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ABSTRACT

Affinity maturation of the humoral immune re-
sponse depends on somatic hypermutation (SHM)
of immunoglobulin (lg) genes, which is initiated by
targeted lesion introduction by activation-induced
deaminase (AID), followed by error-prone DNA repair.
Stringent regulation of this process is essential to
prevent genetic instability, but no negative feedback
control has been identified to date. Here we show
that poly(ADP-ribose) polymerase-1 (PARP-1) is a key
factor restricting AID activity during somatic hyper-
mutation. Poly(ADP-ribose) (PAR) chains formed at
DNA breaks trigger AID-PAR association, thus pre-
venting excessive DNA damage induction at sites of
AID action. Accordingly, AID activity and somatic hy-
permutation at the Ig variable region is decreased by
PARP-1 activity. In addition, PARP-1 regulates DNA
lesion processing by affecting strand biased A:T mu-
tagenesis. Our study establishes a novel function of
the ancestral genome maintenance factor PARP-1 as
a critical local feedback regulator of both AID activity
and DNA repair during Ig gene diversification.

INTRODUCTION

Genome maintenance is essential for the prevention of can-
cer and early aging (1,2). To deal with the multitude of
endogenous and exogenous threats to genome integrity,
a limited set of pathways with the capacity to repair de-

fined lesions has evolved, which is regulated by lesion
type, cell cycle phase and checkpoint signaling. Poly(ADP-
ribose) polymerase (PARP) proteins are evolutionarily old
genome maintenance factors contributing to some of these
repair pathways and their control, among other functions
in transcription, epigenetics and immune homeostasis (3,4).
PARPs bind to single strand breaks in the DNA, where
they catalyze the transfer of ADP-ribose units from NAD*
to themselves and other acceptor proteins, forming long
branched poly(ADP-ribose) polymers (PAR) that lead to
the local recruitment and control of PAR-binding repair
factors (5). PARP-1, the founding member of a family of
presently 18 PARPs, is responsible for ~90% of PAR syn-
thesis upon DNA damage (6) and is thus a key DNA repair
and genome maintenance factor.

In the adaptive immune system of vertebrates, targeted
genetic changes of intricate complexity allow for the for-
mation of antigen receptors capable of detecting and elimi-
nating virtually all pathogens (7,8). V(D)J recombination in
B and T cell precursors in primary lymphoid organs com-
bines a modular architecture of antigen receptor gene loci
with the capacity of a hijacked transposase (Ragl/2) and
highly erroneous non-homologous end joining (NHEJ) to
effect gene recombination for the generation of a multitude
of antigen receptors (9). Ig gene conversion occurring in
some farm animals such as chickens may modify the resul-
tant V(D)J joint of Ig genes via rather promiscuous homol-
ogous recombination that leads to the integration of seg-
ments from variant upstream pseudogenes into the V(D)J
region (10). Class switch recombination (CSR), which oc-
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curs upon acute infections to change antibody effector func-
tions, is once again based on deletion-focused NHEJ (11).

The most striking example of erroneous DNA repair in
adaptive immunity is somatic hypermutation (SHM), the
basis of affinity maturation of humoral immunity. Here,
activation-induced deaminase (AID) (which also initiates
Ig gene conversion and CSR) triggers cytosine deamina-
tion to form uracils in transcribed Ig loci (12). These uracils
are the basis for three distinct processing pathways leading
to different mutational outcomes (13): (i) replication over
the uracils leads to transition mutations at C:G residues
(termed phase 1A of SHM); (ii) removal of the uracil by
uracil-DNA glycosylase (UNG), followed by translesion
synthesis over the abasic site, allows for C:G transversions
in addition (phase 1B); (iii) processing of the AID-mediated
U:G mismatch via non-canonical mismatch repair (14)
mainly involving the translesion polymerase Poln leads to
mutations at A:T residues (phase 2). Overall, this system al-
lows for a mutation rate roughly 10° times higher than spon-
taneous mutagenesis in vertebrate genomes. Stringent selec-
tion of B cells with high affinity receptors eventually leads
to affinity maturation of the humoral adaptive immune re-
sponse (15).

While the molecular mechanisms triggering error-prone
instead of error-free repair during SHM are largely elusive
to date, mechanisms regulating AID activity are extensively
studied and involve expression regulation via various tran-
scription factors and miRNAs, balancing of cellular local-
ization by cytosolic retention and nuclear import factors, as
well as regulation of AID’s nuclear stability and its targeting
to Ig genes (16-19). We have recently shown that PARP-1 is
involved in AID regulation upon exogenous DNA damage,
effectively leading to sequestration and stabilization of this
mostly cytoplasmic enzyme in the cell nucleus (20). In the
present study, we have investigated whether PARP-1 also
affects AID regulation in the physiological context of Ig
diversification. We show that PARP-1 is indeed a restric-
tion factor of AID activity at the Ig locus, mediating its
PARylation-dependent trapping at DNA damage sites via
AID-PAR association and thus limiting further AID in-
duced damage induction at its site of action. Upon PARP-
1 inactivation, B cells show higher AID activity at the Ig
locus, concomitant with increased overall SHM and a pat-
tern shift indicating a loss of strand bias of the A: T mutator.
Our findings identify a novel key regulation mechanism of
AID during SHM and shed light on a previously unantic-
ipated local pathway of genome maintenance in hypermu-
tating cells.

