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Abstract
Nicotinamide adenine dinucleotide (NAD+) synthesis pathway has been involved in many biological functions. Nicotinamide riboside
(NR) is widely used as an NAD+ precursor and known to increase NAD+ level in several tissues. The present study aimed to examine
the effect of NR on tumor necrosis factor (TNF)-induced optic nerve degeneration and to investigate whether it alters SIRT1 expression
and autophagic status in optic nerve. We also examined the localization of nicotinamide riboside kinase 1 (NRK1), which is a
downstream enzyme for NR biosynthesis pathway in retina and optic nerve. Intravitreal injection of TNF or TNF plus NR was
performed on rats. The p62 and LC3-II protein levels were examined to evaluate autophagic flux in optic nerve.
Immunohistochemical analysis was performed to localize NRK1 expression. Morphometric analysis showed substantial axonal
protection by NR against TNF-induced axon loss. TNF-induced increment of p62 protein level was significantly inhibited by NR
administration. NR administration alone significantly increased the LC3-II levels and reduced p62 levels compared with the basal
levels, and upregulated SIRT1 levels in optic nerve. Immunohistochemical analysis showed that NRK1 exists in retinal ganglion cells
(RGCs) and nerve fibers in retina and optic nerve. NR administration apparently upregulated NRK1 levels in the TNF-treated eyes as
well as the control eyes. Pre-injection of an SIRT1 inhibitor resulted in a significant increase of p62 levels in theNRplus TNF treatment
group, implicating that SIRT1 regulates autophagy status. In conclusion, NRK1 exists in RGCs and optic nerve axons. NR exerted
protection against axon loss induced by TNF with possible involvement of upregulated NRK1 and SIRT1-autophagy pathway.
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Introduction

Nicotinamide adenine dinucleotide (NAD+) synthesis pathway
has been involved in many biological functions. NAD+ is syn-
thesized by salvage of vitamin precursors, nicotinic acid (NA),
nicotinamide, and nicotinamide riboside (NR). Nicotinamide
phosphoribosyltransferase (Nampt) converts nicotinamide into
nicotinamide mononucleotide (NMN), whereas nicotinamide
riboside kinase 1 (NRK1) converts NR into NMN. Then,

NMN is converted to NAD+ by nicotinamide nucleotide
adenylyltransferase1–3 (Nmnat1–3) [1]. Nmnat1–3 are enzymes
which have been reported to link to axonal protection in dorsal
root ganglia [2–6]. Nmnat1–3 were found to exist in optic nerve
[7–9], and Nmnat2 is required to retinal ganglion cell (RGC)
axon growth [9]. It was reported that cytoplasmic overexpression
of Nmnat1 protected against glaucomatous RGC axon loss [10].
Our previous study demonstrated that overexpression of Nmnat3
protected against glaucomatous RGC axon loss and tumor ne-
crosis factor (TNF)-induced axon loss [8]. On the other hand, a
previous study showed a decrease in NAD level in retina in
DBA/2J mice [11]. This is agreement with our previous study
showing a decrease in NAD level in optic nerve in TNF-induced
axon damagemodel [7]. Interestingly, a recent study demonstrat-
ed a significantly lower plasma nicotinamide concentration in
primary open-angle glaucoma patients comparedwith the control
group [12]. Since oral intake of vitamin B3/nicotinamide in-
creased NAD level in retina and exerted axonal protection in
DBA/2 J mice [11], it is reasonable to postulate that the nicotin-
amide supplementation may have a beneficial effect for certain
glaucomatous damages.
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NR is widely used as an NAD+ precursor supplemen-
tation and has been reported to increase the blood
NAD+ level in humans [13]. NRK1 is the central rate-
limiting enzyme in driving NAD+ synthesis from NR
[14]. However, localizations of NRK1 in retina and op-
tic nerve have not been documented. There have been
several studies suggesting critical roles of NAD+ and its
precursors on autophagy machinery [15–17]. Autophagy
is a cellular process including the clearance of unneces-
sary proteins and maintains homeostasis in several types
of neurons. We and others reported that autophagy
plays crucial roles in certain different optic nerve dam-
ages such as optic nerve crush model, hypertensive
glaucoma model, and TNF-induced axon damage model
[18–21]. For autophagy research, SQSTM1/p62 is used
as a marker and decrease of p62 level is associated with
autophagy activation [22]. In yeast, NR upregulates
NAD+ levels, enhances Sir2 functions, and extends
lifespan [23]. Sirtuin 1 (SIRT1), the mammalian homo-
log of yeast Sir2, can be activated by calorie restriction
[24], NAD+, and its precursors [25]. Thus, the purpose
of present study is to examine the effect of NR on
TNF-induced axonal degeneration and to investigate
whether it alters SIRT1 expression and autophagic sta-
tus in optic nerve. We also examined the localization of
NRK1, which is a downstream enzyme for NR biosyn-
thesis pathway in retina and optic nerve as well as the
alteration of NRK1 expression. Finally, we tested if an
inhibitor of SIRT1 alters autophagy status.

