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Abstract

Transporters are essential in homeostatic exchange of endogenous and exogenous substances at the systematic, organic,
cellular, and subcellular levels. Gene mutations of transporters are often related to pharmacogenetics traits. Recent
developments in high throughput technologies on genomics, transcriptomics and proteomics allow in depth studies of
transporter genes in normal cellular processes and diverse disease conditions. The flood of high throughput data have
resulted in urgent need for an updated knowledgebase with curated, organized, and annotated human transporters in an
easily accessible way. Using a pipeline with the combination of automated keywords query, sequence similarity search and
manual curation on transporters, we collected 1,555 human non-redundant transporter genes to develop the Human
Transporter Database (HTD) (http://htd.cbi.pku.edu.cn). Based on the extensive annotations, global properties of the
transporter genes were illustrated, such as expression patterns and polymorphisms in relationships with their ligands. We
noted that the human transporters were enriched in many fundamental biological processes such as oxidative
phosphorylation and cardiac muscle contraction, and significantly associated with Mendelian and complex diseases such as
epilepsy and sudden infant death syndrome. Overall, HTD provides a well-organized interface to facilitate research
communities to search detailed molecular and genetic information of transporters for development of personalized
medicine.
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Introduction

Transport proteins (transporters) are membrane channels and

molecular pumps to facilitate exchange of ions, small molecules,

macromolecules, and drugs across membranes [1]. The movement

of biochemical compound through membrane is critical to

absorption, distribution, metabolism, and excretion (ADME) of

nutrients, neurotransmitters, and drugs [2–5,6]. The dynamic

partnerships of transporter with other signaling molecules in

subcellular locations are regarded as essential processes for cellular

function. Attenuation of transporter gene functions by polymor-

phisms often contributes to complex human diseases and

individual drug responses [4,5–9]. How do transporters cooperate

with intracellular signaling systems and metabolic systems to give

precise control of transmembrane trafficking? Although crystal

structures have shed light on the regulatory mechanisms of a few

individual transporters as gateway for metabolites and signals in

the past decade [10], the global features of transporter genes are

still not clear. Recent advances in high throughput technologies,

such as mass spectrometry (MS), genome-wide association study

(GWAS), and next-generation sequencing (NGS), provide abun-

dant complementary data to study transporting processes or the

effects of transporters on normal cellular processes and various

disease states [11,12]. A comprehensive database of human

transporters is required to incorporate the most updated high

throughput data in an intuitive search engine.

There are two types of previous transporter databases: general

transporter collections and gene family specific collections. The

earlier general transporter databases include TCDB (Transporter

Classification Database), TransportDB, KEGG (Kyoto Encyclo-

pedia of Genes and Genomes), HMTD (Human Membrane

Transporter Database), and TSdb (Transporter substrate data-

base). TCDB is dedicated to transporter classification based on

functional and phylogenetic information [13], which contains 513

human, 364 mouse, and 165 rat transporters. TransportDB

focuses on prediction cytoplasmic membrane transporters for

comparative studies with 1,022 human and 1,090 mouse

transporters [14]. In KEGG PATHWAY and BRITE database,

there are 870 transporter orthology groups in prokaryotes and

eukaryotes, which maps to 420 human genes [15]. HMTD

(Human Membrane Transporter Database) is specific for drug

transport studies and pharmacogenomics with 287 human

transporters [16]. TSdb (Transporter substrate database) is

constructed to annotate substrates of transporters [17]. Another
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type of gene family specific transporter databases only focus on

specific transporter families including ABCdb (ATPbinding

cassette transporters database) [18], MTDB (Medicago truncatula

transporter database) [19], and SLCdb (Caenorhabditis elegans

SLC homologue database, http://www.wormslc.org/). However,

most of the transporter databases were derived from low

throughput data, and without integrating high throughput

expression and polymorphism data, or without systematically

updating for recent pharmacogenetic data.