MATERIALS AND METHODS
Co-immunoprecipitation

Raji (ATCC® CCL-86™) and BJAB (obtained from the
Helmholtz Center Munich) cells were cultured at 37°C
in RPMI 1640 medium supplemented with 10% fetal calf
serum (FCS, Sigma), 100 U/ml penicillin/100 pg/ml strep-
tomycin (Invitrogen), 2 mM glutamine (Invitrogen) and 1
mM sodium pyruvate (Invitrogen) at a cell density of 2—
5 x 10°/ml. Where indicated, 0.1% of MMS (Merck) was
added 1 h before processing. Cells were then sedimented for
5 min, washed twice in PBS and resuspended in lysis buffer
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(30 mM Tris—HCI, pH 7.5; 150 mM NaCl; 10% glycerol;
10 wM ZnCly; 1.5 mM MgCly; 1 wM B-mercaptoethanol;
0.5% IGEPAL or NP40, 15 U/ml DNase, protease and
phosphatase inhibitor cocktail) and incubated for 60 min
at 4°C on a stirring wheel, followed by centrifugation (10
min at 15 000 rpm) and separation of the supernatant. Pro-
tein amounts were adjusted to 3500 g for all samples using
the Bio-Rad DCTM Protein Assay-Kit. 50 w1 of ProteinG-
Sepharose beads (VWR) were washed with lysis buffer and
2.8 wl affinity-purified a-AID antibody (clone EK2/2H5)
was added in 500 pl of lysis buffer. The beads were incu-
bated for >1 h on a stirring wheel at 4°C. After centrifu-
gation, cell lysates were incubated with the beads overnight
on a stirring wheel at 4°C. Beads were washed 12 times with
500 wl of lysis buffer (like above but with 300 mM NaCl)
before boiling in 2x SDS-PAGE sample buffer (150 mM
Tris—HCI pH 6,8, 1,2% SDS, 30% glycerin and 0.1 M DTT).
Western blot analyses used the 5G9 antibody for AID (clone
EK2/5G9) (21) and a a-PARP-1 (E78) (ab32071, Abcam)
antibody.

PAR overlay assay

PAR overlay assays were performed as described previously
(22). The indicated amounts of commercial histone H1 (Ab-
cam, ab198676 or Sigma, H1917) and BSA (Roth, 8076)
proteins or of purified recombinant AID protein (23,24)
that was boiled in 2x SDS buffer (150 mM Tris—-HCI pH
6.8, 1.2% SDS, 30% glycerin and 0.1 M DTT), were slot-
blotted onto a nitrocellulose membrane (Roth, 0031). The
membrane was incubated overnight at 4°C in TBST buffer
(150 mM NaCl, 10 mM Tris pH 8, 0.05% Tween 20) con-
taining 0.2 wM PAR (synthesized and purified as described
previously (25)). The membrane was washed three times for
10 min in TBST high salt buffer (TBST containing | M
NaCl), twice for 10 min in TBST, and subsequently blocked
for 1 h at RT in TBST supplemented with 5% milk powder.
PAR was detected using the monoclonal 10H anti-PAR an-
tibody (Enzo, ALX-804-220).

Live cell imaging

Live cell microscopy and microirradiation experiments in
HeLaKyoto and U20S cells were performed as previ-
ously described (26,27). In short, either an UltraVIEW
VoX spinning disc microcope (Perkin Elmer) with a Plan-
Apochromat 63 x /1.4 Oil objective or a Zeiss LSM 780 con-
focal laser scanning microscope, equipped with a Plan-
Apochromat 40x /1.30 Oil DIC M27 objective were used.
Both microscopes were equipped with a heated environ-
mental chamber set to 37°C. Cells were seeded into .-
Grid (35 mm with Grid, ibidi) dishes and pre-sensitized
before laser microirradiation with 10 wg/ml Hoechst for
10 min. DNA damage in a 10 pixel diameter spot within
the nucleus was induced with a 405 nm diode laser set to
77% (Spinning disk microscope) or 100% (LSM780 con-
focal microscope). Transfection with the HA-AIDANES-
GFP plasmid and the R19E/R24E version of this plasmid
(generated as described in ref. 20) was done 24-48 h be-
fore the microirradiation experiment. For knockdown ex-
periments, cells were transfected with control siRNA (Qi-
agen, S103650325, AATTCTCCGAACGTGTCACGT) or
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PARP-1 siRNA (PARP-1_5, Qiagen, S102662989, ACGG
TGATCGGTAGCAACAAA) 72 h before performing laser
microirradiation experiments at a concentration of 10 nM
using Interferrin (PolyPlus). PARP-1 inhibitors 3-AB (1
mM) and Olaparib (10 wM) were added 1 or 3 h prior to
laser microirradiation, whereas LMB (20 ng/ml) was added
6 h before laser microirradiation. Data of at least 13 nuclei
from two independent experiments were averaged and the
mean curve and the standard error of the mean calculated
and displayed.

