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Abstract: Psychotic disorders often run a chronic course and are associated with a considerable
emotional and social impact for patients and their relatives. Therefore, early recognition, com-
bined with the possibility of preventive intervention, is urgently warranted since the duration of
untreated psychosis (DUP) significantly determines the further course of the disease. In addition to
established diagnostic tools, neurobiological factors in the development of schizophrenic psychoses
are increasingly being investigated. It is shown that numerous molecular alterations already exist
before the clinical onset of the disease. As schizophrenic psychoses are not elicited by a single
mutation in the deoxyribonucleic acid (DNA) sequence, epigenetics likely constitute the missing
link between environmental influences and disease development and could potentially serve as a
biomarker. The results from transcriptomic and proteomic studies point to a dysregulated immune
system, likely evoked by epigenetic alterations. Despite the increasing knowledge of the neurobiolog-
ical mechanisms involved in the development of psychotic disorders, further research efforts with
large population-based study designs are needed to identify suitable biomarkers. In conclusion, a
combination of blood examinations, functional imaging techniques, electroencephalography (EEG)
investigations and polygenic risk scores should be considered as the basis for predicting how subjects
will transition into manifest psychosis.

Keywords: early detection; epigenetics; psychosis; biomarkers

1. Introduction

In the quest to decipher the etiology and pathogenesis of schizophrenic psychoses,
considerable progress was recently made with regard to the early detection of this spectrum
of diseases [1,2].

Over the course of the last few years, numerous working groups primarily addressed
the question of how people with an increased risk of developing schizophrenic psychosis
could be identified at an early stage and what preventive measures could be adopted. This
aspect is of great clinical relevance, as patients affected by a first psychotic episode (FPE)
often report pre-existing psychological and social impairments, on average, for 5 years
before the onset of the disease [3]. FPE manifests relatively late in terms of neurobiological
development, usually around the age of 25 years [3]. At this time, however, abnormalities
in brain structure, neurochemical processes, and brain connectivity have already become
evident [4–7]. In addition, significant neuroanatomical, neurophysiological, neurocognitive,
and neurohormonal changes were identified in people at risk of developing psychosis,
which may likely support the transition process to manifest psychotic disorders [8–11].
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Furthermore, a longer duration of untreated psychosis (DUP) seems to contribute to incom-
plete symptom remission, a higher likelihood of relapse, and a reduced quality of life [12].
Therefore, the timely detection of schizophrenic psychosis is of paramount importance.
In addition to the established diagnostic methods of symptom description, e.g., clinical
interviews and psychometric questionnaires (test batteries), it is hoped that neurobiological
disease markers will simplify the prediction and assessment of schizophrenic psychosis.
Epigenetic changes were widely described as crucial for the development and prediction
of therapy response in many disease entities, e.g., in cancer or depression [13,14]. Their
predictive value for the onset of psychotic symptoms was investigated by various groups,
albeit with diverging results [15,16]. Synoptic conclusions have not been reached to date;
therefore, the chief focus of this article is directed towards the discussion of the utility of
various electrophysiological, imaging and molecular findings as potential biomarkers for
the early detection of schizophrenic psychosis. Aside from epigenetics, other predictive
strategies and possible treatment options will be considered.

2. Definition and Epidemiology of Schizophrenic Psychoses

The lifetime prevalence of schizophrenia was estimated at approximately 1% in vari-
ous general population surveys and the point prevalence of schizophrenia was calculated
as 0.28% in a large systematic review [17–19]. Schizophrenia is considered a severely de-
bilitating disease with a high social burden and significant, far-reaching socioeconomic
consequences for affected individuals [17,20]. The pathophysiological basis of schizophre-
nia, however, is still poorly understood. Clinically, schizophrenia is characterized by
positive and negative symptoms. Positive symptoms include content-related thought dis-
turbances, ego disturbances, and perceptual disturbances, whereas negative symptoms
comprise anhedonia, social withdrawal, and cognitive and motor deficits such as blunted
facial expressions and gestures [21]. The onset of schizophrenia peaks in adolescence or
young adulthood, a time when the prefrontal cortex is still developing. The disease is
typically preceded by a prodromal phase, which is defined by comparatively mild positive
and negative symptoms that develop months to years before the onset of schizophrenia [22].
In the prodromal phase, affected persons display unspecific symptoms such as delusional
mood, undirected fears or mistrustful experiences of relationships, all of which do not
fulfill the definition criteria of schizophrenic psychosis [21,22].