A lack of integration of these high throughput data across

functional, pharmaceutical, and genetic studies hampers our

understanding of the molecular mechanisms of transporter related

diseases. Some transporters can influence drug efficacy, and their

activity can also be affected by some drugs, thus when two or more

drugs are coadministered, their dosage may need adjustment [20].

In addition, natural variants such as single-nucleotide polymor-

phism (SNP) may also affect transporter activity [21], and may

sometimes make the protein more sensitive to drug [22]. Data

integration will be useful for generating new hypothesis, such as

dosage and safety warnings on drug coadministration or popula-

tion polymorphism, refining our understanding of cellular

transporting system in human disease states and development of

transporter gene based pharmacogenetics [23]. To provide insight

into human transporter systems, we collected 1,555 human non-

redundant transporter genes and constructed Human Transporter

Database (HTD), a repository for dynamic storage of the ever-

increasing bioinformatics on transporter genes in light of

personalized medicine.

We extensively annotated human transporter genes (HTGs)

from the perspective of sequences, functions, drugs, diseases,

pharmacogenetics, genetic variations, interactions, and gene

expressions. We noted that the human transporters were enriched

in fundamental biological processes and involved in a number of

complex human diseases. Overall, HTD provides a publicly

accessible resource and a searchable database for communities to

explore the human transporters gene families, functional sub-

strates, expressions and polymorphisms in a global way. It is freely

available at http://htd.cbi.pku.edu.cn.

Materials and Methods

Collection of Human Transporter Genes
We specifically defined transporters as the membrane proteins

facilitating materials (mostly molecules or ions) transporting across

membrane. In order to get precise descriptive keywords for

transporters, we extensively reviewed 1,178 human transporter

genes integrated from NCBI Gene database and four relevant

transporter datasets: (i) Transporter classification (TC) systems; (ii)

TransportDB; (iii) Transporter family and gene list from HMTD;

and (iv) KEGG BRITE transporter (ko02000) and solute carrier

family (ko02001). Based on the transporter definition, gene

description, and GO annotation in NCBI Gene database, we

compiled 54 keywords precisely related to transporter gene names

and functions (Table S1). In this process, we excluded some

keywords irrelevant with membrane transporting such as ‘‘fatty

acid binding’’, which mainly represented apolipoproteins, the

proteins bind lipids and transport lipid through circulatory system,

and are seldom embedded in cellular membranes for transporting

functions.

Using the 54 keywords, we utilized NCBI E-search interface to

implement complex query against NCBI Gene database. In total,

1,592 human genes were obtained. In this process, pseudogenes

were included, as they may play regulatory roles on transporter

related biological processes [24]. Based on gene description, alias,

GO annotation, and domain feature, we manually removed those

genes irrelevant with transporter function. Further we performed

BLAST similarity alignment with these refined genes against all

protein sequences in the human genome to include less annotated

genes but with high sequence similarities with curated transporter

genes. Through additional manually checking, 1,555 human

transporter genes with high confidence were stored in our HTD

database.

Gene Annotation
To systematically mine the biological mechanism related to

transporter genes, we annotated all transporters in our HTD with

extensive functional information. The statistics of those annotation

entries in HTD was listed in Table S2. We first extracted basic

information including gene symbol, annotation, and function from

NCBI Gene database [25], GO annotation, protein sequence and

features from UniProt [26], protein domain annotation from

InterPro [27], Homolog GeneID mapping data from NCBI

HomoloGene [28], SNPs with minor allele frequency or

population genetic information from dbSNP [29] and HapMap

[30], CNV data from DGV (31), protein-protein interaction

information from HPRD [32], expression data from NCBI

UniGene [25], Allen Brain Atlas [33] and supplementary

materials [34,35], haplotype, epigenetics and regulation informa-

tion from UCSC and ENCODE [36], and drug information from

Pharmacogenomics Knowledge Base (PharmGKB) [37], Com-

parative Toxicogenomics Database (CTD) [38] and DrugBank

[39], and then parsed the data and rearranged it into well-

formatted tables. Transporter substrates were integrated from

transporter substrate database (TSdb) [17], whose substrates and

drugs of a given transporter were mapped to KEGG LIGAND

database. In addition, enriched pathways and diseases information

was annotated by KOBAS 2.0 [40].