F3H assay

To anchor GFP and AID-ANES-GFP to a defined nuclear
structure, we employed the previously described F3H assay
(28). U208 2-6-3 (29) cells were co-transfected with GBP-
Lacl and with either GFP or AID-ANES-GFP expression
vectors. After 24 h, 1 wM Olaparib, 1 mM 3-AB or equal
amounts of DMSO was added to the cells. 2-6-3 cells were
fixed in 4% PFA after 24 h, permeabilized in 0.5% Triton
X-100 and probed with antibodies for yH2AX (Millipore,
05-636) and 53BP1 (Abcam, ab36823) for 1 h at RT. Af-
ter three washes in PBS, secondary antibodies donkey-anti-
rabbit Alexa Fluor 568 (Life Technologies, A10042) and
donkey-anti-mouse Alexa Fluor 647 (Life Technologies,
A31571)were added for 1 h at RT together with DAPI. Cells
were imaged on a ZEISS LSM 780 with a Plan-Apochromat
40x /1.3 Oil DIC M27 objective and sequential scanning.
Co-localization of GFP, yH2AX and 53BP1 was deter-
mined using line scans and fluorescence intensities at the
Lacl focus measured using Imagel. Data of three indepen-
dent experiments were analysed using Microsoft Excel and
displayed with GraphPad Prism. Statistical significance was
determined using Student’s z-test.

Measurement of AID activity and Ig diversification in DT40
cells

DT40Crel cells and DT40y V~ cells obtained from H.
Arakawa (30), and DT40UNG~/~ cells obtained from H.
Saribasak (31) were cultured at 41°C in RPMI 1640 medium
supplemented with 10% FCS, 1% chicken serum, 0.1 mM -
mercaptoethanol, 100 U/ml penicillin/100 wg/ml strepto-
mycin, 2 mM glutamine and 1 mM sodium pyruvate at a cell
density of 2-5 x 10°/ml. For analysis of AID and Ig diver-
sification activity, the cells were seeded at very low density
into 96 well plates to obtain single cell clones. Where indi-
cated, 0.1% DMSO without additive or containing 2.5 or
5 pM TigA (Santa Cruz), 25 or 50 M NU1025 (Santa
Cruz) were included in all culture media. Single cell clones
were transferred to 24 or 48 well plates after 7-10 days and
fed every 3-4 days. FACS analyses were performed after
staining with a-chicken IgM-PE (Southern Biotech, SBA-
8310-09), and data were analyzed with FlowJo software.
FACS data were excluded if clones exceeded 85% dead cells
or came below 80% of AID-GFP positivity. Representative
subclones (close to the mean) were used for sequence anal-
yses of AID activity (DT40UNG /™) after 20 days of cul-
ture. Genomic DNA was isolated (QIAamp DNA Mini Kit)
and the rearranged light chain A locus was amplified with
Phusion High-Fidelity DNA Polymerase (Thermo Scien-
tific) and the following primers: 5'-TGG GAA ATA CTG

GTG ATA GGT GGA T-3' and 5-CCT CCAT TTT TTG
ACA GCA CTT ACC TGG ACA GCT G-3'. PCR Prod-
ucts were cloned into the pPGEM®-T vector (Promega) and
sequenced with the primer 5-GAG CGC AGG GAG TTA
TTT GCA TAG-3'. Geneious software was used for se-
quence alignments and identification of mutations. Data
were not used if sequences were of insufficient quality or
too short.

Inactivation of PARP-1 in DT40UNG~/~ cells

The 5 arm for the targeting vector was amplified with the
primers #1 5-CCG CTC GAG AGG ACT CGC TGC
GCC TGG CCC T-3 and #2 5-CGC GGA TCC TCA
GTG AGG GAC TTT GCC ATC GAA C-3', while the 3’
arm was amplified with the primers #3 5-TGG GGA TTG
TCT GCC AAG AAG-3 and #4 5'-CAG CCG TTA AAA
TGG CTC AGA TT-3'. Arms were restricted by Xhol and
BamHI or Spel and BamHI, cloned into the pBluescriptKS
vector (Stratagene), and the resultant BamHI site between
them served to insert loxP-flanked resistance cassettes (from
pLoxBsr, pLoxGpt) (32). After restriction with Notl, plas-
mids were transfected into DT40 cells with a BioRad gene
pulser set at 50 wF and 800 V. Selective media containing 5
pg/ml blasticidin S HCI (MoBiTec GmbH) or 30 pg/ml
mycophenolic acid (gpt; VWR) were added 1 day after
transfection, and transfected single cell clones were isolated
and further cultured for 10-14 days. For PCR confirmation
of targeted integration, cells from 0.5 ml of culture were
pelleted and genomic DNA was isolated with the QIAamp
DNA Mini Kit (QIAGEN). PCRs were performed with the
following primer combinations: #RBSR 5-ACT GCA TTC
TAG TTG TGG TTT GTC C-3' or #RSPT 5-CGC CGG
ACG AAC TAA ACC TGA C-3' and #4 for checking di-
rected integration of the resistance cassette; #3 and #4 for
amplification of the endogenous locus (3’ arm) and #5 5'-
GGA AGG AGG TTG GCA AGG CT-3' and #6 5-CTG
TGT GGC CCC ATA TGC T-3' to amplify endogenous
exons that should be replaced by the resistance cassette if
the targeting construct is fully integrated via homologous
recombination. Western blot analyses were performed with
«-PARP-1 (E87) (ab32071, Abcam), and a-actin (A-2066,
Sigma-Aldrich) and a-AID (clone EK2/5G9) antibodies.