3. Possibilities of Early Detection and Diagnosis by Operationalized Criteria and
Structured Clinical Interviews

The path to the correct diagnosis of a schizophrenic psychosis is usually challenging
due to several differential diagnoses that must be considered. In particular, autoimmune
encephalitis or neurodevelopmental disorders evoked attention as psychotic symptoms are
often initial manifestation signs of these diseases [23]. The consideration of only classical,
first-rank symptoms of schizophrenia were associated with a false-positive and a false-
negative rate of 5–20% and 40%, respectively [24]. For the prediction of initial psychotic
manifestations, two significant groups of criteria were evaluated with respect to their
prognostic quality: The ultra-high risk (UHR) and the basic symptom criteria. The UHR
criteria, which were developed in the 1990s and continue to be widely used internationally,
are based on studies by Yung and colleagues [25–27]. These criteria are part of several
assessment scores or structural interviews to identify individuals who are at an increased
risk of transitioning to psychosis. The UHR criteria include attenuated psychotic symptoms
(APS) as well as short-lasting, so-called brief limited psychotic symptoms (remitting after a
maximum of one week). Additionally, the UHR criteria also comprise genetic risk factors.
If an individual meets the UHR criteria, this should be considered as an at-risk mental
state (ARMS).

By contrast, the basic symptom concept was developed by Huber et al. in 1989 [27]. It
describes self-perceived disturbances in several domains including disorders of drive and
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affect, thought and language processes, perception, proprioception, motor function, and
central vegetative functions.

The main instruments used to assess an ARMS are the Comprehensive Assessment of
At-Risk Mental States (CAARMS) and the Structured Interview for Prodromal Symptoms
(SIPS) [28,29].

The criteria for the definite transition to a psychotic disorder are based, among others,
on a definition by Yung et al. [30]: A transition is assumed if at least one positive symptom
persists over a period of at least one week. Transition to a manifest psychotic disorder occurs
in 8–54% of affected individuals within 1 to 2.5 years [26,31–34]. In a study conducted by
Nelson and co-workers, individuals at UHR state were followed up for up to 14.9 years
after initial presentation. In this study, the transition to a psychotic manifestation was
observed in 34.9% of study participants. In all cases, transition to a manifest psychotic
disorder took place within the first 10 years after initial presentation, and in two-thirds
of cases occurred within the first 2 years after initial presentation [31]. Moreover, a large
proportion of those who suffered a psychotic episode eventually developed full-blown
schizophrenia [4].

4. Studying the Etiopathogenetic Hallmarks as a Basis for the Development of New
Diagnostic Options in the Early Detection of Schizophrenic Psychosis

Despite several indicators of perturbed neurobiological development, to date, no
direct trigger of schizophrenic psychosis is known [6,30,32,33]. The question of whether
schizophrenia has an early developmental origin with prenatal onset or whether it should
rather be considered a neurodegenerative disorder has not yet been fully elucidated. The
two approaches are not mutually exclusive, however, and were reconciled by Keshavan and
colleagues in their “two-hit hypothesis” [31,34]. The “two-hit hypothesis” postulates that a
neural mismaturation during early development (“first hit”) predisposes to abnormalities
in brain development during adolescence. Eventually, schizophrenic psychosis may arise
under unfavorable (environmental) conditions (“second hit”).

5. Environmental Influences in Early Life

In addition to genetic factors that are subject to non-mendelian inheritance, pre-
and perinatal environmental factors also contribute substantially to the development of
schizophrenic psychosis. Interestingly, patients with schizophrenia were affected over-
proportionately by complications during birth. These include hypoxic events, complex
cesarean section, preterm labor, and rhesus incompatibility [35,36]. As early as 1988, Med-
nick et al. described that children whose mothers suffered from influenza in the second
trimester during the 1957 influenza epidemic were more likely to develop schizophrenia
later in life [37].