Interface Development of Database
The data of HTD is stored in a MySQL relational database

[41–43]. As shown in Figure S1, to balance the query efficiency

and data storage, we integrated multiple dimensional data into

some tables, which was easier for update and more flexible to

integrate other potential data source. In addition, we mainly used

the NCBI Gene ID to crosslink the data tables in our database.

The web interface is developed with PHP on Apache server. To

achieve a better organization, development and maintenance, we

designed the web application into a three-level architecture

carefully, including: business layer, which parsed input query

and did SQL queries, output function layer, which did sorting and

table outputting, and the top web representation layer, which

included the frame and styles, and also did some simple

redirection. The main interfaces of HTD are user-friendly in

browsing the classified transporter genes, querying keywords, and

searching sequences for transporter genes (Figure 1).

Results and Discussion

Combining of automated keywords query, sequence similarity

search and manual curation on transporters, we collected 1,555

human non-redundant transporter genes to develop the Human

Transporter Database (HTD). To provide a reference, we also

collected 1,422 and 1,453 transporter genes for mouse and rat,

respectively, in a similar way. A quick exploration showed that 383

(80 protein-coding genes and 303 pseudogenes) human transporter

genes (HTGs) were only found in human genome in comparison

with transporters from the two rodent genomes, which might be

either primate or human specific transporters. To better organize

Human Transporter Gene Database
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our curated transporter genes, we classified HTGs into ten

categories such as ‘‘ATP related’’, ‘‘Channel’’, and ‘‘Solute Carrier

Family’’ with 98 terms specific for Human Transporters. Based on

the statistics on the ten categories (Table 1), 70% of HTGs were

from ‘‘ATP related’’, ‘‘Channel’’, and ‘‘Solute Carrier Family’’.

We conducted a semi-automatic pipeline to map transporter genes

to known transporter classification systems, which mainly included

BLAST search and manual checking for TC system, and ID

mapping for GO system and KEGG BRITE system. As shown in

Figure S2, the number of genes in each TC second-level category

Figure 1. Web interface in HTD. (A) A typical entry for transporter gene (B) Text search; (C) Browsing Human Transporter classification (D) BLAST
interface; (E) Chromosome distribution for all the human transporter genes.
doi:10.1371/journal.pone.0088883.g001
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was counted after mapping to TC system, and it showed that

majority (60%) of HTGs were from 2.A (Porters (uniporters,

symporters, antiporters)), 1.A (a-type Channels), and 3.A (P-P-

bond-hydrolysis-driven transporters). Indeed, these three TC

categories are almost corresponding to ‘Solute Carrier Family’,

‘Channel’ and ‘ATP related’ in our classification system.

Information on the Transporter Gene Page
In each gene page, detailed information of general functions,

pathways, genetic polymorphisms, phamacogenetics, substrates

were listed; and cross-references to their origin databases such as

UniProt, PharmGKB, and DrugBank were included (Figure 1A).

To better organize information from large scale studies, we

collapsed detailed information for protein sequences, features or

domain information, protein-protein interactions, and gene

expression profiles by default. Clicking on the expanding links ‘+
’ of each annotation can bring the graphic views of allele

frequency, genotype frequency for SNPs and tissue expression

profile of each transporter. Users can expand all the annotation in

gene page by clicking ‘‘Expand all’’ button in the top. When

exploring each type of annotation, users can click the up/down

arrow in the right of the table to reach specific annotation quickly

(Figure 1A).