Analysis of SHM in RAMOS cells

RAMOS cells (obtained from M. Neuberger, Cambridge)
were cultured at 37°C in RPMI 1640 medium supplemented
with 10% FCS, 100 U/ml penicillin/100 pg/ml strepto-
mycin, 2 mM glutamine and 1 mM sodium pyruvate (all In-
vitrogen) at a cell density of 2-5 x 10°/ml. For hypermuta-
tion assays, the cells were seeded at low density into 96-well
plates to obtain single cell clones and constantly supple-
mented with 0.1% DMSO without additive or containing
5or 10 uM TigA (Santa Cruz), 25 wM or 50 uM NU1025
(Santa Cruz). Cells were transferred to 48-well plates after
10-14 days, and fed every 3—4 days. FACS analyses were
performed using anti human IgM-FITC antibodies (Sigma,
F5384). DNA of representative single cell clones was iso-
lated after 42 days, and the rearranged VyDJy region was
amplified with the primers 5-CAG GGT ACC CCC AAG



GTG AGC CCA AAA GA-3 and 5-CGG GAT CCC
GCA TCG GGG CCG ACA GCA CT-3, cloned into the
pGEM®-T vector (Promega), sequenced with the primer
5-CTC CTG GTG GCA GCT CCC AGA T-3' and ana-
lyzed with Geneious software. SHM frequencies were ac-
quired and calculated manually.

Analysis of class switching in CH12F3 and primary mouse
cells

CHI12F3 cells were cultured at 37°C in RPMI 1640
medium supplemented with 10% FCS, 100 U/ml
penicillin/100 g/ml streptomycin (Invitrogen), 0.05
mM B-mercaptoethanol (Sigma) and 10 mM HEPES
(ThermoFisher or Invitrogen). CH12F3 cells were stained
with a 1:10000 dilution of CFSE (Thermo Scientific) and
incubated with 0.1 pg/ml aCD40 (eBiosciences), 5 ng/ml
IL-4 (eBiosciences) and 10 ng/ml TGF-B1 (NEB) for 2 days
in medium supplemented with 0.1% DMSO without addi-
tive or containing 5 pM or 10 pM TigA, 25 pM or 50 pM
NU1025, followed by FACS analysis using a-mouse IgA-
PE antibody (eBioscience, 12-4204-81). Primary mouse
B cells (WT and PARP-17/7) were isolated using MACS
depletion with anti-CD43 microbeads (Miltenyi Biotec),
cultured in CH12F3 medium with 1 pg/ml a«CD40 and
20 ng/ml IL-4 in order to induce class switching to IgG1
within 3-4 days, partially under the influence of DMSO
and PARP inhibitor additions as above. FACS analyses for
CSR were performed after staining with a-mouse sIgG1-
FITC antibody (BD Pharmingen, 553443). Supernatants
of WT and PARP-1-/ cells were used for quantification of
the secreted IgG1/IgM antibodies by ELISA. Plates were
coated with a-mouse 1gG1/IgM antibody (BD Pharmin-
gen, 553445/553435) prepared in carbonate buffer (pH
9.5; 0.1 M Na,COs; 0.1 M NaHCO;). Detection included
incubation with anti-IgG1/IgM-biotin (BD Pharmingen,
553441/553406) (30 min) followed by HRP Streptavidin
(BioLegend) (1 h) and an O-phenylenediamine substrate
solution (Sigma) (30 min in the dark), was stopped with 3
N HCI and measured at 492 nm. Analyses were done in
duplicates with three different sample dilutions each.

Analysis of SHM in mice

WT and PARP-1~/~ mice on a 129S2/SvPas background
were obtained from Jackson labs and bred in an SPF fa-
cility. All animal experiments were approved by the appro-
priate institutional and governmental committees for ani-
mal welfare (Thiiringer Landesamt fiir Verbraucherschutz).
Immunizations were performed i.p. to male and female
mice at the age of 8-12 weeks with alum-precipitated ni-
trophenylacetyl chicken gamma globulin (NP-CGG ratio
> 40; Biocat), and successful immunization was checked
in blood samples at day 7 and 14 by an NP-specific (NP3
or NP15 (Biocat)) ELISA. B cells were isolated from the
spleen by MACS depletion with a-CD43 microbeads (Mil-
tenyi Biotec) and stained with a-CD95-PE, a-B220-PerCP
(both BD Pharmingen, 554258 and 553093) and a-PNA-
FITC (Vector Laboratories) before sorting with a FACSAr
ia. The JH4 intron was amplified using #V186.2 fdw 5'-
CAG TAG CAG GCT TGA GGT CTG GAC-3' and #JH4-
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rev 5-CTC CAC CAG ACC TCT CTA GAC AGC-3 or
a nested PCR strategy with the primers #JHy-fwd 5-CAG
CCT GACATC TGA GGA CTC TGC-3' and #JHy-rev for
the first round, whereas the second round was performed
with #JHs-fwd2 5-ACT ACT GGG GTC AAG GAA
CCT CAG-3’' and #JH4-rev. Gel-purified products were
cloned into the pPGEM®)-T vector (Promega) and individ-
ual colonies were picked and sequenced using the #JHy-
rev primer. Hypermutation frequencies and pattern analy-
ses based on unique mutations were acquired manually with
Geneious software (Biomatters) and confirmed with the
SHM Tool (33) (http://shmtool.montefiore.org/cgi-bin/pl).
Whenever clonally identical mutated sequences were found,
all but one were excluded from the analysis to rule out the
influence of highly abundant B cell clones on the mutational
pattern. Data were also not used if sequences were of insuf-
ficient quality or too short.

