues that largely rely on fatty
acid β-oxidation for energy production, and thus are affected most by carnitine deficiency. However,
the underlying cause of primary systemic carnitine deficiency and resulting clinical manifestations
also underlies intestinal absorption, as most carnitine is derived from the diet, and, most relevantly,
OCTN2-mediated renal reabsorption. Patients with primary systemic carnitine deficiency usually
present within the first four years of life with lethargy, irritability, and poor feeding; elevated liver
enzymes, hypoketotic hypoglycemia, hyperammonemia, frequently hepatomegaly, and most notably,
cardio and skeletal myopathies are observed in these patients. It is further associated with sudden
infant death [132]. However, interestingly, some affected persons remain completely asymptomatic
into adulthood or present with clinical manifestations of carnitine deficiency only as high fatigability
or muscle weakness after exertion or not until metabolically stressed, such as under fasting, diet, or
recurrent illness [78,133,134]. Primary systemic carnitine deficiency due to autosomal recessive OCTN2
mutations is treated by oral carnitine supplementation and leads to reduction in clinical manifestations
although tissue levels of carnitine seem to remain low [132,135]. Despite the heterogeneous clinical
picture for primary systemic carnitine deficiency, it remains clear the OCTN2 in the kidney largely
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dictates carnitine homeostasis through renal reabsorption, with potentially far reaching clinical
implications in energy metabolism throughout the body when dysregulated or lost. Drug-induced
systemic carnitine deficiency (and nephrotoxicity) in animals has also been reported. Treatment with
colistin (a polymyxin) or cephaloridine (a beta-lactam) is associated with urinary loss of carnitine
and systemic carnitine deficiency in rats and rabbits, respectively [136–138]. Colistin is transported
by human OCTN2 in a Na+-independent manner, whereas cephaloridine interaction with OCTN2 is
Na+-dependent [17,139,140].

4. OCTs in the Intestines

OCT1, OCT3, OCTN1, and OCTN2 are expressed in the intestines, where OCT1 and -3 are located
at the basolateral membrane of enterocytes and OCTN1 and -2 at the brush border membrane [15,141].
Physiologically, these transporters are likely to contribute, along with other higher affinity uptake
transporters, to the intestinal absorption of several dietary substrates. OCT1 and OCT3 may be
involved in thiamine uptake at high nutritional concentrations in the intestine [15]. OCT1 and OCT3
might play a role in choline intestinal absorption in rodents but perhaps not in humans, as choline does
not seem to be a substrate of the human OCT1 and OCT3 in vitro [59,142–145]. OCTN2, as the primary
carnitine transporter, is also involved in the uptake of dietary carnitine. OCTN1 transports carnitine,
although cannot compensate for the loss of OCTN1 in primary carnitine deficiency (addressed in
Section 3), and is physiologically more relevant in the uptake of ergothioneine, at least in mice [146,147].
Several OCTN1 and OCTN2 genetic variants, which result in reduced expression or function of the
transport protein, have been associated with a susceptibility to inflammatory bowel diseases such as
Crohn’s disease, ulcerative colitis, and irritable bowel syndrome [141,148–154]. Pharmacologically,
OCT1 and OCTN1 (and likely OCT3) seem to be involved in the absorption of metformin, with
gastrointestinal side effects or intolerance being associated with both OCT1 and OCTN1 reduced or
loss-of-function variants [155–158].

5. OCTs in Other Tissues

To briefly summarize the above sections, framed in the context of what is known in terms of
pathophysiology and pharmacological relevance, OCT1 plays more significant roles in the liver, while
OCT2 and OCTN2 have very important functions in the kidney. The following sections address
additional tissues, which are selected based on current research trends. We discuss even less well
known or described functions of OCTs in additional (human) tissues, where much of the existing
work stems from animal studies. We critically assess current themes in animal studies on OCTs and
detail the limited studies on humans for each respective tissue. For a comprehensive summary on the
state of knowledge about OCTs in human and rodent models based on tissue expression, we suggest
consulting the extensive review by H. Koepsell [15].