For query speed, the full SNP annotation for a transporter gene

was shown in another similar page, which allowed users to filter

and only leave exonic or nonsynonymous SNPs and to sort those

related SNPs by position, minor allele frequency, difference on

population allele frequency, heterozygosity, or functional annota-

tion. The functional annotation for each SNP was mainly based on

ANNOVAR [44], including intronic/exonic, synonymous/non-

synonymous, SIFT score [45] and PolyPhen-2 score [46,47].

Browsing the Classified Transporter Genes
HTD supports a variety of ways to browse transporter genes,

including the hierarchical classification and chromosome distribu-

tion. The classification page contains four parts of classification

systems, including classification in HTD, TC classification, KEGG

BRITE and Gene Ontology, which could be easily chosen by users

(Figure 1C). The classification in HTD was mainly based on gene

name, domain information and GO annotation, which might

correspond to categories in the standard TC system. Each

transporter under a specific category is linked to detailed

information page of the gene. In addition, the genomic

distribution of ten categories of HTGs in our HTD was plotted

in 24 chromosomes with different colors (Figure 1E). Users can

click on each cytoband in chromosome to access all the

transporters in the region.

Table 1. The statistics for transporter genes in ten HTD
categories for Human, Mouse and Rat.

Category Number of transporter genes

Human Mouse Rat

ATP-binding cassette 222 197 198

Aquaporin 19 13 13

Channel 427 397 442

Cytochrome C oxidase 75 54 63

Defensin 72 102 60

Gap junction 28 23 24

Mitochondrial translocase 39 36 42

Nucleoporin 39 36 27

Solute carrier family 454 404 430

Others+Unclassified 170 160 154

Total 1555 1422 1453

doi:10.1371/journal.pone.0088883.t001

Figure 2. Distribution of nonsynonyous SNP and CNV density
on ten categories of transporter genes in HTD. The x-axis shows
the ten transporter categories, and y-axis shows the corresponding
value: (A) the density of nonsynonymous SNPs, normalized by dividing
CDS length, (B) the density of CNVs, normalized by dividing gene total
length. Both subfigures are notched boxplot along with scattered real
sample points in purple. The thick band inside the box is the median,
and the bottom and top of the box are the first quantile (Q1) and the
third quantile (Q3). The ends of the whiskers represents data within 1.5
*IQR ( =Q3–Q1) from the lower quantile (Q1) or the upper quantile (Q3).
The notch is always symmetric around the median, with deviation from
median by 1.58 *IQR/sqrt(n), where n is the sample size. The notch
approximately shows the confidence interval of median, so that if the
notches of two boxes do not overlap, their medians are usually
significantly different. Three horizontal orange lines behind the boxes
show the median and notch range of the ‘‘Total’’ box.
doi:10.1371/journal.pone.0088883.g002
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Keyword based Search of Transporter Proteins
A quick search box on the top right of each page was useful to

search by transporter names or Entrez Gene IDs quickly.

Advanced searches were constructed to query HTD by typing

their gene name, accession number from NCBI and EBI gene and

protein databases and their functional characteristics including

chromosome location, interaction partner, biological process, and

disease or drug (Figure 1B).

Sequence based Search of Transporter Proteins
In BLAST page, users can evaluate the transporters with input

sequences. The homologs of input sequence are searched among

the transporters in HTD using BLAST. The sequence alignment

option can be modified with E-value and identity score. This

database also provides bulk downloads of all nucleotide and

protein sequences in a FASTA format for an advanced local

sequence search (Figure 1D).

Comparison to Other Public Transporter Resources
Our HTD shares 944 transporters with the other four

databases, which account for 60.7% in HTD and 80.1% for the

total in other four databases. We have included 611 unique

membrane HTGs (245 protein-coding genes and 366 pseudo-

genes) that were not found in previous transporter databases

(representing 36.3% of our list). Among the 245 coding genes,

there are 89 ion channels (including 9 anoctamins, a group of

calcium activated chloride channels), 44 defensins, 20 nuclear pore

proteins, 26 cytochrome c oxidases, 11 solute carrier family (SLC)

proteins, 9 mitochondrial membrane translocases, 7 ATP-

synthases, 5 aquaporins, 2 complement components (C8, and

C9), 2 blood group-related proteins, and a scavenger receptor.