Materials and Methods

Animals

Experiments were carried out on 8-week-old male
Wistar rats. All studies were conducted according to
the ARVO Statement for the Use of Animals in
Ophthalmic and Vision Research and approved by
Ethics Committee of the Institute of Experimental
Animals of St. Marianna Universi ty School of
Medicine. The animals were kept in the controlled
rooms (23 ± 1 °C; humidity at 55 ± 5%; light from
6 a.m. to 6 p.m.).

Intravitreal Administrations

Intravitreal injection of TNF (Sigma-Aldrich, St. Lois,
MO) was performed as described previously [7].
Phosphate-buffered saline (PBS) was used as a control.
Anesthetization with intramuscular injections of a mix-
ture of ketamine-xylazine was conducted. NR triflate
was purchased from Toronto Research Chemicals

(North York, ON, Canada), dissolved in PBS.
Concomitant injection of 2, 20, and 200 pmol of NR
and 10 ng TNF was performed intravitreally. For immu-
noblotting, NR alone injection was also performed. For
the SIRT1 inhibitor study, EX-527 (Sigma-Aldrich) was
dissolved in DMSO and 200 pmol of EX-527 or DMSO
alone was injected intravitreally 10 min before intravit-
real injection of NR plus TNF. One and 2 weeks after
intravitreal injection, the rats were euthanatized with
overdose of sodium pentobarbital and the eyes were
enucleated.

Immunoblotting

Optic nerve specimens (4-mm lengths) were gathered
and homogenized in protein extraction buffer 1 week
after injection. Homogenized samples were then centri-
fuged at 15,000×g for 15 min at 4 °C. Protein concen-
trations were determined with the supernatants. Each
sample (3 μg) was applied and subjected to the mini
gel (Bio-Rad Laboratories) and transferred to enhanced
chemi luminescen t membrane (EMD Mi l l i po re
Corporation, Temecula, CA). The membranes were
blocked with 5% skim milk with tris buffered saline
(TBS) containing Tween-20 and reacted with anti-p62
antibody (MBL Life Science, Nagoya, Japan), anti-LC3
antibody (MBL Life Science), anti-SIRT1 antibody
(Santa Cruz Biotechnology), anti-NRK1 antibody
(Lifespan Biosciences Inc. Seattle, WA) or anti-β-actin
antibody (Sigma-Aldrich). After three times washing,
the membranes were reacted with anti-rabbit or anti-
mouse peroxidase-labeled secondary antibody (MP
Biochemicals, Solo, OH). Immunoblotting was visual-
ized with a chemiluminescence detection system (ECL
Plus Western Blotting Detection Reagents, Amersham
Pharmacia Biotech).