Indirect influences, such as the season during which a child is born, also appear to
have an impact. According to Mortensen et al., schizophrenia is 5 to 8% more common in
those born in spring or winter [38]. In addition, there is a correlation between the size of a
city in which an individual is born and the incidence of schizophrenia and other psychotic
disorders. A clustering of schizophrenia cases was found in larger cities [39]. Other factors
that may contribute to the development of schizophrenic psychosis include stress, substance
abuse, social distress during childhood and adolescence, and social exclusion [40–43]. A
schematic illustration of the development and the progression of psychotic disorders under
the influence of various environmental risk factors is shown in Figure 1.
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Figure 1. Development and course of psychotic disorders under the influence of environmental
stimuli (adapted and modified from Millan et al. [44]).

6. Genetics

The high heritability of schizophrenic psychosis was suggested by several twin studies.
Genome-wide association study (GWAS) data further refined the understanding of the
neurobiology underlying schizophrenic psychosis [45,46]. To date, a wide range of genetic
risk variants (e.g., single-nucleotide polymorphisms (SNPs)) were described based on
whole-genome analyses. Preceding this, numerous genomic abnormalities were studied
in schizophrenia. Primarily, a balanced translocation disrupting two genes on chromo-
some 1 in a Scottish family was shown to be associated with the frequent occurrence of
schizophrenia [47]. Since then, several candidate gene studies examined the involvement
of genes associated with the metabolic processes of the central nervous system in the
pathogenesis of schizophrenia. In various studies, only a few of them, such as DISC1
(Disrupted-In-Schizophrenia 1), COMT (Catechol-O-Methyltransferase), VMAT1 (Vesicular
Monoamine Transporter 1) or NRG1 (Neuregulin 1), could be sufficiently confirmed as
relevant for schizophrenia development [48–51]. As their effect size seems to be relatively
small, in the upcoming era of GWAS SNPs and copy number variants (CNVs) aroused
great interest in the genetics of schizophrenia. One of the first findings was a correlation
of deletions in NRXN1 (Neurexin 1) gene and schizophrenia risk [52]. To date, around
12 different CNVs with genome-wide significance were reported to be functionally relevant
with clear genome-wide significance [53]. Large-scale studies, especially those of the Psy-
chiatric Genomics Consortium (PGC), characterized CNVs associated with a greater risk of
schizophrenia as rare but very powerful, with a high relative genomic risk [54]. Addition-
ally, genomic structural burden was higher in schizophrenia cases compared to controls [54].
On the contrary, SNPs contributing to schizophrenia risk are far more common, but with
relatively small effect sizes [55]. As sample sizes have become considerably larger over
recent years, more and more relevant SNPs could be identified. Groundbreaking in this
context was a GWAS conducted by the Schizophrenia Working Group of the PGC, which
found 128 SNPs linked to schizophrenia risk [56]. Nevertheless, recent research efforts led
to the identification of more than 30 novel risk loci by involving even more participants
not only of European, but also of Asian ancestry [57]. Since multiple genetic variants
appear to contribute to the risk of developing schizophrenia, the use of polygenic risk
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calculations seems promising. In the context of the early detection of psychosis, the utility
of polygenic risk scores was proven for predicting which UHR individuals will eventually
develop psychotic symptoms [58]. Furthermore, risk scores provided evidence of a link
between genetic liability to schizophrenia and brain structural changes or pharmacological
treatment responses [59,60]. Thus, antipsychotic drugs demonstrated a higher efficacy in
subjects with lower risk scores. Of particular interest, recent research efforts led to the
development of a polygenic resilience score which describes the genetic basis of resistance
to schizophrenia [61].

Since gene ontology analyses demonstrated an enrichment of risk variants in genes
that regulate brain development, a neurodevelopmental origin of schizophrenia appears
likely [62].

One study focused on transcriptional changes of UHR individuals during conversion
to psychosis [63]. Intriguingly, the investigators detected an impairment in the expression of
genes involved in the Wnt/ß-catenin pathway and Toll-like receptor signaling, suggesting
an involvement of immune dysregulation in the onset of psychosis [63].