RESULTS

PARP-1 mediated PARylation recruits AID to DNA damage
sites

As we previously found that PARP-1 regulates AID local-
ization and stability upon exogenous DNA damage (20), we
first asked whether the two enzymes interact in B cells un-
dergoing SHM. Co-immunoprecipitation studies revealed
that this is indeed the case: In the hypermutating and AID-
expressing cell line Raji (34), immunoprecipitation with an
AID antibody co-precipitated PARP-1, while this was not
the case in non-mutating and AID'®¥ BJAB cells (Figure
1A). Interestingly, the interaction of PARP-1 and AID was
more pronounced when the cells were treated with methyl
methanesulfonate (MMS), implying enhanced AID-PARP-
1 association upon DNA damage (Figure 1B).

PARP-1 exerts its functions to a large extend by sub-
stantial autoPARylation (35), leading to PAR-binding-
dependent recruitment of DNA repair factors to sites of
DNA damage identified by PARP-1. While AID is certainly
not a classical DNA repair factor, we wondered whether a
similar mechanism might lead to its recruitment to DNA
damage sites. In HelaKyoto cells carrying a nuclear AID-
ANES-GFP fusion lacking the C-terminal nuclear export
sequence, laser microirradiation indeed led to an accumu-
lation of the AID fusion protein at induced DNA dam-
age foci (Figure 1C and D). A similar recruitment could
be observed in U20S cells (Figure 1E). Strikingly, this ef-
fect was blocked completely when the PARylation activity
of PARP was inhibited using the nicotinamide mimetics 3-
aminobenzamide (3-AB) or Olaparib (Figure 1E), (36,37),
and AID even appeared to dissociate from damaged sites
in this situation. Also, AID accumulation at damage sites
did not occur to any significant extent in cells with siRNA-
mediated PARP-1 depletion (Figure 1F). Interestingly, full
length GFP-tagged AID translocated from the cytoplasm
to the nucleus upon laser microirradiation (Supplementary
Figure SIA and B), and inhibition of its nuclear export
by leptomycine B (LMB) also resulted in accumulation of
AID-GFP at laser-induced DNA damage sites (Supplemen-
tary Figure SIC and D) with kinetics similar to PARP-
1 itself (38). We thus conclude that AID can be recruited
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Figure 1. PARP-1 activity recruits AID to sites of DNA damage. (A) Co-immunoprecipiation of AID and PARP-1 in AID-expressing Raji cells and
AID'% BJAB cells in the absence of DNA damage, using an antibody directed against the AID C-terminus. Western blot detection of PARP-1 and AID is
shown. Data are representative of two independent experiments. (B) Co-Immunoprecipiation as shown in A), after treating the cells with 0.1% MMS for 1
hour. The experiment is representative of three independent experiments and was performed in parallel to the one shown in A). (C) Representative pictures
of live cell imaging experiments showing recruitment of AID to sites of laser microirradiation (arrows) in HelaKyoto cells transiently transfected with
a nuclear-restricted AIDANES-GFP construct. (D) Quantification of the results shown in (C). (E) Inhibition of AIDANES-GFP recruitment to DNA
damage sites in U20S cells by the PARP inhibitors Olaparib and 3-AB. F) Inhibition of AIDANES-GFP recruitment to DNA damage sites in U20S cells
by a siRNA to PARP-1. (G) Mutation of arginine residues 19 and 24 in AID abolishes AIDANES-GFP recruitment to DNA damage sites in U20S cells.
H) PAR overlay assay after slot-blotting of purified proteins at increasing amounts. Bound purified PAR chains are detected with an antibody. Hl and BSA
serve as positive and negative controls, respectively. Data are representative of two independent experimental replicates. For microirradiation experiments,
data of at least 13 cells from two independent experiments are shown as mean = SEM. Microirradiation was performed using a Spinning disk (C, D) or
confocal microscope (E-G). Statistical significance was determined using Student’s 7-test (****P< 0.0001). Scale bar, 5 wm. RFU = relative fluorescence
units. Max Int = maximum intensity.

to DNA lesions by PARP-1-mediated PARylation, reminis-
cent of the recruitment of DNA repair factors.
Recruitment of repair proteins via PARylation occurs
based on their interaction with PAR chains, resembling
protein/DNA interactions. AID may in principle bind to
PAR chains directly or via another protein. AID contains
a substrate channel involved in AID-DNA binding and
an assistant patch for binding of structured DNA during
class switch recombination (39). Strikingly, mutagenesis of
the two most highly conserved arginines (R19/R24) in the
AID substrate channel abolished recruitment of AID to
laser-induced DNA damage sites (Figure 1G). This find-
ing suggests that direct AID-PAR interaction via the sub-
strate channel may be involved in AID recruitment to DNA
damage sites. Indeed, PAR overlay assays revealed that pu-
rified AID protein may directly associate with purified PAR

chains (Figure 1H), providing a very direct mechanism for
AID recruitment to DNA damage sites by PARP-1.