Immunohistochemistry

Three eyes 1 week after intravitreal injection of NR or three
normal eyes were collected and fixed by immersion in 4%
paraformaldehyde, dehydrated, and embedded in paraffin.
Sections were made through the optic disc and blocked with
1% bovine serum (Roche Diagnostics GmbH, Mannheim,
Germany). The primary antibodies were against NRK1
(1:100; LifeSpan BioSciences), neurofilament-L (a marker
of nerve fibers; 1:100; Dako, Tokyo, Japan), or Thy-1 (a
marker of RGC; 1:50; Santa Cruz Biotechnology, TX). The
secondary antibodies were FITC-labeled or rhodamine-
labeled antibodies (1:100; Cappel, Aurora, OH). The
sections were mounted on slides in DAPI-containing
medium with cover glass.
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Quantification of Optic Nerve Axons

Optic nerve specimens (4-mm lengths from 1 mm behind the
globe) were collected and soaked in Karnovsky’s solution for
24 h at 4 °C 2weeks after injection. Several dehydrations were
performed, and samples were embedded in acrylic resin at
70 °C two overnight. Then, samples were sectioned and
stained with 1% paraphenylene-diamine (Sigma-Aldrich) in
absolute methanol [7, 26]. This can stain myelin, and five
black and white images from each eye were obtained at the
center and at each quadrant of the periphery with a light mi-
croscope (Olympus, Tokyo, Japan). These black and white
images (each area is 5850 μm2, and total area is 29,250 μm2

per eye) were used for quantification with the Aphelion image

processing software (ADCIS S.A., Hérouville Saint-Clair,
France). The number of axons was averaged in each eye and
each group, and data were presented as the number per square
millimeter. After quantification, representative color photos
were obtained.

Statistical Analysis

Data are expressed as mean ± SEM. Differences among
groups were analyzed by one-way ANOVA with post-
hoc Tukey’s HSD test or Mann–Whitney method. A
probability value was considered statistically significant
when p < 0.05.

Fig. 1 Paraphenylene-diamine
staining of optic nerve axons
2 weeks after injection. a Control
group. b TNF-injected group. c
2 pmolNR+ TNF-injected group.
d 20 pmol NR + TNF-injected
group. e 200 pmol NR + TNF-
injected group. Scale bar =
10 μm. (f) Morphometric analysis
of axon number. (CTL: n = 5,
TNF: n = 5, 2 pmol NR + TNF:
n = 6, 20 pmol NR + TNF: n = 7,
200 pmol NR + TNF: n = 7) (P#

< 0.0001 vs. CTL, P* < 0.0005
vs. TNF, P** < 0.0001 vs. TNF)
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Results

Effects of NR on TNF-Induced Axon Loss in Optic
Nerve

As shown previously [7], histological findings again
showed substantial degenerative changes and apparent
axon losses after TNF injection (Fig. 1b) compared with
the control (Fig. 1a). Co-injection with 2 pmol NR plus
TNF showed slightly protective tendency (Fig. 1c).
However, this was not statistically significant (p =
0.1850 vs. TNF; Fig. 1f). Co-injection with 20 or
200 pmol NR plus TNF showed noticeable protective
effects compared with the TNF alone injection (Fig.
1d and e, respectively). The quantitative analysis
showed remarkable protective effects against TNF-
induced axon loss, and these were statistically signifi-
cant (20 pmol and 200 pmol NR: p = 0.0002 vs. TNF,
and p < 0.0001 vs. TNF, respectively; Fig. 1f).

Effects of TNF and NR on LC3-II Protein Levels in Optic
Nerve

There was a significant increase in the LC3-II level in
the treatment with 200 pmol NR plus TNF as compared
with those in the treatment with TNF at 1 week
(Fig. 2a). Moreover, 200 pmol NR alone administration
significantly increased the LC3-II level compared with
the control group (Fig. 2b).

Effects of TNF and NR on p62 Protein Levels in Optic
Nerve

In agreement with our previous findings [27], p62 protein level
was significantly increased in optic nerve in TNF-treated group
at 1 week (Fig. 3a). Treatment with 200 pmol NR plus TNF
completely prevented this increase of p62 (Fig. 3a). In addition,
200 pmol NR alone administration significantly decreased p62
protein level compared with the control group (Fig. 3b).

Effects of TNF and NR on SIRT1 Protein Levels in Optic
Nerve

As we recently found [28], no significant change in SIRT1
protein level was seen in between TNF-treated group and
PBS-treated group (Fig. 4a). However, treatment with 200 pmol
NR plus TNF significantly increased the SIRT1 levels com-
pared with TNF alone treatment (Fig. 4a). Moreover, 200 pmol
NR alone administration significantly upregulated the SIRT1
levels compared with the control group (Fig. 4b).