Thus, our collection includes more ion channels, SLC family

proteins and other proteins which are not included in other

databases.

As shown in Figure S3, 234 genes from the other four databases

were not included in our HTD. In detail, these genes contain 32

fatty acid binding proteins (including 8 lipocalins), 20 BCL family

proteins, 17 annexins, 16 genes (including motor proteins) which

transport other proteins, 15 GPCR proteins, 14 proteins from

membrane-spanning 4-domains subfamily, 13 signal transduction

kinases (including MAPK), 13 peroxisomal biogenesis factors, 11

apolipoproteins, 9 signal recognition particles, 5 claudins, 3

lysosomal-associated membrane proteins, 2 cells cytochrome b

proteins, 2 odorant binding proteins, and 2 nucleoside kinases.

The reasons that we do not include these proteins are as following:

1, not transmembrane transporters, but localizing to cytoplasm or

plasma, such as apolipoproteins; 2, some proteins such as motor

proteins, which are just associated with cytoplasmic vesicle

transporting but not transmembrane transporting; 3, signal

transduction proteins such as GPCRs and kinases, which do not

participate the transmembrane transporting; 4, other proteins

whose substrates locate on or in transmembrane.

To compare with TCDB, we downloaded all the human

transporters from TCDB (http://www.tcdb.org/hgnc_explore.

php) and did one by one gene symbol comparison. We found

additional transporters that are not in TCDB, e.g. AQP3 and

AQP7. If we include human pseudogene, there are 952 HTD

unique entries. If we exclude pseudogene, there are still 579 HTD

unique genes not including in TCDB. The complete mapping

information between our HTD and TCDB can be found in our

web site (http://htd.cbi.pku.edu.cn/download/htd2tcdb.xls). In

addition, we also built the phylogenetic trees for all the categories

based on our HTD classification system. All the multiple

alignment results can be found in our updated web site (http://

htd.cbi.pku.edu.cn/download/multiple_alignment_and_ML_tree.

zip) that will help users to gain more insight for the evolutionary

aspect of each transporter categories. Evolutionarily, HTD is

complementary to TCDB.

Statistical Analyses on Expression, Variation, Function,
Disease Profiles
Based on our collected heterogeneous data, we conducted

systems biology data integration which might remove bias

resulting from any single technology platform and provide

additional insight into the genetic etiology not observed by any

individual study [48,49]. The expression level changes of

transporters could cause wide effects on compound and drug

metabolism. In helping users to gain an overview for the gene

expression pattern of a given transporter, we integrated publicly

available gene expression profiling data of the transporters.

Overall, the expression data integration was mainly based on ID

mapping. The EST expression levels in different tissues were

integrated from NCBI UniGene, which could be directly linked to

NCBI Entrez Gene ID. Mouse brain region expression profiles

were from Allen Brain Atlas [33], which were mapped to human

Gene ID based on homology information from NCBI Homo-

loGene. The RNA-seq expression data was extracted from

Table 2. Top ten enriched diseases of human transporter genes.

Disease Database P Value Q Value*

Epilepsy GAD 1.68E-14 7.06E-13

Sudden infant death syndrome FunDO 5.26E-10 1.41E-08

Other nervous and sensory system diseases KEGG DISEASE 2.53E-08 5.20E-07

Long QT syndrome FunDO 8.40E-08 1.61E-06

Congenital disorders of ion transport and metabolism KEGG DISEASE 3.09E-07 5.57E-06