7. Epigenetics

There is evidence that noxious psychosocial and environmental stimuli influenced the
risk of developing psychotic symptoms. The interaction of various factors in the develop-
ment makes psychotic disorders multifactorial diseases. Furthermore, the clear influence of
environmental processes suggests epigenetic mechanisms as a possible regulator [64]. With
regard to schizophrenia, the promoter methylation of various genes was widely studied,
more recently taking advantage of methylome-wide analyses [62,65,66]. Most of these
studies included schizophrenic patients with an extensive disease course and multiple
psychotic episodes in their clinical history, making it difficult to distinguish between the
impact of previously administered antipsychotic medication on DNA methylation and
pre-existing methylational changes [67]. To determine possible epigenetic risk constella-
tions as indicators for the transition from a UHR state into a manifest psychotic disorder,
studies including UHR individuals, people with familial risk states, and FPE patients are
of particular interest. Unfortunately, research in this field is scarce with only limited data
available. To the best of our knowledge, thus far, only four studies have investigated
epigenetic processes in people with preclinical symptoms or with childhood psychotic
experiences [15,16,68,69]. All of these studies exhibit a longitudinal study design, which has
several advantages compared to the cross-sectional study design predominantly applied in
schizophrenia research. Roberts and co-workers reported that the hypomethylation of a
CpG site linked to genes C7orf40 and SNORA9 was associated with the persistence of psy-
chotic experiences from childhood to adolescence [15]. As a limitation of this study, it must
be mentioned that the inclusion criteria did not clearly differentiate between individuals
with stand-alone psychotic experiences and participants with a definitive UHR state. This
aspect, by contrast, was addressed in another study that compared the methylome of UHR
individuals who developed a full-blown psychosis to those who did not within a follow-up
period of one year [16]. Two differentially methylated regions (DMRs) could be identified,
one of them located in the promoter of the GSTM5 gene. The encoded protein, glutathione
S-transferase mu 5, plays an important role in protective mechanisms against oxidative
stress. A cluster analysis of CpG sites with the most significant methylation changes during
psychotic conversion additionally suggested an involvement of oxidative stress mecha-
nisms. Furthermore, an involvement of axonal guidance processes and inflammation was
suggested. The same study population as in ref. [16] served as basis for the analysis of
intraindividual methylomic variability in another study [68]. Methylomic variability was
suggested as a contributing factor in the development of various somatic and psychiatric
diseases. Kebir et al. proposed the methylomic instability of two genes whose encoded
proteins are implicated in sphingolipid pathways in conversion to psychosis [68]. An-
other approach to identify epigenetic biomarkers was the comparison of the methylome of
monozygotic twins discordant for psychotic symptoms during childhood [69,70]. The most
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significant DMR was located in the promoter of the C5orf42 gene [69]. The gene function
has not yet been clearly deciphered, but mutations were linked to Joubert syndrome, a
neurodevelopmental disorder [71]. By analyzing evidence of methylomic studies involving
UHR individuals together, there does not appear a clear trend of a causal pathway for
disease initiation. A complex interplay of dysregulations in inflammatory factors and
cellular energetic processes seems likely.

Not only whole-methylome analyses but also candidate gene studies are sparse in the
context of pre-clinical psychosis. The most interesting finding was that the methylation of
the oxytocin receptor gene was significantly decreased before and after the development of
a full-blown psychosis and could be linked to typical negative symptoms [72]. Moreover,
for the understanding of the onset of psychotic symptoms, the study of FPE patients
could be useful. Regrettably, only a single whole-methylome study focused on this patient
population [73]. Nishioka and colleagues demonstrated a global hypomethylation in
FPE patients [73]. Differentially methylated CpG sites were markedly enriched in genes
associated with the constitution of intracellular organelles or transcription factor binding,
but DMRs could also be detected in promoters of the HTR1E and COMTD1 genes, which
were both clearly linked to the development of schizophrenia [73]. There are few studies
available that examine the methylation of candidate genes in FPE patients. The most
interesting findings among these were a hypomethylation within GRIN2B promoter and
an increased methylation of GCH1 promoter in FPE patients [74,75]. While the protein
encoded by GRIN2B is involved in glutamate signaling, GCH1 is crucial for the synthesis of
several neurotransmitters [74,75].