NRK1 in Retina and Optic Nerve

To examine the effect of NR and its metabolic pathway further,
we investigated the localization of NRK1 in the retina and optic
nerve. In the normal retina, the NRK1 immunoreactive pattern
was similar to that of Thy-1 immunoreactivity (Fig. 5, upper
panels). Most NRK1-positive cells were colocalized with Thy-
1-positive cells (Fig. 5, upper panels). The NRK1 immunoreac-
tivity was also observed in the nerve fiber layer, and these were

Fig. 2 Immunoblotting in
samples from optic nerves 1 week
after injection. a Effects of TNF or
200 pmol NR + TNF on LC3-II
protein level (CTL: n = 3, TNF:
n = 3, TNF + NR: n = 3) (P**
< 0.005). (b) Effects of 200 pmol
NR on LC3-II protein level.
(CTL: n = 3, NR: n = 3) (P*
< 0.05)
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colocalized with neurofilament immunoreactivity (Fig. 5, upper
middle panel). In the optic nerve, the immunoreactivity of NRK1
was modest, but some immunopositive fibers were colocalized
with neurofilament immunoreactivity (Fig. 5, lower middle
panel). In the optic nerve after NR treatment, a lot of NRK1
immunopositive fibers were apparently colocalized with neuro-
filament immunoreactivity (Fig. 5, lower panel). In the retina
after NR treatment, similar findings to the normal eyes were
observed (Suppl. Fig. 1).

Effects of TNF and NR on NRK1 Protein Levels in Optic
Nerve

We next investigated the change in NRK1 expression in optic
nerve. There was a tendency of decrease in NRK1 protein
levels after TNF injection (Fig. 6a). Unexpectedly, treatment
with 200 pmol NR plus TNF significantly increased the
NRK1 levels compared with TNF alone treatment (Fig.
6a). Furthermore, 200 pmol NR alone administration

Fig. 4 Immunoblotting in
samples from optic nerves 1 week
after injection. a Effects of TNF
or 200 pmol NR + TNF on SIRT1
protein level. (CTL: n = 4, TNF:
n = 4, TNF + NR: n = 4) (P**
< 0.005). b Effects of 200 pmol
NR on SIRT1 protein level.
(CTL: n = 3, NR: n = 3) (P*
< 0.05)

Fig. 3 Immunoblotting in
samples from optic nerves 1 week
after injection. a Effects of TNF
or 200 pmol NR + TNF on p62
protein level. (CTL: n = 4, TNF:
n = 4, TNF + NR: n = 4) (P**
< 0.005). b Effects of 200 pmol
NR on p62 protein level. (CTL:
n = 5, NR: n = 5) (P*< 0.05)
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significantly upregulated the NRK1 levels compared
with the control group (Fig. 6b).

Effects of an SIRT1 Inhibitor on p62 Protein Level in
the NR plus TNF Treatment in Optic Nerve

To investigate whether an inhibitor of SIRT1 alters au-
tophagy status, pre-injection of EX-527 was performed
before co-injection with 200 pmol NR and TNF. Pre-
injection of EX-527, an inhibitor of SIRT1, significantly
upregulated p62 levels as compared with NR plus TNF
treatment group (Fig. 7).

Discussion

The present study revealed that intravitreal injection of NR
exerted substantial axonal protection in TNF-induced optic
nerve degeneration. Recent studies have demonstrated bene-
ficial effects of NR on central nervous system. For example,
NR treatment prevented dopaminergic neuronal loss in
Parkinson’s disease model flies [29]. Moreover, NR treatment
ameliorated selective cognitive impairment in aged mice and
decreased the number of amyloid beta plaques in cortex of
Alzheimer’s disease model mice [30]. Furthermore, NR treat-
ment decreased glial activation and delayed motor neuron loss