Drug abuse FunDO 3.52E-07 6.11E-06

Atrial fibrillation KEGG DISEASE 4.23E-07 6.92E-06

Brugada syndrome (BRS) KEGG DISEASE 4.23E-07 6.92E-06

Serum uric acid GAD 8.96E-07 1.39E-05

Nervous system diseases KEGG DISEASE 2.05E-06 2.88E-05

*Benjamini-Hochberg Corrected P Value.
doi:10.1371/journal.pone.0088883.t002
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supplementary materials [34,35], which were followed by ID

mapping from Ensembl Gene ID or UCSC Gene ID to Entrez

Gene ID. Transporters with drug targets were reported more

commonly to express in many tissues such as intestine, liver,

kidney, and brain for drug absorption and excretion. Based on the

brain gene expression data from Allen Brain Atlas, we compared

the expression levels of transporters with non-transporter genes.

We applied Fisher’s exact test on a 2-by-2 contingency table

counting the gene number of transporter or non-transporter genes

with low (,=5 in 100 scale) or high (.5 in 100 scale) expression

level. In almost all brain regions, the proportion of mouse

transporter genes with low expression level is significantly smaller

than non-transporter genes. This indicated that transporter genes

overall express higher than other genes in brain regions (Figure

S4). Additionally, based on RNA-seq data for human tissues, we

observed similar expression pattern in various brain regions when

comparing to other tissues or cell lines (Figure S5) [34].

The genetic polymorphisms in transporters often have direct or

adverse effects on the pharmacokinetics, drug-drug interactions,

and personalized drug treatments [50]. The integration of

genetics, disease, and drug information related to transporters

provides an overview for the therapeutic safety and efficacy of

drugs in various diseases. Based on population SNP information

from dbSNP and HapMap, 1,279 genes (82.3%) from 1,555

human transporters overlapped 1,201,561 SNPs, in which 35,358

SNPs are exonic and 19,183 are nonsynonymous. When focusing

on nonsynonymous SNPs, the HTGs from ‘‘Cytochrome c

oxidase’’, ‘‘Defensin’’, and ‘‘Mitochondrial translocase’’ contained

significantly less nonsynonymous SNPs in comparison with other

transporter genes (Figure S6A). To control the potential influence

of CDS length, which was shown different between categories

(Figure S6B), we calculated the SNP density by dividing gene CDS

length. After normalization, the average nonsynonymous SNP

density for ‘‘Defensin’’ was marginally significantly higher than

others (Wilcoxon rank sum test, p-value = 0.078), and ‘‘Channel’’

has lower SNP density (p-value = 2.5e-5) (Figure 2A). Copy-

number variations (CNVs) refer a structure variation resulting gain

or loss of copies of one or more sections of chromosome. Based on

the integrated CNV data from DGV database, 855 genes (55.0%)

from 1,555 human transporters were overlapped with known

CNV regions. With the same analysis approach, after controlling

gene total length (Figure S6C, D), CNV density was found

significantly higher in ‘‘Defensin’’ (p-value = 7.0e-12), and lower in

‘‘Cytochrome c oxidase’’ (p-value = 3.1e-03) and ‘‘Mitochondrial

translocase’’ (p-value = 1.5e-03) (Figure 2B). These results might

suggest that ‘‘Defensin’’ genes were subjected to weaker negative

selection than other transporter genes.