5.1. Central Nervous System

A rather quickly growing number of studies have addressed Oct2 and Oct3 in regard to their roles
in the central nervous system and blood-brain barrier in rodents [159–164]. Both transporters transport
biogenic amines such as dopamine, epinephrine, norepinephrine, serotonin, and histamine, as well as
other neurotransmitters and neuromodulators cyclo(His-Pro), salsolinol, and the l-arginine metabolite
agmatine [3]. Oct3 has been found to be massively expressed in circumventricular organs. In addition,
while both Oct2 and Oct3 appeared principally expressed in central neurons, Oct3 has also been found
in astrocytes, in restricted brain areas such as the dorsomedial hypothalamus nucleus and substantia
nigra [161,163], where it has been shown to influence stress-mediated increase in extracellular serotonin
levels [162] and neurotoxicity [163]. The roles of Octs in the brain have mainly been examined in Oct2-
and Oct3-deficient mice. In vivo, Oct2 invalidation appeared to have preferential consequences on
serotonin and norepinephrine uptake and clearance [164], and Oct3 invalidation had more impact
on dopamine signaling [161]. Invalidation of Oct2 in mice resulted in abnormal anxiety-related
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behavior in several conflict paradigms [164]. As compared with wild-type mice, Oct2-deficient
mice showed altered sensitivity to the dual serotonin/norepinephrine reuptake inhibitor venlafaxine
and the serotonin transporter (SERT) and norepinephrine transporter (NET) inhibitors, citalopram
and reboxetine, respectively. Oct2 was recently shown to be an essential modulator of the short-
and long-term responses to stress in rodents [165]. Oct2-deficient mice and wild-type mice treated
with cimetidine, an OCT2 substrate, were protected from oxaliplatin-induced neurotoxicity [166,167].
This transporter is highly expressed in the limbic and prefrontal cortical regions [164,165], known
to control the autonomic and endocrine responses to stress or threats. However, recent expression
analyses of OCTs in both mouse and human blood brain barrier samples have revealed negligent to no
expression of these transporters at this site [168]. It seems that further studies on the role and expression
of OCTs in both rodents and humans are needed to assess the physiological and pharmacological
relevance of these transporters in the central nervous system.

5.2. Inner Ear

As mentioned in the kidney section of this review, aminoglycoside antibiotics and anticancer
platinum agents, most notably gentamicin and cisplatin, respectively, are known for their nephrotoxicity
and also to induce irreversible hearing loss. While it cannot be disputed that these agents lead to
ototoxicity, since evidence for the relevance of OCT2 in these processes has been presented in both
rodents and gineau pigs, literature on humans on this topic is not abundant [169]. Additionally,
conflicting evidence has been presented as to the localization of OCT2 in the inner ear structures in the
experimental models used [40,170]. A human study with pediatric patients identified the most common
OCT2 p.Ala270Ser (rs316019) variant to be protective against ototoxicity under cisplatin treatment.
Another very small human study using the OCT2 inhibitor pantoprazole (proton-pump inhibitor)
could not ameliorate cisplatin-caused ototoxicity in pediatric and adolescent cancer patients [123].

Interestingly, in humans, mutations in OCTN1 that seemingly affect the correct trafficking of the
protein to the apical membrane of stria vascularis endothelial cells, were identified as causative in the
screening of consanguineous Tunisian families with autosomal recessive non-syndromic hearing loss.
Although the reasons behind the hearing loss were not clear, it was postulated in the study that altered
energy status via reduced carnitine uptake in the stria vascularis in such patients may have led to
oxidative stress and consequent cell damage resulting in profound hearing loss [171]. It is interesting
to note that OCTN1 transports the potent food-derived antioxidant ergothioeine with high affinity,
which illicits antioxidant/anti-inflammatory effects [147,172]. It should be noted that the authors of this
study emphasized that no other comorbidities (Crohn’s disease or other digestive issues) were reported
among the patients assessed. This study provided an example of a quite severe phenotype with the
loss-of-function of OCTN1. It would be interesting to assess whether or not this is a population effect
in an already challenged patient population and whether or not OCTN2, demonstrating a much higher
affinity for carnitine than OCTN1, is expressed in these tissues in humans. The latter is not known and
not to be assumed, in the context of this study, should carnitine deficiency in the inner ear, and not the
lack of other substrates such as ergothioeine, be the underlying cause for deafness.

5.3. Cardiovascular System

Trimethylamine N-oxide (TMAO), which is produced from trimethylamine (TMA) stemming
from OCT substrates choline and carnitine from protein and lipid nutrients converted by microbiota
in the gut, is associated with cardiovascular disease, and thus considered to be a potential novel
pro-atherosclerotic molecule [173,174]. In mice, Oct2 is the major uptake transporter of TMAO, as
Oct1/2 knockout mice show highly elevated plasma TMAO levels with reduced renal retention [175,176].
Conversely, the relevance of OCT2 or other OCTs in TMAO handling in humans is still questioned,
as TMAO is excreted at a similar rate as creatinine in the human kidney, regardless of age and kidney
function, and OCT2 variants are not associated with increased TMAO levels [175,176]. TMAO plasma
levels in humans may be indirectly modulated by OCTs, over the uptake in the intestines of dietary
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nutrients, or directly controlled, in part, over the uptake in the kidney; the contribution of both
remain to be elucidated. Interestingly, a choline-TMA lyase small molecule inhibitor has proven
to be effective as an anti-atherothrombotic agent by its regulation of host microbe, cholesterol, and
bile acid metabolism [177], indicating that inhibition of the conversion of choline, of which OCT2 is
the main transporter, to TMA positively impacts cardiac health. In the context of primary systemic
carnitine deficiency, oral supplementation of carnitine leads to elevated plasma concentrations of
TMAO [178–181], whereas little information is available on long-term effects on the heart in this patient
subset [132]. Several studies have questioned the cardiotoxic effects of TMAO in humans in conjunction
with carnitine supplementation [176,177,182,183] and this rather hot topic in cardiovascular health has
been extensively reviewed and discussed in recent years [184–187]. Inducing atherosclerosis in mice
usually requires an ApoE-/- or Ldlr-/- genotype, also with or without high-fat diet [188,189]. It might be
interesting to assess the endothelial function by organ chamber assay of aortic rings freshly isolated
from Oct1/2-/- mice, to further study the role of TMAO, as well as the effects of dietary choline and
carnitine handling, on cardiovascular health. It seems clear that more studies in both mice and man
are required to fully understand the processes involved in the development of atherosclerosis and the
contribution of choline, carnitine, and TMAO transport.