As environmental factors are crucial for development of psychosis, the influence of
various risk factors on epigenetics, in individuals with FPE or at the UHR state, is of
special interest. Adverse childhood experiences were proven to decrease the methylation of
FKBP5 whose gene product, FK506 binding protein 5, is crucial for glucocorticoid receptor
signaling [76]. Furthermore, hypomethylation in general was associated with childhood
trauma in psychotic patients [77]. More data regarding the influence of schizophrenia-
related risk factors on DNA methylation are available, but these studies did not focus on
psychiatric patients.

In conclusion, no clear trend could be identified to determine which systems were most
important with regard to epigenetic mechanisms in UHR individuals transitioning to full-
blown psychosis. Indeed, the participation of widely described factors in psychotic diseases,
such as inflammatory response, energetic pathways, neuromodulation, or neurotransmitter
synthesis, appears likely. While epigenetic mechanisms, especially DNA methylation, are
certainly implicated in the transition to psychosis, there is only a small overlap between
the studies conducted so far with regard to possibly involved genes. In this respect, larger
population-based studies that include individuals with pre-clinical symptoms are urgently
warranted.

8. Magnetic Resonance Imaging

Evidence suggests that cortical networks are reorganized during adolescence. It is
known that there is a physiological loss of synaptic density of about 30% during adoles-
cence in the dorsolateral prefrontal cortex. Patients suffering from schizophrenic psychosis
display a higher reduction of about 60% [78,79]. Therefore, it is believed that even after
the fetal and perinatal period, the disturbances in neuronal development may occur and
promote the development of schizophrenic psychosis, and that this disruption of neuronal
development results in the fronto-temporal gray matter volume (GMV) reduction seen in
UHR individuals [8,80]. Indeed, numerous early computed tomography (CT) as well as
magnetic resonance imaging (MRI) studies demonstrated morphological brain alterations
in people with schizophrenia [81–84]. The most common findings were the dilatation of
the ventricular system and GMV reduction, especially in the cortical and subcortical gray
matter of the frontal lobe, temporal lobe, and limbic system [85–89]. Interestingly, these
changes do not appear to be static but are subject to a progressive process [90,91]. Mean-
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while, studies revealed functional and anatomical changes in cortical areas in individuals
even before the onset of psychosis [92,93]. Differences in individual brain regions that
were dependent on the further course of the disease could be observed [94,95]. While
reductions in GMV of the parietal, medial temporal, and inferior frontal cortex were ob-
served in UHR individuals who later developed schizophrenia, a reduced volume of the
subcallosal cingulate was primarily detected in individuals who later developed affective
psychosis. Reduced volumes of the amygdala and insula, by contrast, were primarily
registered in UHR individuals who later developed bipolar disorder [94,95]. When com-
paring high-risk subjects who transitioned to psychosis with high-risk individuals who did
not, the former group was characterized by reduced GMV of the prefrontal cortex (and
specifically the orbitofrontal cortex), the temporal cortex (in particular, the medial temporal
gyrus), and the cerebellum [96–98]. Furthermore, GMV reduction was also reported for
limbic system structures—(anterior) cingulate cortex, insula, and hippocampus—albeit
less frequently [96,97]. Concerning the predictive value of white matter (WM) integrity,
thus far, evidence has been inconclusive. Some studies found reduced WM (e.g., in the
left superior temporal lobe or globally) as well as increased WM (e.g., in the frontal lobe
and the left medial temporal lobe) in UHR subjects who transitioned to psychosis [99–101].
Other studies, however, did not observe a significant difference in WM integrity between
UHR subjects who developed psychosis and those who did not [102].