Further functional enrichment analyses showed that 1,555

HTGs were enriched in various cellular processes. Some of the

highlights include oxidative phosphorylation, cardiac muscle

contraction, Parkinson’s disease, vibrio cholerae infection, mineral

absorption, collecting duct acid secretion, synaptic vesicle cycle,

ABC transporter, Alzheimer’s disease, and bile secretion (all FDR

corrected p-value ,1e-16). Furthermore, we found that HTGs

were mostly enriched in neural disease, drug abuse, and other

metabolic disorders such as epilepsy, sudden infant death

syndrome, long QT syndrome, and congenital disorders of ion

transport and metabolism (Table 2). With manually integrated

information according to OMIM, GAD, and MeSH, 215 HTGs

were related to 21 diseases categories. There were 101 HTGs that

are related to ‘‘nervous system diseases’’, 79 HTGs related to

‘‘congenital, hereditary, and neonatal diseases and abnormalities’’,

58 HTGs related to ‘‘nutritional and metabolic diseases’’, and 43

HTGs related to ‘‘cardiovascular diseases’’ (Figure S7A). To get an

overview of natural polymorphisms on disease associated trans-

porters we counted the number of non-synonymous mutations and

CNVs on the HTGs and normalized by length. When comparing

to all HTGs, most disease-related HTGs tended to have longer

CDS length, among which HTGs related to ‘‘congenital,

hereditary, and neonatal diseases and abnormalities’’ and ‘‘nutri-

tional and metabolic diseases’’ were found to have significantly

longer CDS (Wilcoxon rank sum test, p-value = 8.5e-9 and 2.6e-

03) (Figure S7B). HTGs related to ‘‘bacterial infections and

mycoses’’ and ‘‘respiratory tract diseases’’ were found to have

significantly higher nonsynonymous SNP density (p-value = 7.3e-

03 and 8.6e-03), while HTGs related to ‘‘mental disorders’’ tended

to have lower nonsynonymous SNP density (p-value = 0.086)

(Figure S7C). Most of 21 disease categories showed similar

distribution on the density of CNVs involved with HTGs (Figure

S7D).

Integrated Analyses on Variations and Drugs of Human
Transporters
As HTGs may play the important roles in drug metabolism, we

integrated pharmacogenetics and drug information from

PharmGKB, CTD, and DrugBank, which was also mainly based

on NCBI Gene ID mapping. These databases told about the

relationship between a drug or chemical and a gene. Due to the

statistical power on the number of related genes for a chemical,

here we only showed the analysis results based on CTD annotation

data. In Figure S8A, the numbers of related HTGs on top 30 types

of chemicals with at least 60 related HTGs were plotted. The

result indicated that HTGs are highly related to the drugs such as

Acetaminophen (pain reliever), Phenobarbital (anticonvulsant),

and Valproic Acid (anticonvulsant). We further calculated the

nonsynonymous SNP density and CNV density for these groups of

HTGs, and found that ‘‘Ozone’’-related transporter genes had

significantly longer CDS than other transporter genes (Wilcoxon

rank sum test, p-value = 1.1e-03) (Figure S8B), and ‘‘Aflatoxin

B1’’-related transporter genes had significantly higher nonsynon-

ymous SNP density than others (p-value = 7.8e-03) (Figure S8C).

When checking about CNV, ‘‘Ozone’’-related and ‘‘bisphenol A’’-

related HTGs tended to have higher CNV density, but not

significantly (p-value = 0.124 and 0.314), while ‘‘Sodium Selenite’’-

related HTGs had lower CNV density, which was marginally

significant (p-value= 0.057) (Figure S8D).

Conclusion and Future Direction

HTD is a comprehensive knowledge-base of Human Trans-

porter resource with extensive pharmacogenetic and genomic

annotations. HTD will aid personalized drug development in

keeping pace with high-throughput NGS data related to trans-

porters and be updated periodically. Additionally to those

integration issues, new tools like literature mining on transporter

substrate relationship will be developed to enhance specificity in

Human Transporter annotations, and more convenient online

analytic tools will be developed to assist online data visualization.

Supporting Information

Figure S1 Diagram of Internal Table Structure of HTD.
The table names are shown in the cells with blue background.

Those cells filled in red are the major cross-link fields between

tables; the two filled in yellow (HomoloGene table) are cross-links

for multiple species.