5.4. Skeletal Muscle

Response to metformin treatment underlies intestinal (OCTN1 and OCT1), hepatic (OCT1),
and renal (OCT2) handling, and also transports into peripheral tissues on the level of the effect on
metabolism in both skeletal muscle and adipose tissue. Indeed, the more ubiquitously expressed
OCT3 has been implicated, both in mice and man, in the metabolic response to metformin in muscle
tissue [107,190]. In addition, in relation to in muscle metabolism, OCTN2 is essential to the distribution
of carnitine in muscle tissues and has been shown to be upregulated in muscle tissue in response
to insulin [89]. Lack of transport of fatty acids into mitochondria due to insufficient intracellular
carnitine levels presents as cardiomyopathies, which are common features of primary systemic carnitine
deficiency [81].

5.5. Reproductive Organs

OCT6 was cloned in 2002 and directly identified as a carnitine transporter specifically expressed in
the human testis in Sertoli cells and epididymal epithelium [5,27], and shortly after in endometria [39].
However, research on this newly identified OCT is ongoing and the physiological relevance in carnitine
uptake in reproductive organs over this transporter is unclear. Mentionable from a pharmacological
perspective, OCT6 has been found to be differentially expressed in several cancers, several SNPs of
which have been associated with pharmacologic implications under treatment with anticancer agents
doxorubicin, bleomycin-A5, adriamycin, and cyclophosphamide [28–38].

6. Conclusions

The recognition of OCTs as low affinity transporters of frequently prescribed drugs, such as several
antibiotics and metformin, the flourishing of pharmacogenetics, and the development of rigorous
drug–drug interaction studies for marketing approval have decisively contributed to elucidating the
impact of the organ-specific and interorgan functions of these transporters and, in conjunction, their
high pharmacological impact. However, with the exception of OCTN2, the understanding of the
physio-pathological roles played by OCTs in humans is not fully understood. Comprehension of the
roles played by OCTs in physiology is hampered by the partially different substrate specificity and
tissue expression between rodents and humans and the lack of obvious phenotypes associated with
loss of, or gain of, function of any of these transporters. In general, the phenotype of an organism is
not the mere product of its genetic constitution but rather the manifestation of the interaction of the
genetic background with various environmental influences. In the study of the physio-pathological
role of any gene, the best-case scenario is that the phenotype of a genetic variant is apparent under
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standard environmental conditions. This is the case of the jvs animals lacking Octn2. Alternatively, the
phenotype develops only in specific circumstances that the investigator must understand and optimize.
For instance, the potential role of OCTs in the elimination of toxins whose chronic exposure is associated
with several aging-related diseases such as Parkinson’s and cardiovascular disease, might suggest that
the phenotype of Oct-deficient animals does not manifest just because the animals are not examined in
the proper environment, or under the correct challenge or insult, or in the right moment of their life.
This seems to be the case for OCT1 in steatosis onset [66] and for OCTN1 and OCTN2 in inflammatory
disorders [191,192]. Similarly, the evidence that OCT1 and OCT2 are markedly downregulated in liver
and kidney cancer, respectively, may suggest that a chronic impaired function of these transporters
might be part of the carcinogenic process [22,59–61]. In addition, because frequently prescribed drugs
are handled by OCTs, we must be confident that the knowledge gained on these transporters will
continue to be highly relevant to drug development and patient care in the future, and will, to some
extent, contribute to the understanding of the physiology of the OCTs. To conclude, we summarize this
work with the statement that, with the current state of knowledge, it is conceivable, though in part only
inferred from tissue expression patterns and functionality in the uptake of endogenous and xenobiotic
substrates in vitro, that human OCT1 is relevant in the liver and intestine, OCT2 in the kidney, OCT6
in the reproductive system, and OCTN1, OCTN2, and OCT3 in several tissues, whereby the bulk of
knowledge on the latter four transporters is historically less abundant than on the former two.
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