Whereas structural MRI was frequently applied to investigate the potential predictors
of the transition to psychosis, there is less evidence from functional MRI (fMRI) studies.
An early study found that subjects at a genetically high risk, who later transitioned to
schizophrenia, displayed increased parietal and decreased anterior cingulate activity, as
well as smaller activation increases with higher cognitive demands in bilateral, temporal
regions and right lingual gyrus, during a sentence completion task [103]. Importantly,
predictive tests based on the parietal lobe and the lingual gyrus were able to discriminate
between those who transitioned to schizophrenia and those who did not, with positive
and negative predictive values of 0.8 and 1.0, respectively. Since fMRI is an elegant tool to
explore brain connectivity, it is well-suited to investigate the dysconnectivity hypothesis
of schizophrenia [6,104]. Van den Heuvel et al. showed that the physiological “rich club
organization” of brain networks—the phenomenon that the most highly interconnected
brain regions are also highly interconnected among themselves—is markedly disturbed
in schizophrenia [104,105]. Various following studies that compared young adults with
schizophrenia and healthy controls by means of structural diffusion tensor imaging and
resting-state fMRI replicated the perturbation of the “rich club organization” as an early
event in schizophrenia development [106–108]. Of note, a structural disorganization of
brain connectivity was already shown in individuals who are at an increased risk of de-
veloping psychosis. Therefore, it is discussed whether abnormal “rich club organization”
could represent an endophenotypic marker for psychosis onset [109]. Indeed, UHR in-
dividuals who transitioned to psychosis did not only display an increased activation of
bilateral prefrontal cortex, brainstem, and left hippocampus during a phonological fluency
task, but also increased connectivity between the prefrontal cortex and midbrain [110].
Finally, hypoconnectivity between the thalamus, prefrontal cortex, and cerebellum, as well
as hyperconnectivity of the thalamus and sensory motor areas during resting state fMRI,
were also found to be differentiating features between UHR subjects who transitioned to
psychosis and those who did not [111].

Traditional statistical analytic approaches may identify group differences, but they
do not allow for reliable predictions on a single-subject level (i.e., predict whether a UHR
individual will transition to psychosis or not). Therefore, in recent years, many studies
have probed machine-learning techniques in an effort to derive predictive models based
on neuroimaging data, which may aid clinicians in diagnosing psychiatric diseases. With
regard to schizophrenia, supervised learning models in the form of support vector ma-
chines are the most widely employed technique, achieving within-study accuracies of
about 75–90% for differentiating between patients and healthy controls [112]. Support
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vector machines demonstrated similar accuracies (80–88%) for predicting the transition
to psychosis in UHR individuals, with high positive (78–100%) and negative (80–90%)
predictive values [113–116]. However, given the relatively small sample sizes, overfitting in
these studies is likely, and such algorithms still need to be validated in new samples prior
to widespread clinical applications. In the future, the combination of genetic, epigenetic,
and neuroimaging data may prove particularly effective for improving predictions at the
subject level, as has already been demonstrated for SNP and fMRI data [117].

Despite promising findings, it must be cautioned that MRI measures such as GMV,
which rely on voxel-based morphometry or diffusion tensor imaging, are susceptible to
motion artifacts and may have previously been systematically confounded by factors such
as medication, smoking status, medical and psychiatric comorbidities, and metabolic state.
Of note, the very regions where volume reductions were detected in UHR individuals who
transitioned to psychosis are particularly liable to confounding [118].

9. Marker-Specific Imaging as Indicator for Disturbed Neurotransmission

Currently, there are various tools available to study disturbances in neurotransmitter
systems regarding the transition to psychosis. These techniques comprise positron emission
tomography (PET), single-photon emission computed tomography (SPECT), and magnetic
resonance spectroscopy (MRS). Research especially focused on alterations of the dopamine
system. This was due to the oldest and most established theory on the pathogenesis of
schizophrenia: The “dopamine hypothesis”. This hypothesis postulates that an overactivity
of certain dopaminergic brain regions is especially responsible for the positive symptoms of
schizophrenia. This notion is clinically supported by the observed symptom improvement
in patients treated with dopamine receptor antagonists (i.e., antipsychotics). Elevated
dopamine synthesis capacity in the striatum or brainstem was linked to a higher risk of
transition to psychosis in UHR individuals in several studies [110,119,120]. Furthermore,
disturbances in the dopamine synthesis of UHR subjects was linked to changes in the
performance of special cognitive tasks [110,121]. The second, recent transmitter system
of special interest is the glutamatergic system. MRS studies revealed that higher gluta-
mate levels in precommissural dorsal-caudate preceded the onset of psychosis [119,122].
The development of full-blown psychosis was also accompanied by reduced glutamate
or glutamine concentrations in thalamic regions and elevated concentrations in the pre-
frontal cortex and striatum [122–125]. A link between region-specific glutamatergic and
dopaminergic activity in the hippocampus and striatum in UHR subjects was hypothesized;
however, a combined PET/MRS study by Howes et al. failed to prove a correlation [126].