Fig. 5 Immunohistochemistry in retina and optic nerve. NRK1-positive
cells were colocalized with Thy-1-positive cells in normal retina. NRK1
immunoreactivity was colocalized with neurofilament immunoreactivity
in normal retina. A few NRK1 immunoreactivities were colocalized with

neurofilament immunoreactivity in normal optic nerve, but a lot of NRK
immunopositive fibers were colocalized with neurofilament immunore-
activity in the NR-treated optic nerve. Arrows indicate colocalization.
Scale bar = 50 μm
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in the spinal code of amyotrophic lateral sclerosis model mice
[31]. In axons, it was previously reported that NR significantly
delayed axonal degeneration in dorsal root ganglia neurons
[5]. More recently, it was shown that NR prevented axonal
degeneration induced by excitotoxicity in cortical neurons
[32]. Collectively, NR may have a protective effect on several
types of axons against distinct injury models.

Our previous study suggested that upregulated p62 levels
indicate impairment of autophagic flux in optic nerve [8, 18,
27]. In the present study, upregulated p62 levels induced by
TNF were significantly prevented by NR. NR significantly
increased LC3-II protein levels in both the TNF-treated group
and the control group. NR also significantly reduced p62 pro-
tein level compared with the basal level, implicating that NR
can enhance autophagic flux. It is worthy to note that nicotin-
amide protects against palmitate-induced hepatotoxicity
through SIRT1-dependent autophagy induction [33]. Since
SIRT1 activators stimulate the autophagy [34, 35] and in-
creased NAD+ stimulates SIRT1 activity [36], we speculated
that this pathway may exist between NR and autophagy in-
duction. Therefore, we further examined SIRT1 expression
and found that NR upregulated SIRT1 protein level in optic
nerve. Consistently, a very recent study demonstrated that
treatment of NR upregulated SIRT1 activity and decreased
neuroinflammation in the brains of Gulf War Illness mice
[37], suggesting that NR can activate SIRT1 in certain neuro-
nal system as well as in optic nerve. Moreover, our recent
study demonstrated that an SIRT1 activator exerted axonal
protection with upregulated autophagic status [28].
Furthermore, the current study found that the SIRT1 inhibitor
significantly upregulated p62 level in the NR plus TNF treated

group, implicating that inhibition of SIRT1 leads to autophagy
impairment. Taken together, these findings suggest that NR
attenuated axonal degeneration via SIRT1-autophagy

Fig. 6 Immunoblotting in
samples from optic nerves 1 week
after injection. a Effects of TNF
or 200 pmol NR + TNF on NRK1
protein level. (CTL: n = 4, TNF:
n = 4, TNF + NR: n = 4) (P*
< 0.05). b Effects of 200 pmol
NR on NRK1 protein level.
(CTL: n = 3, NR: n = 3) (P*
< 0.05)

Fig. 7 Immunoblotting in samples from optic nerves 1 week after
injection. Effects of EX-527 on p62 protein level in the 200 pmol NR
plus TNF-treated group. (pre-injection of DMSO and TNF + NR: n = 4,
pre-injection of EX-527 and TNF + NR: n = 4) (P* < 0.05)
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pathway. In line with this concept, a previous study dem-
onstrated the neuroprotective activity of cilostazol via
SIRT1-autophagy activation in rat Parkinson’s disease
model [38].

Although Nmnats were found in optic nerve [7–9],
NRK1 has not been examined in retina and optic nerve.
Thus, the present study firstly showed that NRK1 exists
in RGCs and optic nerve axons. This finding makes it
possible that locally applied exogenous NR can accelerate
NAD biosynthesis and activate downstream effectors.
Surprisingly, NR administration clearly boosted NRK1
levels in the TNF-treated eyes as well as the control eyes.
The mechanism of this regulation is unclear, while the
regulation of NRK2 in muscle has been proposed in re-
sponse to various conditions [39]. One hypothesis posits
that exogenous NR may recruit more NRK1, thereby ac-
celerating conversion to downstream effectors.

In conclusion, NR exerts axonal protection against TNF-
induced optic nerve degeneration with the possible upregulat-
ed NRK1 and through SIRT1-autophagy pathway.
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