PARP limits AID-mediated DNA damage induction at its site
of action

Recruitment of a potent mutator to sites of DNA damage
might serve to either boost its function, or else to limit its
activity until repair is achieved. Involvement of the DNA
binding substrate channel in AID-PAR interaction might
suggest blockade of AID function upon PAR-mediated re-
cruitment, as only one polymer may be bound at a time.
To formally assess which of the two scenarios mentioned
above holds true for the effect of PARP on AID function,
we used the previously described F3H assay (28). A high-
affinity GFP-binding nanobody (GBP) is coupled to the



Lac repressor (Lacl). In 2-6-3 cells, which harbour a stably
integrated lac operator array (LacO), the GBP-Lacl protein
binds to the LacO and recruits any GFP-fusion protein that
is co-expressed to this LacO region in the nucleus (Figure
2A). Co-expression of AID-ANES-GFP with GBP-Lacl in
2-6-3 cells resulted in tethering of the AID fusion to LacO,
which is visible as a distinct green spot in the nucleus (Figure
2B). Interestingly, local accumulation of AID-ANES-GFP
led to induction of DNA damage visualized by yH2AX
and 53BP1 co-localization with AID at the LacO (Figure
2B-F). Importantly, inhibition of PARP-1 catalytic activ-
ity with two different inhibitors (Olaparib and 3-AB) led
to a further significant increase in DNA damage induction
compared to the DMSO control (Figure 2C-F). This find-
ing indicates that PARP-1 may locally restrict AID activity,
limiting the amount of DNA damage induced by AID.

PARP-1 activity restricts AID activity at the Ig locus

To analyze whether this occurs in the physiological context
in B cells, and affects uracil generation by AID-mediated
cytosine deamination rather than downstream repair path-
ways, we used DT40UNG~/~ (31) cells that allow for di-
rect measurement of AID activity at the Ig locus via sur-
face Ig (sIg) loss (Supplementary Figure S2A). Intriguingly,
inhibition of PARP activity with two chemically different
nicotinamide mimetics (TigA and NU1025) led to a sharp
increase of slg loss in this cell system (Figure 3A), implying
that PARP-1 activity restricts AID activity at the Ig locus.

To avoid effects due to differential selectivity of PARP
inhibitors (40) and corroborate this finding by analyses in
a defined genetic system, we decided to inactivate PARP-1
by gene targeting in DT40UNG~/~ cells. Using a target-
ing strategy resembling a previously successful one (Figure
3B), (41), we achieved PARP-1 locus inactivation (Figure
3C) and loss of PARP-1 protein (Figure 3D) in several in-
dependent clones. Analysis of slg loss in selected clones of
adequate genotype once again revealed increased AID ac-
tivity at the Ig locus upon PARP-1 inactivation (Figure 3E),
which was confirmed by sequencing (Figure 3F). We con-
clude that PARP-1 activity restricts AID activity at the Ig
variable region, defining PARP-1 as the first factor capable
of limiting AID activity at its physiological site of action.
Apparently, this occurs by recruiting AID at DNA damage
sites via PARylation, i.e. via a mechanism usually enabling
DNA repair factor recruitment.

PARP-1 activity restricts overall SHM in vitro

We next asked how this PARP-1-mediated AID regulation
would impact on the different processes of Ig diversifica-
tion. In the hypermutating cell line RAMOS, inhibition of
PARP activity led to an increase in slg loss (Figure 4A), in-
dicative of increased SHM (Figure 4B and Supplementary
Figure S2B). Likewise, PARP inhibition led to increased slg
loss in hypermutating chicken DT40y V~ cells (Figure 4C
and Supplementary Figure S2C). Conversely, slg gain in
DT40Crel indicative of Ig gene conversion was decreased
(Figure 4D and Supplementary Figure S2D), consistent
with a previous study showing a crucial role of PARP-1 in
homologous recombination, on which Ig gene conversion is
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based (42). Finally, CSR was moderately, if at all, increased
by PARP inhibition in the CH12F3 cell line (Supplemen-
tary Figure S3A and B), variably affected by PARP inhibi-
tion in primary B cells (Supplementary Figure S3C and D)
and even slightly decreased in B cells from PARP-17/~ as
compared to control mice (Supplementary Figure S3E). We
conclude that inhibition of AID activity by PARP-1 con-
curs with inhibition of Ig variable region SHM in chicken
and human cells, while effects of PARP-1 on DNA repair
apparently overshadow its effects on AID in case of Ig gene
conversion. For presently unknown reasons, CSR appears
hardly affected by PARP-1-mediated AID inhibition.

PARP-1 affects SHM in vivo

Finally, we wished to know whether the effects of PARP-1
on AID and SHM may also be detected in the context of
a full germinal center reaction in vivo, i.e. under the condi-
tions of iterative mutation and selection. For this, WT and
PARP-1-/~ 129 mice were immunized with the model anti-
gen NP-CGG, and germinal center B cells were sorted at
day 14 after immunization (Figure 5A). Amplification and
sequencing of the JHy intron downstream of the V186.2
gene rearrangement used in the NP response revealed that
overall hypermutation activity was indeed significantly en-
hanced in PARP-1-/~ mice (Figure 5B). Interestingly, anal-
ysis of the mutation pattern (Figure 5C) revealed significant
changes as well, the most striking one being a reduction of
the strand bias in A:T mutagenesis (i.e. an increase in rela-
tive mutations at T in PARP-17/- animals). We thus conclude
that PARP-1 regulates AID and DNA repair during SHM
at the Ig locus in vitro as well as in the in vivo situation.