10. Further Possible Biomarkers

It is hoped that suitable biomarkers may be identified that aid in the diagnosis, progno-
sis, and creation of individualized treatment plans for patients suffering from schizophrenia.
The approach of some works is based on the hypothesis that mental illnesses are systemic
disorders and that changes might, therefore, be found in systems other than the central
nervous system, for example in the circulation. The process of identification of proteomic
biomarkers has revealed changes in inflammatory, hormonal, and metabolic pathways
in patients with schizophrenia [127]. In particular, an inflammatory cascade is believed
to play a role in the initiation process of FPEs. Nevertheless, data on whether pro- or
anti-inflammatory processes predominate in people with ARMS are conflicting. In general,
elevated levels of interleukin (IL-)1ß, IL-7, and IL-8 were reported to indicate the transition
from an ARMS to a manifest psychotic episode [128]. Furthermore, elevated levels of
tryptophan metabolism appear to correlate with increased inflammation in schizophrenia,
suggesting that immune dysregulation may also involve the kynurenine pathway [129].

11. Electroencephalography

Electroencephalography (EEG) studies have shown promising results. The “mismatch
negativity” (MMN), a component of event-related potentials (ERPs) evoked by an odd
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stimulus in a sequence of stimuli, shows a consistent and robust reduction in patients
with schizophrenia and could be useful as a biomarker since the changes are present
even before the onset of psychosis [130–132]. MMN changes are widely registered as
correlates of disturbed informational processing under several neuropathological condi-
tions, especially in Alzheimer’s disease [133]. To date, reduced MMN is the most reliable
EEG biomarker distinguishing UHR individuals who transition to schizophrenia from
those who do not [131,132,134]. Comparable to MMN, P300 is another ERP component
that is also evoked by unexpected stimuli in oddball paradigms; however, P300 is only
evoked when stimuli are actively attended to. P300 abnormalities are a common finding
in schizophrenia and were also found in unaffected relatives, leading to the proposition
that P300 may in fact be an endophenotype of the disorder [135–137]. Indeed, amplitude
decreases in P300 were found to predict the transition to psychosis in UHR individuals,
not only when evoked by auditory but also by visual oddball stimuli [9,138]. In the future,
EEG microstates—transient, quasi-stable patterns of EEG activity typically lasting tens to
hundreds of milliseconds—may also be useful for predicting the transition to psychosis
in UHR subjects. In a pioneering study, de Bock et al. demonstrated that microstate D
was reduced in UHR subjects who later developed psychosis in comparison to those who
did not, as assessed by the coverage of its temporal characteristics, duration, and occur-
rence [139,140]. The importance of the temporal features of microstate D for differentiating
between first-episode patients, UHR individuals, high-risk individuals, and healthy con-
trols was confirmed by another study, achieving a within-group classification accuracy,
sensitivity, and specificity of 92%, 91.8%, and 90.8%, respectively, by using a random forest
model and combining microstate, behavioral, and demographic features [141]. This study
impressively illustrates that machine-learning approaches, which combined data from
different modalities—including EEG data—bear great promise for improving predictions
of the transition to psychosis in the coming years.

12. Early Therapeutic Options

The ultimate goal of early detection strategies is to prevent the transition into full-
blown psychosis. Therefore, the effectiveness of cognitive behavioral therapy and antipsy-
chotic medication is intensively studied [142–146].

Whether pharmacotherapy alone can delay or even prevent a transition to a psychotic
disorder has not yet been established. McGorry et al. were the first to study the use of
the second-generation antipsychotic risperidone and additional cognitive-oriented psy-
chotherapy in UHR individuals [143]. They found an early advantage for the intervention
group with respect to conversion to psychosis, which was, however, no longer present 6
months after treatment discontinuation [143]. In the following period, several other groups
found mild positive effects of cognitive-oriented psychotherapy, family-based therapy, or
antipsychotics, while others did not [144–148].

Even though favorable effects on positive and negative symptoms, as well as on cog-
nitive functions were demonstrated, antipsychotic medication is currently not routinely
recommended for the ARMS period [142,149–154]. Antipsychotics should only be consid-
ered for a limited period of time if deemed clinically necessary, e.g., to achieve sufficient
symptom relief for psychotherapeutic interventions [155].