(PDF)
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Figure S2 Data statistics based on TC system. The

transporter genes were classified into TC system by BLAST and

manually checked for three species. The amounts in TC system

level 2 categories are shown in the graph (The level 2 categories

are: 1.A: a-Type Channels; 1.B: b-Barrel Porins; 1.C: Pore-

Forming Toxins (Proteins and Peptides); 1.F: Vesicle Fusion Pores;

1.H: Paracellular Channels; 2.A: Porters (uniporters, symporters,

antiporters); 3.A: P-P-bond-hydrolysis-driven transporters; 3.D:

Oxidoreduction-driven transporters; 4.C: Acyl CoA ligase-coupled

transporters; 5.B: Transmembrane 1-electron transfer carriers;

8.A: Auxiliary transport proteins; 9.A: Recognized transporters of

unknown biochemical mechanism; 9.B: Putative transport pro-

teins).

(PDF)

Figure S3 A venn diagram comparison of human
transporter genes in HTD with other four popular
transporter databases.
(PDF)

Figure S4 Gene expression patterns in different brain
regions. The expression patterns of human transporter genes (in

red) were shown in different mouse brain areas along with all

genes (in black) as background based on mouse brain region

expression profiles described in Allen Brain Atlas data. The p-

values from Fisher’s exact tests demonstrate the decreased

proportion of low expression level (scaled expression level 0,5)

of transporter genes compared with all background genes.

(PDF)

Figure S5 The Gene expression patterns in different
tissues. The expression patterns of human transporter genes (in

red) were shown in different tissues along with all genes (in black)

as background based on the data from one RNA-seq paper [34].

The p-values from Fisher’s exact tests demonstrate the decreased

proportion of low expression level (RPKM 0,5) of transporter

genes compared with all background genes.

(PDF)

Figure S6 Distribution of SNP, CNV count and gene
length on ten categories of transporter genes in HTD.
The x-axis shows the ten transporter categories, and y-axis shows

the corresponding value: (A) the number of nonsynonymous SNPs

on gene CDS region, (B) gene CDS length, (C) the number of

CNVs overlapping the total-length gene, (D) gene total length. All

four subfigures are standard notched boxplot with scattered real

sample points in purple. The thick band inside the box is the

median, and the bottom and top of the box are the first quantile

(Q1) and the third quantile (Q3). The ends of the whiskers

represents data within 1.5 *IQR (=Q3–Q1) from the lower

quantile (Q1) or the upper quantile (Q3). The notch is always

symmetric around the median, with deviation from median by

1.58 *IQR/sqrt(n), where n is the sample size. The notch

approximately shows the confidence interval of median, so that

if the notches of two boxes do not overlap, their medians are

usually significantly different. Three horizontal orange lines show

the median and notch range of the ‘‘Total’’ box.

(PDF)

Figure S7 Distribution of gene count, gene length, SNP
and CNV density on transporters related to different
disease categories. The x-axis shows 21 disease categories, and

y-axis shows the corresponding value: (A) the number of related

genes for each disease category, (B) gene CDS length, (C) the

density of nonsynonymous SNPs on gene CDS length, (D) the

density of CNVs on gene total length. Except the first barplot

shows the number of genes related to each disease category, the

other three subfigures are standard notched boxplot with scattered

real sample points in purple. Three horizontal orange lines show

the median and notch range of the ‘‘Total’’ box. The meaning of

notched boxplot representation is described in figure legends for

Figure S6.

(PDF)

Figure S8 Distribution of gene count, gene length, SNP
and CNV density on transporters related to some
chemicals. The x-axis shows top 30 chemicals related with most

transporter genes, and y-axis shows the corresponding value: (A)

the number of related genes for each disease category, (B) gene

CDS length, (C) the density of nonsynonymous SNPs on gene

CDS length, (D) the density of CNVs on gene total length. Except

the first barplot shows the number of genes related to a chemical,

the other three subfigures are standard notched boxplot with

scattered real sample points in purple. Three horizontal orange

lines show the median and notch range of the ‘‘Total’’ box. The

meaning of notched boxplot representation is described in figure

legends for Figure S6.

(PDF)

Table S1 Curated keywords for literature searching
and corresponding category in HTD.

(DOCX)

Table S2. Annotation entry statistics for 1555 human
transporter genes.

(DOC)
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