DISCUSSION

In the present study, we show that PARP-1 is a novel restric-
tion factor of AID activity and SHM at the variable region
of Ig genes (Supplementary Figure S3F). PARP-1 associates
with AID in a DNA damage-dependent manner, leading to
AID recruitment at DNA damage sites via AID-PAR as-
sociation. This mechanism apparently serves to restrict the
activity of AID at its site of action, i.e. directly at the Ig lo-
cus. Concomitantly, overall SHM is decreased by PARP-1
in chicken and human cell lines as well as in mouse germi-
nal center B cells. Analysis of the mutation pattern reveals
that PARP-1 also affects the repair of AID-induced lesions,
since in addition to its known effect on homologous recom-
bination repair (42) it also influences the mechanism under-
lying the strand bias of A:T mutagenesis, which is mostly
elusive to date.

Our study was motivated by previous findings in our lab
that implicated PARP-1 in the regulation of AID in case of
exogenous introduction of DNA damage (20), which led to
accumulation and stabilization of AID in the nucleus de-
pendent on PARP-1 activity. Our present results shed more
light on the mechanism of these previous findings. Appar-
ently, the nuclear sequestration of AID is at least in part due
to its direct recruitment to DNA damage sites by PARP-
1-mediated PARylation. This mechanism resembles the re-
cruitment of repair factors by PARP-1 to sites of DNA
damage, but instead of activating AID function, it appears
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Figure 2. PARP limits local AID mediated DNA damage induction. (A) Schematic of the F3H experimental system used to localize AID-ANES-GFP to a
defined nuclear structure. GFP fusion proteins are tethered to a lac array in U20S 2-6-3 cells by a GFP-binding protein-Lacl fusion, and the DNA damage
caused is detected by yH2AX or 53BP1 staining. (B) Representative confocal images of U20S 2-6-3 cells expressing either GFP alone or AID-ANES-
GFP treated with DMSO, 1 wM Olaparib or 1 mM 3-AB for 24 h. DNA damage induction via AID was visualized using antibodies against yH2AX and
53BPL. (C and D) Percentage of cells displaying co-localization of AID-ANES-GFP or GFP with yH2AX (C) and 53BP1 (D), respectively. Data from
three independent experiments are shown. (E and F) Scatter plot of fluorescence intensities of yH2AX (E) and 53BP1 (F) at the Lac operator array in
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Figure 3. PARP-1 activity inhibits AID activity at the Ig locus. (A) Effects of PARP inhibition on AID activity in DT40UNG~/~ cells. Each dot indicates
%slIgM loss in one single cell clone (see Supplementary Figure S2A for experimental system). Data represent three independent experiments. Statistically
significant differences are marked with brackets, and P-values are derived from a two-sided Student’s -test. (B) Strategy for inactivation of PARP-1 in
DT40UNG/~ cells. Exons are marked as boxes, primers used for constructing the knockout vector and for genotyping of targeted clones are indicated. (C)
Detection of WT and targeted alleles in parental, heterozygous and homozygous cells by the PCR approaches depicted in B). Asterisks mark clones in which
one arm of the targeting vector did not integrate by homologous recombination. (D) Western Blot analysis for PARP-1 protein expression in the clones
analyzed in (C). (E) Analysis of AID activity in DT40UNG~/~PARP-1~/~ and the respective parental and heterozygous cells. Data are representative of
more than two independent experiments, statistical significance was determined using the two-sided Student’s #-test. (F) Sequence analysis of the \ light
chain locus in DT40UNG~/~cells and in three clones of DT40UNG~/~PARP-1-/~ cells shown in (F). Significance analysis: two-sided Fisher’s exact test.
Error bars show the standard deviation.

to serve as a blocking mechanism. One may thus presume study, in particular relative to the described positive feed-
that PARP-1 binding to a damaged gene locus, which then back cycle of DNA break-mediated amplification of AID
locally triggers AID recruitment by PARP-1, serves to pro- activity via its phosphorylation at switch regions (44).

tect this locus from further harm—a first example of a local We have investigated the functional consequences of lo-
negative feedback loop controlling AID activity. Intrigu- cal AID inactivation via PARP-1 in most of the established
ingly, during this time, AID is apparently not subject to model systems for the study of Ig diversification in verte-
nuclear degradation but rather stabilized, and might thus brates. It is important to note that these analyses were un-
be released in its functional form once the damage, i.e. the dertaken with the notion in mind that some previous studies
strand break that immobilizes PARP-1 at the locus, is re- on these issues were published, but did not in all cases yield
paired. Another potential mechanism of AID release would consistent results. We will therefore address each mecha-
be the action of the PARP counterplayer PARG that de- nism of Ig diversification separately here.

grades the PAR chains (43). Such a cycle of AID-induced In case of CSR, two previous studies have shown in-

damage introduction, AID binding by PARP-1, and subse- creased switching in cell lines upon PARP inhibition
quent release by repair or PARG activity for resumed AID (45,46), but only one of these (46) could confirm the effect
function is certainly highly intriguing and deserves further in primary mouse B cells, while the other one showed no
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Figure 4. PARP inhibition leads to increased hypermutation in vitro. (A)
Somatic hypermutation-mediated sIgM loss in RAMOS cells upon PARP-
1 inhibition. Each dot indicates %sIgM loss in one single cell clone (see
Supplementary Figure S2B for experimental system). One representative
out of 3 experiments is shown. Significance analysis: two-sided Student’s
t-test. (B) Sequence analysis of the IgH variable region in representative
RAMOS clones (from A) without and with PARP inhibition with 5 mM
TigA at day 42. Centers of the pie charts show numbers of analyzed se-
quences, relative amounts of sequences with the indicated number of muta-
tions are given. Mutation frequencies are compared by a Fisher’s exact test.
(C) Effects of PARP inhibition on somatic hypermutation in DT40WV~
cells. Each dot indicates %IgM loss in one single cell clone (see Supple-
mentary Figure S2C for experimental system). Data show one of two inde-
pendent experiments. Statistically significant differences are marked with
brackets, and P-values are given (two-sided Student’s 7-test). (D) Effect of
PARP inhibition on Ig gene conversion in DT40Crel cells. Each dot indi-
cates %IgM gain in one single cell clone (see Supplementary Figure S2D for
experimental system). One representative out of two experiments shown.
Significance analysis: two-sided Student’s #-test.