Since decreased omega-3 fatty acid levels are present in patients with schizophrenia as
well as in UHR individuals, it is hoped that the administration of omega-3 fatty acids will
have a preventive effect and improve symptoms, despite currently inconclusive efficacy
data [156–158]. A recent study did not show a benefit of omega-3 fatty acids for UHR
individuals [159].

As the intervention strategies described above appear to have, at best, small effect sizes,
new approaches are being discussed. These include, for example, the use of cannabidiol or
the administration of amino acids such as glycine or serine, and displayed promising results
in smaller clinical studies [160–162]. However, further studies are needed to corroborate
these findings.
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13. Conclusions

Over the course of the last 20 years, our knowledge about the neurobiology of the UHR
state and the prodrome of a first psychotic disorder has significantly increased. It is widely
accepted that the duration of untreated psychosis (DUP) is of paramount importance for
the subsequent disease course. Prolonged DUP is associated with incomplete symptom
remission, a higher likelihood of relapse, and a reduced quality of life [12]. To minimize
the DUP, screening approaches during childhood were considered and several school-
based screening campaigns were validated [163,164]. Moreover, we also call for detection
strategies at universities. Many research groups addressed the question of how to identify
individuals at increased risk of developing a psychotic disorder at an early stage.

According to the current literature on diagnostic methods for the detection of a high-
risk stage, only about 30% of affected individuals with pre-clinical symptoms develop a
psychotic disorder in the further course [8,165,166].

Even though a large proportion of individuals in a high-risk state will eventually not
develop a psychotic disorder, longitudinal studies showed that high-risk patients already
continuously exhibit mild psychotic symptoms and lower levels of functioning compared
with healthy controls [167,168]. High-risk individuals also more likely demonstrate persis-
tent psychopathology and a need for treatment, regardless of the transition rate [169,170].
Symptoms of depression and anxiety disorders are common, as are disturbances in the
sleep–wake cycle [171]. The presence of a UHR state can also be a substantial burden for
the affected person and is sometimes accompanied by conflicts in family and social envi-
ronments. Among individuals who do not develop a psychotic disorder, a wide variety of
courses are described. Whereas some individuals show a complete remission of symptoms,
others develop additional disorders, mostly depression, anxiety disorder, addiction, or
bipolar disorder [167].

In this article, we compiled evidence about possible biomarkers that hold promise for
differentiating between UHR individuals who will transition to full-blown psychosis from
those who will not. As environmental influences seem to be crucial for the development of
manifest psychotic disorders, epigenetic processes potentially act as a mediator between
individual risk factors and genomic patterns. Indeed, to identify reliable epigenetic markers,
larger study cohorts are needed. Moreover, not only large cohort studies are required for
exploring new biomarkers, but also different methodological approaches. Last but not
least, large clinical datasets should be analyzed with the help of bioinformatics to identify
suitable biomarkers.

Transcriptomic, methylomic, and proteomic studies indicate an involvement of immune
dysfunction in the processes underlying the development of full-blown psychosis [16,63,128].
This appears a promising research target, which may open the door for new therapeutic op-
tions such as immunomodulatory agents. Due to the non-mendelian inheritance, it appears
unlikely to identify a single diagnostic method with sufficient sensitivity and specificity.
Therefore, we recommend a combination strategy of blood examination, polygenic risk
scores, functional imaging approaches, and EEG investigations.

Early supportive therapies, e.g., cognitive psychotherapy or the administration of
omega-3 fatty acids are being intensely discussed, but it is not yet clear what the best
therapeutic regimen might be [155]. Antipsychotic medication is currently not routinely
recommended for the ARMS period [142].

In conclusion, the reliable early detection of psychotic illness remains challenging to
date. Although psychometric tests allowing predictions are available, their application in
clinical routine is rather complex. Furthermore, there are only a few specialized centers
dedicated to the early detection of schizophrenic psychosis. Great hope is invested in
biomarkers that will facilitate diagnostics, prognostics, and the creation of individualized
treatment plans [172,173]. For a better understanding of the initiation process of psychosis,
we strongly advocate for the conduction of larger population-based studies.
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