effect there. A third study did describe altered class switch-
ing in mouse B cells lacking PARP-1 (47). While reasons for
these conflicting data on the role of PARP-1 in class switch
recombination are unclear, in our hands, effects of PARP-
1 inhibition on switching were moderate at best, and vari-
able. Based on the data available at this point, we consider it
safe to say that PARP-1 does not substantially affect CSR
efficiency as such. This is also consistent with the notion
that while overall switching is similar in WT, PARP-1-/~
and PARP-2~/~ mice, different types of genetic alterations
occurred in the two knockouts, implying that PARP-1 and
2 are active during the process but rather affect DNA re-
pair than AID activity (46). Moreover, PARP-3 may pro-

vide an alternative control mechanism of CSR (48,49). Es-
cape of AID from PARP-1 mediated restriction at switch
regions (coupled to a positive break induced feedback loop
(44)) may explain the high accumulation of strand breaks
actually needed for double strand break formation and re-
combination to occur. In notable contrast, DNA breaks
are not a required intermediate for the G:C biased phase
of SHM, and only transiently affecting a single strand for
the A:T mutator, giving meaning to two counterdirectional
modes of DNA break-induced AID regulation during SHM
and CSR. While underlying mechanisms are speculative at
present, the relative efficiency of PAR chain competition
with AID-DNA binding only via the substrate channel (as
in the variable region) versus AID binding to structured/G4
DNA via substrate channel and assistant patch (as in switch
regions (39)) should be investigated by adequate biochemi-
cal approaches.

In case of Ig gene conversion, our findings of reduced ac-
tivity upon PARP-1 inactivation are fully consistent with a
previous study showing a collapse of Ig gene conversion and
activation of SHM upon PARP-1 inactivation in DT40 cells
(42). Here, any potential effect of PARP-1 on AID func-
tion is likely fully masked by its impact on homologous re-
combination (41), i.e. DNA repair. Detection of PARP-1
effects on AID during both Ig gene conversion and CSR
may thus be a challenging endeavor, requiring more sophis-
ticated methods than applied here.

Concerning the role of PARP-1 in SHM, one early study
claimed that PARP-1 is not required for the process (50),
a statement actually true in its strict sense, We now show,
though, that PARP-1 is an important negative regulator
of SHM. In a setting where downstream repair events are
blocked (DT40UNG /™), the absence of PARP-1 leads to
a profound increase in locus-specific AID activity. This
finding also indicates that UNG-mediated generation of
strand breaks may not be strictly required for recruitment
of PARP-1 to the Ig locus. In all three investigated systems
featuring the downstream repair pathways of SHM (human
RAMOS, chicken DT40¢ V—, mouse germinal center B
cells), absence or inhibition of PARP-1 leads to an increased
overall hypermutation. This may be due to effects on AID,
DNA repair or both, and differentiation between these op-
tions is tricky when measuring the overall process. From a
pragmatic point of view, we interpret an overall increase in
SHM activity as an increase in AID activity, while changes
in pattern would indicate changes in individual downstream
repair pathways. Concerning the latter, we clearly detect an
interesting pattern change in PARP-1~/~ mice: the strand
bias of A:T mutagenesis, which appears to be quite pro-
nounced in 129 mice, is alleviated. The mechanism gener-
ating this strand bias is elusive to date, even though sev-
eral explanations have been put forth (51-53). Our iden-
tification of one unexpected responsible enzyme—PARP-
l—may bring new air to its mechanistic investigation. Ir-
respective of this, we can safely conclude that PARP-1 reg-
ulates AID activity as well as DNA repair during Ig diver-
sification.

In sum, we show for the first time that PARP-1 has a
previously unanticipated role during SHM as a major re-
striction factor for AID function. Factors blocking aber-
rant activity of AID at its site of action have not previ-
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ously been identified, and our findings may thus help to
understand other pathways of AID/SHM regulation that
are locus-specific. Importantly, both AID activity as well
as error-prone lesion resolution are largely, but not fully,
restricted to Ig gene loci, and the mechanism(s) responsi-
ble are barely understood to date. PARP-1 now presents as
an enzyme with the potential to regulate both sides of the
coin, and thus deserves much more rigorous investigation
in the context of SHM than previously anticipated. Empha-
sizing this notion, locus perturbations leading to dominant
negative PARP-1 proteins or decreased PARP-1 expression
have been detected in Diffuse large B cell lymphoma (54),
a disease characterized by aberrant somatic hypermutation
(55), but nonetheless PARP inhibitor combination therapy
is employed in the treatment of human B cell malignancies
(56,57). On the basis of our findings, we advise caution with
such approaches to prevent disease progression by deregu-
lation of the dedicated mutator AID.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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